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The quantum-reduced loop-gravity technique has been introduced for dealing with cosmological

models. We show that it can be applied rather generically: any time the spatial metric can be gauge

fixed to a diagonal form. The technique selects states based on reduced graphs with Livine-Speziale

coherent intertwiners and could simplify the analysis of the dynamics in the full theory.

DOI: 10.1103/PhysRevD.88.104001 PACS numbers: 04.60.Pp

I. INTRODUCTION

Quantum reduced loop gravity (QRLG) is a framework
introduced for the quantization of symmetry-reduced
sectors of general relativity. It was introduced in [1,2] and
applied to an inhomogeneous extension of the Bianchi I
cosmological model. Here we show that its application is in
fact quite wide, since it essentially amounts to a choice of
gauge in the full theory.More precisely, we show that fixing
the gauge where the triad is diagonal (in the quantum
theory) leads to the state space of QRLG.

The loop quantization of homogeneous models [3,4]
(loop quantum cosmology) and spherically symmetric
systems [5] (black holes) has been mostly studied by first
restricting to a reduced phase space and then quantizing the
resulting system. The strategy of starting from the full
quantum theory and restricting the set of states has devel-
oped more slowly, both in the canonical [6] and covariant
[7–9] versions of the theory.

The metric of a Bianchi I model is diagonal and the
internal SUð2Þ gauge can be fixed so that the densitized
triads are diagonal as well. In QRLG, one fixes a three-
dimensional cubic lattice oriented in the directions that
diagonalize the metric. The connection on each link be-
longs then to a fixed Uð1Þ subgroup of SUð2Þ, one per each
of the three possible orientations of the links. Group ele-
ments associated to links are in Uð1Þ, not in SUð2Þ, and the
SUð2Þ structure is only present at the nodes. The way Uð1Þ
states are embedded into SUð2Þ states is analogous to the
way SUð2Þ states sit into SLð2; CÞ states in spin foam
theory, one dimension up. Using these structures we can
regularize the scalar constraint as in full loop quantum
gravity (LQG) [10].

Here we point out that this scheme is more general
than its application to Bianchi I and the inhomogeneous
extensions previously considered. It works any timewe can
choose a reference frame where the spatial metric is di-
agonal. This is generically possible, since any 3-metric can
generically be taken to diagonal form by a 3D diffeomor-
phism [11], as in three dimensions the number of non-
diagonal components of the metric coincides with the

number of parameters of a diffeomorphisms. The price to
pay is a nontrivial Shift function and a potentially more
complicated dynamics.
Below, we review a few basis elements of LQG that we

need for this construction, then we give the QRLG con-
struction of the state space, and finally we recover this
same state space by a gauge fixing in the general quantum
theory.

II. LOOP QUANTUM GRAVITY

In LQG, the elements of the kinematical Hilbert space
H kin are labeled by oriented graphs � in the spatial
manifold and are given by functions on L copies of
SUð2Þ, L being the number of links in �. A basis of states
is obtained from Peter-Weyl theorem, and is labeled by an
irreducible representation jl of SUð2Þ on each link l, and a
SUð2Þ intertwiner xn at each node n. The corresponding
state reads

hhlj�; jl;xni ¼
Y

n2�

xn �
Y

l2�

DjlðhlÞ; (1)

where hl denotes the holonomy along the link l, while
DjðhÞ and x are Wigner matrices in the representation j
and intertwiners, respectively; the products extend over all
the links and the nodes in �; the dot means the contraction
between indices of intertwiners and Wigner matrices.
The flux operator EiðSÞ associated to the oriented surface
S acts as the left (right) invariant vector fields on the group
element based at links l beginning (ending) on S. For
instance, given a surface S having a single intersection
with a link l at a point x 2 e, such that l ¼ l0

S
l00 and

l0 \ l00 ¼ x, the operator ÊiðSÞ is given by

ÊiðSÞDjlðhlÞ ¼ 8��l2P oðl; SÞDjlðhl0 Þ�iDjlðhl00 Þ; (2)

� and lP being the Immirzi parameter and the Planck
length, respectively, while oðl; SÞ is equal to 0, 1, �1
according to the relative sign of l and the normal to S. �i

denotes the SUð2Þ generators in the jl representation.
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The equivalence class s of graphs � under diffeomor-
phisms can be used to implement background indepen-
dence in the dual of the SUð2Þ-invariant kinematical
Hilbert space as follows:

hs; jl;xnjhi ¼
X

�2s

h�; jl;xnjhi: (3)

The scalar constraint can be regularized in the space of
SUð2Þ-invariant and diffeoinvariant states.

III. QUANTUM REDUCED LOOP GRAVITY

The Bianchi I model is endowed with a diagonal metric
tensor,

dl2 ¼ a21ðdx1Þ2 þ a22ðdx2Þ2 þ a23ðdx3Þ2; (4)

where ai (i ¼ 1, 2, 3) are three time-dependent scale
factors. In the inhomogeneous extension of Bianchi I, the
ai are assumed to be a function of time and the spatial
coordinates xi, which are the Cartesian coordinates of a
fiducial flat metric. The associated densitized triads can be
chosen to be diagonal, i.e.

Ea
i ¼ pi�a

i ; jpij ¼ a1a2a3
ai

(5)

by the gauge-fixing condition [12,13]

�i ¼ �ij
kEa

k�
j
a ¼ 0: (6)

The connections are generically given by

Ai
a ¼ ciu

i
a þ � � � ; ci ¼ �

N
_ai; (7)

where uia ¼ �i
a are the components of three unit vectors ~ua

oriented along three fiducial orthogonal axes and the dots
indicate terms due to the spin connections, which are
generically nondiagonal. These terms were disregarded
in [1,2] by considering two cases: the reparametrized
Bianchi I model, in which each ai is a function of the
single corresponding coordinate xi; and the Kasner epoch
inside a generic cosmological solution, for which spatial
gradient of the scale factors are negligible with respect to
time derivatives.

The kinematical symmetries in this reduced phase space
are generated by two sets of constraints: the Gauss con-
straints associated with threeUð1Þ gauges, each acting on a
single spatial direction xi and having fci; pig as the couple
of connections and momenta; the vector constraints asso-
ciated with a subgroup of the diffeomorphisms group,
made by those transformations (reduced diffeomorphisms)
which can be seen as the product of a generic diffeomor-
phism along a given direction xi and a rigid translation
along the other ones.

The description of such a system in QRLG is obtained
by truncating the LQG kinematical Hilbert space. First, the
Hilbert space of the full theory is restricted to that based on
a reduced set of cubic graphs, with links parallel to three

fiducial vectors !i ¼ �a
i @a (i ¼ 1, 2, 3). We call il the

direction of the link l in the cubic graph.
Then, the gauge fixing leading to diagonal momenta and

connections is implemented weakly, following the proce-
dure to impose the simplicity constraints in spin foam [14].
The condition (6) is first rewritten in terms of fluxes across
surfaces Sj normal to the j direction, as

�iðSÞ ¼ �ij
kEkðSjÞ ¼ 0 (8)

and then implemented solving strongly the master
constraint condition �̂2ðSÞ ¼ P

i�̂
2
i ðSÞ ¼ 0. Since the hol-

onomy along the link l is generated by �il only,

hl ¼ Peð
R

l
cidx

iÞ�il ; (9)

and a solution of �̂2ðSÞ ~c l ¼ 0 can be obtained by working
with projected Uð1Þ states, obtained by stabilizing the
SUð2Þ group element based at each link l around the
internal directions ~ul, where ~ul ¼ ~uil and the components

of ~ui are given by uia ¼ �i
a as above. In terms of Wigner

matrices, the resulting projected state on a link with
direction i ¼ 1, 2, 3 reads

~c iðhÞ ¼
Xþ1

n¼�1
c niDjðnÞ

nn ðhÞ; (10)

where iDjðniÞ
mr are the Wigner matrices in the spin basis

jj; mii that diagonalizes the operators J2 and Ji, and c n

are the coefficients of the expansion. The condition

�̂2 ~c ei ¼ 0 fixes the degree of the representation, i.e. the

Uð1Þ quantum number n in terms of SUð2Þ quantum num-
ber j. An approximate solution which becomes exact for
j ! 1 is given by

jðnÞ ¼ jnj: (11)

This is good enough for assuring the classical limit. Here
we restrict to positive values of n for simplicity. LetH R be
the space spanned by the states (10), with j given by (11).
The gauge-fixing condition h�̂ii ¼ 0 holds weakly on this
space.
A reduced recoupling theory adapted to such states fol-

lows from SUð2Þ recouping theory. Consider the SUð2Þ
coherent states

jj; ~ui ¼ Djð ~uÞjj; ji ¼ X

m

jj;miDj
mjðuÞ; (12)

where ~u is a unit vector and u is a group element that rotates
the z axis into ~u. Using these, define the projectors

Pl ¼ jjl; ~ulihjl; ~ulj; (13)

for each link of the graph.
The projector P� that maps H kin intoH R acts on each

Wigner-matrix state as
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P�: D
jlðhlÞ � PlD

jlðhlÞPl; (14)

and its image has the form (10).
So far we have considered states on single links. Now let

us consider states of the full theory, invariant under SUð2Þ
gauge transformations. The projection of the invariant
basis states can be written in the form

hhj�; jl;xniR ¼ Y

n2�

hjl; xnjjl; ~uli �
Y

l2�

ilDjl
jljl

ðhlÞ: (15)

The coefficients hjl; xnjjl; ~uli are the reduced intertwiners
and they take the following expression in terms of the
SUð2Þ intertwiner basis:

hjl; xjjl; ~uli ¼ x�m1...mO;m...m0
I

YO

o¼1

D�1jo
jomo

ðuoÞ
YI

i¼1

Dji
m0

iji
ðuiÞ;

where we have split the links l ¼ fi; og i ¼ 1; . . . ; I,
o ¼ 1; . . . ; O in n into I incoming and O outgoing links.
A generic state can thus be expanded as follows:

Rh�; jl;xnjc i ¼ Y

n2�

hjl; ~uljjl; xni �
Y

l2�

c jl
l : (16)

The reduced intertwiners hjl; xnjjl; ~uli provide a non-
trivial node structure. It is the presence of such a node
structure and of reduced diffeomorphisms invariance
which provides a well-defined regularized expression for
the scalar constraint by mimicking the techniques of
quantum spin dynamics [10].

We now reinterpret restriction to reduced graphs as a
gauge fixing at the quantum level, to a gauge where
the metric tensor takes the form (4). This turns out to be
simpler than the Bianchi I case considered previously,
because it does not require to chose a priori the projected
form for the states; this form comes automatically from the
gauge fixing.

IV. FIXING THE FRAME

Given a point x and three vectors!i ¼ �a
i @a at the point,

let Six be three surfaces intersecting at x dual to these
vectors. The vanishing of the off-diagonal components of
the metric tensor can be written in terms of fluxes as
follows:

�km
x ¼ �ijEiðSkxÞEjðSmx Þ ¼ 0; k � m; 8 x 2 �:

(17)

Consider now the equation as a gauge-fixing constraint
in the quantum theory. We want thus to solve �̂kl

x ¼ 0,
i.e. weakly. That is, we look for a subspace of the full
Hilbert space where

hc j�km
x j�i ¼ 0; k � m; 8 x 2 �: (18)

There are two cases for which the action of the operator �̂kl

on a state based in � is nontrivial, depending on the
intersections between � and the surfaces Six:

(1) There is a link lx 2 � containing x as an internal
point.

(2) x is a node for �.
In the first case, the action of �̂km

x is nontrivial on
DjlðxÞ ðhlðxÞÞ and reads

�̂km
x Djlx ðglðxÞÞ ¼ ð8��l2PÞ2oðSk; lxÞoðSm; lxÞ

� jlxðjlx þ 1ÞDjlx ðhlxÞ; (19)

where oðS; lÞ is the intersection number between the link
and the surfaces. Hence, spin networks with the link lx are
eigenfunctions of the operator �̂kl

x . Therefore, the scalar
product with other spin networks with a link lx gives

hlx; ~jlx j�̂km
x jlx; jlxi ¼ ð8��l2PÞ2oðSk; lxÞoðSm; lxÞ

� jlxðjlx þ 1Þ�~ji;ji
; (20)

which in general does not vanish for ~jlx ¼ jlx . However, a

proper subspace exists where all these matrix elements
vanish. It is formed by states based on the links of the
cubic graph, i.e. at links parallel to the vectors!i. In fact, if
lx is in the direction i ¼ 1, 2, 3 then oðSk; lxÞ ¼ �k

i and

hlx; ~jlx j�̂km
x jlx; jlxi ¼ ð8��l2PÞ2�k

i �
m
i jlxðjlx þ 1Þ�~jlx ;jlx

which vanishes for k � m. Henceforth, the restriction to
reduced graph satisfies (17) in case 1. We denote reduced
graphs by �P and the Hilbert space based at �P by H P.
We can then follow [1,2] and define a projector P

selecting the states based at reduced graphs and projecting
to H P diffeomorphisms invariant states (3). This gives

hs; jl;xvjPjhi ¼
X

�P2s

h�P; jl;xnjhi; (21)

where the sum is over all the reduced graphs contained in
the s knot s. Reduced graphs within each s are mapped into
each other by the action of reduced diffeomorphisms, times
all possible exchanges between fiducial vectors f!i;�!ig.
Hence, s knots are projected to sums of reduced s knots sAP:

hs; jl;xnjPjhi ¼
X

A

X

�P2sAp

h�P; jl;xnjhi; (22)

with the index A labeling all permutations of f!ig times
inversions. The sum over A implies to us that no special
meaning must be given to a fiducial direction.
This solution to the gauge fixing condition (17) defines

the same Hilbert space as in QRLG with the only differ-
ence that we have to sum all permutations and inversions of
the fiducial directions.
Let us now move to case 2. Here a solution in the large j

limit is obtained restricting the admissible intertwiners
states to the Livine-Speziale coherent intertwines [15]
with normals ~ul. Livine-Speziale coherent states adapted
to the reduced graphs are given by inserting a resolution of
the identity
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hhj�; jl; ~uli ¼
X

xn

hhj�; jl;xnihjl;xnjjl; ~uli: (23)

The matrix elements of the product of two fluxes intersect-
ing � at a node n for j ! 1 are (see [16])

h�; jl; ~ulj ~EðSknÞ � ~EðSmn Þj�; jl; ~uli
� ð8��l2PÞ2

X

lk

jlk ~uk �
X

lm

jlm ~um; (24)

where the sums extend over the links emanating from n in
the direction ~uk and ~um. Since the vectors ~ui are orthogonal,
the expression above vanishes for k � m. We have assumed
for simplicity that all the links are outgoing. Therefore, the
condition h�km

n i ¼ 0 can be solved in the large j limit and it
provides the restriction to the states of the form

h�; jl;xnjc i ¼ Y

n2�

hjl; ~uljjl; xni
Y

l

c jl; ~ul
l ; (25)

in which c jl; ~ul
l denotes the coefficients of the expansion

of the SUð2Þ group elements in the basis of coherent states.
By the identification

c jl; ~ul
l ¼ c nl

l ; for nl ¼ jl; (26)

the expression (25) formally coincides with the one found
in (16) giving the expansion of the states of QRLG in the
basis elements of H R. However, now we have an actual
expansion in the basis elements of H P, i.e. of the full
theory just restricted to reduced graphs.

The SUð2Þ gauge-fixing condition can also be imposed
without using projected Uð1Þ networks. As pointed out in
[1,2], it is convenient to write Wigner matrices based at
links in the direction i in the basis jj; mii diagonalizing J2

and Ji, so that the action of the master constraint condition
�̂2ðSxÞ ¼ 0 at the node reads

�̂2ðSxÞiDj
mnðhlÞ ¼ ð8��l2PÞðjðjþ 1Þ �m2ÞiDj

mnðhlÞ: (27)

A solution for j ! 1 is given by m ¼ j and can be
implemented by inserting the projector Pl at the node.

The general reduced basis element is obtained from (1)
replacing DjlðhlÞ with PlD

jlðhlÞPl, and this gives

hhj�; jl;xni ¼
Y

n2�

hjl; xnjjl; ~uli
Y

l2�

lDjl
nlnlðhlÞ; (28)

which coincides with Eq. (10). Hence, the quantum states
adapted to the gauge fixing condition (6) coincide with the
ones defined in [1,2] even if the connection is not diagonal.

V. CONCLUSIONS

We have discussed how to fix a gauge where the triad is
diagonal, in the kinematical Hilbert space of LQG. We
have shown that the gauge fixing condition is solved
weakly by states based at reduced links connected by
Livine-Speziale coherent intertwiners. This leads to the
same state space as the one defined in quantum reduced
loop gravity (QRLG) of [1,2].
Therefore, QRLG can be regarded as a framework useful

beyond the cosmological context, possibly for full quan-
tum gravity. The construction given here is based on the
formulation of the theory in terms of graphs embedded in a
manifold, which is standard in canonical LQG. It is
important to understand also the same construction in the
combinatorial framework based on abstract graphs. This
will be discussed elsewhere.
The fact that the analytical expression for the Hamiltonian

constraint simplifies substantially in the QRLG language [1]
(essentially due to the fact that the volume is diagonal in the
reduced basis elements) makes this result intriguing. The
limits of the construction are in the approximated solution
to the gauge fixing conditions, which holds only for j � 1,
possibly in the limitations of the applicability of the gauge
condition, and perhaps in the complication of the dynamics
that one might expect in a gauge fixed context like this. We
expect the semiclassical analysis to indicate whether any
interesting quantum gravity effects can be captured in this
regime. The framework can also in principle simplify other
issues, such as the coupling between quantum geometry and
matter [17–19] and the relation between the canonical and
covariant approach [20,21].
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