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A RIGIDITY RESULT FOR GLOBAL MUMFORD-SHAH

MINIMIZERS IN DIMENSION THREE

ANTOINE LEMENANT

Abstract. We study global Mumford-Shah minimizers in RN , introduced by
Bonnet as blow-up limits of Mumford-Shah minimizers. We prove a new mono-
tonicity formula for the energy of u when the singular set K is contained in a
smooth enough cone. We then use this monotonicity to prove that for any reduced
global minimizer (u,K) in R3, if K is contained in a half-plane and touching its
edge, then it is the half-plane itself. This partially answers to a question of Guy
David.
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2 A. LEMENANT

1. Introduction

Global Mumford-Shah minimizers was introduced first by Bonnet [4] in dimension
2 as blow-up limit of minimizers of the Mumford-Shah functional, and are crucial
in the regularity result of [4]. They are couples (u,K), with K ⊂ RN a closed set
and u ∈

⋂

R>0W
1,2(B(0, R) \K), that locally minimizes in RN the Mumford-Shah

energy. More precisely, for any ball B ⊂ RN , (u,K) minimizes the sum

ˆ

B\K
|∇u|2dx+HN−1(K ∩ B),

among all compettiting couples (u′, K ′) that are equal to (u,K) outside B, and
that keep the topology of K (see Definition 2.4 below for more details). The k-
dimensional Hausdorff measure Hk generalizes the natural notion of k-area and will
be precisely defined in Section 2.
The list of global minimizers is nearly complete in dimension 2: if K is connected

then it is either a line, a half-line, or three half-lines meeting at the origin by 120o.
Knowing this without assuming “connected” would solve the famous Mumford-Shah
conjecture. Some improvements in this direction can be found in [14] and [10].
But on the other hand, almost nothing is known about global minimizers in di-

mension N > 2. A first discussion is given in Chapter H.76. of Guy David’s book
[8], and a few more results can be found in the paper [15].
For instance it is known in dimension 3 that, if u is locally constant, then K must

be a minimal cone (i.e. a Plane, three half planes meeting by 120o, or a cone over the
regular tetrahedron). This fact looks very natural but is surprisingly not obvious
at all, and a rigorous proof is contained in [9]. It is also known that a half-plane is
a minimizer with the corresponding function u = cracktip× R, where the cracktip
function is

√

2r/π sin(θ/2) in polar coordinates. These are the only known examples
of global minimizers in R3, and we refer to [15] and [8] for more details.
There is also counter-examples. For instance in [15] it is proved that an angular

sector cannot be a global minimizer, unless it is a half-plane or a plane. In [18] a
tentative construction for an extra global minimizer of particular type is proved to
fail.
Notice that adding to K a piece of set negligible for HN−1 does not change the

fact of being a Mumford-Shah minimizer. Therefore, it is convenient to work with
reduced minimizers only, for which one cannot remove from K more pieces of set
of zero measure without being enable to extend the associated function u as a
W 1,2 function. For instance, reduced minimizers enjoy nice properties as Ahlfors-
regularity, or local C1 regularity at points where the energy of u is small enough, that
non-reduced minimizers can obviously not expect to have in general. As proved in [8],
it is always possible to replace a minimizer by a reduced one (there is even a debate
between 3 different possibilities, the one used in this paper is called “topological
reduction” in [8]), but anyway in the case when the the global minimizer is coming
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from a blow-up procedure, then it is automatically reduced [8, Proposition 40.9].
We refer to [8, Section 8] for more details about reduced minimizers.
In this paper we focus our attention on the following conjecture which is stated

in [8, Page 571].

Conjecture 1.1 (Guy David). Let (u,K) be a reduced global minimizer in R3 such
that K is contained in a plane and not empty. Then K must be either a plane or a
half-plane.

In this paper we give a partial answer to this conjecture. We prove the following.

Theorem 1.2. Let (u,K) be a reduced global minimizer in R3 such that K is con-
tained in a half-plane, which contains a point of K on its edge. Then K must be the
whole half-plane.

The major obstacle which prevents us to prove the full conjecture will be explain
a the end of the introduction. It comes from geometrical requirements to control the
first eigenvalue of the Neumann-Laplace-Beltrami operator on spherical domains in
order to get a monotonicity formula for the normalized energy, with the right power.
We are able to control the first eigenvalue of SN−1 \ K when K is contained in a
half-plane, but not larger.
We stress that in dimension N = 2, similar results have been obtained by J-C

Léger [14]. For instance Proposition 25 in [14] says that when N = 2, if K is
contained in a line then K is either the whole line, a half-line, or the empty set. The
proof of Léger relies strongly on complex analysis. In particular the beautifull (and
planar) formula showing the link between the set K and the complex derivative of u
is one of the key ingredient in [14]. The second main ingredient is the monotonicity
formula of Bonnet [4].
Therefore, the challenge in Conjecture 1.1 is to find a new strategy in higher

dimension, without complex analysis, and prioritary try to find a monotonicity
formula like the one of Bonnet valid in higher dimensions. The latter being also
a question in page 572 of [8].
In the present paper we indeed propose a monotonicity formula to replace the

one of Bonnet. It relies on the famous argument from Alt-Caffarelli-Friedman, and
is obtained here for solutions of the Neumann problem in the complement of a set
K ⊆ RN contained in a cone. According to us, this monotonicity result is probably
as interesting as our main result itself since, as far as we know, it is the first time
that some monotonicity is shown for the Neumann problem in dimension N > 2. On
the other hand to be valid, the singular set K must be contained in a cone, which
could be slightly restrictive but turns out to be exactly the case in Conjecture 1.1.
Let us recall the monotonicity formula of Bonnet [4] which says that if K ⊂ R2 is

a closed connected set and u is a local energy minimizer in R2\K (i.e. u is harmonic
with Neumann boundary conditions on K), then

r 7→ 1

r

ˆ

Br\K
|∇u|2dx
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is nondecreasing (see also [8, Section E.47] or [6]). The proof of Bonnet seems not
to be directly extendable in higher dimensions.
On the other hand, using a classical argument from Alt-Caffarelli-Friedmann [2], it

is easy to show that, for the Dirichlet problem, if the first eigenvalue of the Dirichlet
Laplacian is uniformly bounded from below by (2N−3)/4 on ∂Br \K for a.e. r > 0,
then

r 7→ 1

r

ˆ

Br\K

|∇u|2
|x|N−2

dx

is nondecreasing. See for instance [17, Lemma 16] for a proof. Notice that for N = 2
we recover exactly Bonnet’s energy.
Both in Bonnet [4] and Alt-Caffarelli-Friedman [2], the monotonicity formula is

established through an integration by parts which transforms the energy f(r) =
´

Br
|∇u|2/|x|N−2dx as an integral over ∂Br, and then estimate the later by Poincaré-

Wirtinger inequality to get f(r) ≤ Cf ′(r), where the constant C is related to eigen-
value on the sphere.
Now if one tries to use the proof of Alt-Caffarelli-Friedmann [2] for the Neumann

problem in RN \K, while performing the integration by parts, a boundary term of
type

ˆ

K∩Br

u2
∂

∂ν

(

1

|x|N−2

)

dHN−1(1.1)

remains, which a priori prevents us to prove any monotonicity (here the integration
over K has to be understood as an integration on both sides of K and u may take
a different value on each side). Of course this term does not occur when u = 0 on
K, which happens for the Dirichlet problem.
Now the key point in our proof relies on the following simple observation: if

for instance K is contained in a vectorial N − 1-plane, then the normal vector on
K at point x must be orthogonal to the vector x itself. By consequence we have
∂
∂ν
(|x|2−N) = (2 − N)|x|−Nx · ν = 0 on K, and the above extra term disappears.

So follows the monotonicity, and it works the same way if K is contained in a more
general N − 1 dimensional cone.
Moreover, as for Bonnet’s monotonicity formula, the argument here is sharp too,

in the sense that constant normalized energy happens if and only if u is positively
homogeneous of right degree.
Even if the proof of Theorem 1.2 needs the monotonicity result for half-planes

only (and N = 3), we will prove it in any dimension for more general cones that we
will call Neumann cones, and that we define as follows.

Definition 1.3. If N ≥ 3, a closed set K ⊂ RN will be called a Neumann cone if
the three following properties hold:

(1) K is a cone.
(2) K ∩ SN−1 is (N − 2)-rectifiable.
(3) The embedding W 1,2(SN−1 \K) → L2(SN−1) is compact.
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If N = 2 we keep the same definition but replacing (2) by

(2)’ K ∩ S1 is a finite number of singletons.

It is easy to check that a vectorial hyperplane in RN is a Neumann cone, or that a
half-hyperplane is a Neumann cone. We recall that for instance, the so-called cone
property guarantees the compactness of W 1,2(Ω) → L2(Ω) (see [1, Theorem 6.2.
p.144]). Moreover, when K is a Neumann cone then the first positive eigenvalue of
the Neumann Laplacian, denoted by λ1(S

2 \K), is well defined. This is also the case
for any set K contained in a Neumann cone. We refer to Section 4 for the exact
definition of rectifiability and basic properties of Neumann cones.
Now here is an example of statement for the monotonicity result (see Lemma

7.5 for the general case where assumption (2) of Lemma 1.4 is replaced by a more
general topological assumption). We call energy minimizer in RN \ K, a function
u that locally minimizes

´

|∇u|2dx in RN \K (see Definition 2.1). This function is
harmonic in R

N \ K with a Neumann boundary condition on K, i.e. zero normal
derivative on K, in a weak sense.

Lemma 1.4. Let K ⊂ RN be a closed set satisfying the following assumptions.

(1) K is contained in a Neumann cone.
(2) ∂Br \K is connected for a.e. r > 0.
(3) ∃γ > 0 s.t. for a.e. r > 0, the first positive eigenvalue of the Neumann-

Laplace-Beltrami operator on ∂Br \K satisfies λ1(∂Br \K) ≥ γ/r2.

Then for every local energy minimizer u in RN \K we have that

ϕ : r 7→ 1

rα

ˆ

Br

|∇u|2
|x|N−2

dx(1.2)

is nondecreasing, where α is defined through

α = α(N, γ) =
√

(N − 2)2 + 4γ − (N − 2).

Moreover, if ϕ(r) is constant on an interval [a, b] then for a.e. r ∈ [a, b] the value
γ/r2 is the first positive eigenvalue for the Neumann-Laplace-Beltrami operator on
∂Br \K and the restritction of u on ∂Br \K is an associated eigenfunction.

For instance when N = 3, the eigenvalue γ = 3/4 provides a monotonicity with
power α = 1. The monotonicity is then employed to characterize blow-up and blow-
in limits of a global minimizer when K is contained in a half-plane, and this is the
key ingredient to prove Theorem 1.2.
The assumption of existing a point of K on the edge of the half-plane is here the

guarantee the existence of a point at which the normalized energy (i.e. the quantity
denoted by ϕ(r) in Lemma 1.4 with α = 1) will not converge to 0 when r goes to
zero. At this step of the proof we shall need the regularity result of [16]. For an
arbitrary closed K contained in a half-plane, it is tempting to try to find a point on
the edge of another suitable half-plane by moving the first one. But notice that for
instance the closed set K := {(x, y, 0) ∈ R3; y ≥ e−|x|} is contained in the half-plane
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{z = 0 and y ≥ −1} but does not touch the edge of any half-plane containing it,
thus we cannot avoid our assumption using this kind of strategy.
It is well known that the natural power in the normalized energy of a Mumford-

Shah minimizer is indeed α = 1, because of the standard energy estimate
´

Br
|∇u|2dx ≤

CrN−1. To this respect, let us emphasis that regarding to the exponent α in the
monotonicity formula, the situation in dimension 3 is pretty much different than
the situation in dimension 2. This is due to the fact that λ1(S

2 \ K) is decreasing
with respect to increasing cracks on the sphere, at the contrary of what happens in
dimension 2, where λ1(S

1 \K) increases while removing increasing arc of circles K
(see Remark 6.1 and 6.2 for more details).
By consequence, in dimension 2, the more K ∩ ∂B(0, r) is large, better is the

decay of energy, and you always have α ≥ 1 as soon K meets ∂B(0, r) at least at
one point (for instance when K is connected and r is small enough). In dimension
3, it is not so easy to obtain α ≥ 1, because to get this you need λ1 ≥ 3/4 on the
sphere, which is not trivially verified in practice. It depends on the geometry of
the set K ∩ B(0, r), which can now be complicated even with zero HN−1-measure,
whereas consisting essentially in a finite number of points in dimension 2.
But the situation is even worst than that: if the value 3/4 is achieved for some

K∩∂B(0, r) (for instance when K is a half-plane), then any larger set K ′ ⊃ K (with
zero HN−1-measure on the sphere) would fail to have λ1 ≥ 3/4, and consequently
the larger set would imply a smaller exponent α. This phenomenon is somehow
counter-intuitive regarding to what happens in dimension 2.
All the above explains why we have the restriction of K being contained in a half-

plane in the statement of Theorem 1.2. By this way we guarantee that assumption
(3) of Lemma 1.4 is satisfied with γ = 3/4, thus the monotonicity holds with α = 1.
If K was larger than a half-plane then we would have γ < 3/4 and the monotonicity
with α < 1 would be useless regarding to blow-in or blow-down limits of a Mumford-
Shah minimizer.

2. Preliminaries

We will denote by L N the Lebesgue measure on RN . Sometimes we use the
notation |A| for L N(A) and the symbol dx in a integral will mean dL N(x), and
will be sometimes omitted if no confusion arizes. We denote by B(x,R) the open
ball of center x and radius R. The closed ball will be denoted by B(x,R), and
when x = 0 we will sometimes simply use the notation BR and BR. The topological
boundary of a set A ⊂ RN will be denoted by by ∂A, and the unit sphere of RN will
be denoted either by ∂B(0, 1) or SN−1.
Let E be a subset of RN . The k-dimensional Hausdorff measure of E is

Hk(E) = lim
τ→0+

Hk
τ (A),
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where

Hk
τ (A) := inf

{

ck

+∞
∑

i=1

diam(Ei)
k ; E ⊂

+∞
⋃

i=1

Ei and diam(Ei) ≤ τ

}

,

and ck = L
k(B(0, 1))/2k. It is well known that Hk is an outer measure on R

N for
which the Borel sets are measurable sets. Moreover, its restriction to k-dimensional
spaces coincides with the Lebesgue measure L k for k ≥ 1, and H0 is the standard
counting measure.
Sometimes we will need to integrate over spheres of RN , and this will mean en-

dowed with the Hausdorff measure HN−1 but sometimes abbreviated by dω, or even
omitted when there is no possible ambiguity.

Definition 2.1. Let K ⊂ RN be a closed set and u ∈
⋂

R>0W
1,2(BR \K). We say

that u is a local energy minimizer in RN \K if for every R > 0, u is a solution for
the problem

min

{
ˆ

BR\K
|∇v|2dx; v ∈ W 1,2(BR \K) and v = u on ∂BR \K

}

.

Remark 2.2. It is standard to check that u will satisfy −∆u = 0 in BR \K, and
∂u
∂ν

= 0 on K, in a weak sense. In particular u is a C∞ function outside K.

We introduce the set of admissible pairs

A :=

{

(u,K); K ⊆ R
N is closed and u ∈

⋂

R>0

W 1,2(BR \K)

}

.

Following [4] and [8] we introduce the following definitions.

Definition 2.3. Let (u,K) ∈ A and B ⊂ RN be a ball. A competitor for the pair
(u,K) in the ball B is a pair (v, L) ∈ A such that

u = v
K = L

}

in R
N \B

and satisfying furthermore the following topological condition: if x and y are two
points in R

N \ (B ∪K) that lie in different connected components of RN \K, then
they also lie in different connected components of RN \ L.
We can now define what is a global minimizer.

Definition 2.4. A global minimizer in R
N is a pair (u,K) ∈ A such that for every

ball B in RN and every competitor (v, L) in B we have
ˆ

B\K
|∇u|2dx+HN−1(K ∩ B) ≤

ˆ

B\L
|∇v|2dx+HN−1(L ∩B).

The minimizer (u,K) is called reduced if whenever (K̃, ũ) is a competitor in a ball
B with K̃ ⊂ K and ũ is an extension of u in W 1,2(B \ K̃) then K̃ = K.
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Remark 2.5. In particular, if (u,K) is a global minimizer in RN then u is a local
energy minimizer in RN \K.

We end this section with a regularity result that will be needed later. We recall
that a minimal cone in R3 is a set belonging to the following list.

• A plane.
• A union of three half-planes meeting along their edges with 120o.
• A cone over the edges of a regular tetrahedron.

We shall need the use of the following 3-dimensional “ε-regularity” result. There
is no comparable theorem in higher dimensions (essentially because the minimal
cones for N ≥ 4 are unknown), and this is the principal reason why our main result
will be proved in dimension 3 only.

Theorem 2.6. [16, Theorem 9] We can find some absolute positive constants ε0 > 0,
α ∈ (0, 1) and c < 1 such that the following holds. Let (u,K) be a reduced global
minimizer in R3. Let x ∈ K and r > 0 be such that

1

r2

ˆ

B(x,r)\K
|∇u|2dx ≤ ε0.

Then there is a diffeomorphism φ of class C1,α from B(0, cr) to its image, verifying
φ(0) = x, |φ(y) − (y + x)| ≤ 10−3cr, and there is a minimal cone Z such that
K ∩ B(x, cr) = φ(Z) ∩B(x, cr).

3. Blow-up and Blow-in Limits of minimizers

In this section we recall some known facts about blow-up or blow-in limits of
Mumford-Shah minimizers. Extracting sequences which converge to a minimizers
in a fairly weak sense is not very difficult. The most difficult part is to show that
this convergence holds strongly in L2

loc(R
N) for the gradients.

If K and K ′ are two compact subsets of RN the Hausdorff distance between K
and K ′ is

dH(K,K
′) = max

(

sup
x∈K

dist(x,K ′), sup
x∈K ′

dist(x,K)

)

.

when a sequence of compact sets Kn is said to converge to a set K, it will always
refer to the convergence in the sense of the Hausdorff distance.
Subsequently, the convergence of a sequence of minimizers (uk, Kk) will be under-

stood in the following way.

Definition 3.1. We say that a sequence of couples (uk, Kk) ∈ A converges to some
(u0, K0) ∈ A if the following holds.

(1) Kk ∩ BM → K0 ∩BM for every M > 0.
(2) for any connected component U ⊆ R

N\K0, there exists a sequence of numbers
ak such that uk − ak converges to u0 strongly in L1(H), for every compact
set H ⊂ U .

(3) ∇uk → ∇u0 strongly in L2(BM), for every M > 0.
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The following statement summarizes the properties that we shall need later. It is
mainly coming from gluing together several Propositions contained in the book [8],
applied to the special case of global minimizers.

Theorem 3.2. Let (u,K) be a reduced global minimizer in R
N and for all r > 0 let

(ur, Kr) be the new global minimizer defined by

ur(x) :=
1√
r
u(rx) and Kr :=

1

r
K.

Then, there exists two sequences rk → 0 and Rk → +∞ such that (urk , Krk) con-
verges to some (u0, K0) and (uRk

, KRk
) converges to some (u∞, K∞) in the sense of

Definition 3.1. Moreover (u0, K0) and (u∞, K∞) are reduced global minimizers in
R

N .

Proof. The convergence of Kr and ur, together with a weak convergence for ∇ur in
L2(BM) are consequences of standard compactness results, as explained for instance
in [8, Proposition D.37.8.]. The starting point is the fact that ur have a uniform
Dirichlet energy in BM , due to the classical energy estimate for Mumford-Shah
minimizers

´

Br
|∇u|2dx ≤ CrN−1, obtained by taking (u1RN\Br

, (K \ Br) ∪ ∂Br)

as competitor. This “weak” convergence is enough to obtain that (u0, K0) and
(u∞, K∞) are again reduced global minimizers. This fact is quite not obvious but a
proof is, for instance, given in [8, Theorem D.40.9]. In addition, by [8, Proposition
D.37.18.] (which is just semicontinuity with respect to the weak convergence), we
get

ˆ

BM\K0

|∇u0|2dx ≤ lim inf
k

ˆ

BM\Krk

|∇urk|2dx, and

ˆ

BM\K∞

|∇u0|2dx ≤ lim inf
k

ˆ

BM\KRk

|∇uRk
|2dx.

Finally, the reverse inequality in the above with a limsup is again not obvious,
but follows from [8, Corollary D.38.48.], which together with the weak convergence
implies strong convergence in L2(BM) for the gradients. �

Remark 3.3. Actually, since ur is a sequence of harmonic functions, the convergence
in compact sets of RN \K0 is even better: it is a uniform convergence [8, Proposition
D.37.25.], but we will not need it.

4. Geometric Properties of Neumann cones

The purpose of this section is to give a rigorous formulation and justification of
the fact that the normal vector to a Neumann cone K at some point x ∈ K, is
always orthogonal to the vector x itself, which is one of the key ingredient to prove
the monotonicity Lemma of Section 7.
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If E ⊂ RN and 1 ≤ k ≤ N , we say that E is k-rectifiable if there exists at most
countably many Lipschitz mappings fi : R

k → RN such that

Hk(E \ ∪ifi(R
k)) = 0.

We denote the Grassmannian by G(N, k), i.e. the set of all vectorial subspaces of
RN of dimension k.
Let 1 ≤ k ≤ N and K ⊂ RN be a set with locally finite Hk measure. We say that

a plane P ∈ G(N, k) is an approximate tangent plane of K at point x if

ˆ

1

r
(K−x)

ϕ(y)dHk(y) −→
r→0

ˆ

P

ϕ(y)dHk(y) ∀ϕ ∈ C0
c (R

N).

We shall denote this plane by Tx(K). If K ⊂ RN is k-rectifiable then it well known
that it admits an approximate tangent plane at Hk a.e. point [3, Theorem 2.83 (i)].
The following proposition is an easy exercise, but we provide a detailed proof since

it appears as a crucial fact regarding to our main result.

Proposition 4.1. Assume N ≥ 3. Let E ⊂ SN−1 be (N−2)-rectifiable and C ⊂ RN

be the cone generated by E, i.e.

C := {tw ∈ R
N ; t ≥ 0 and w ∈ E}.

Then C is (N − 1)-rectifiable and for HN−1-a.e. x ∈ C, if Tx(C) ∈ G(N,N − 1) is
the approximate tangent plane to C at point x and νx is a normal vector to Tx(C),
then x · νx = 0.

Proof. Since the cone SN−1×R+ is, away from the origin, locally bi-Lipschitz equiv-
alent to an orthogonal cartesian product of type RN−1 × R, it follows from [11,
Theorem 3.2.23] that C is (N − 1)-rectifiable in RN . By consequence C admits an
approximative tangent plane Tx(C) ∈ G(N,N − 1) at HN−1-a.e. point.
Let E := C ∩ SN−1. By assumption, E is a (N − 2)-rectifiable set. Let S ⊂ E be

the HN−2-negligible set such that E \ S admits a (N − 2)-dimensional approximate
tangent plane Tw(E) ∈ G(N,N − 2) for every x ∈ E \ S.
In virtue of [11, Theorem 2.10.45], the cone generated by S, namely

⋂

t≥0 tS is

HN−1-negligible. We deduce that for HN−1-a.e. x ∈ C, we can assume that both
Tx(C) exists and moreover Tx/|x|(E) ∈ G(N,N − 2) also does exist. But then it is
easy to check that Tx(C) = Tx/|x|(E)× vect{x}.
Indeed, let x0 ∈ C be given and let us seek for the approximate tangent plane

at point x0. Since C is invariant under dilatation, we can assume without loss
of generality that |x0| = 1. For r > 0 we set Cr := 1

r
(C − x0). Then for every

ϕ ∈ C0
c (R

N), the coarea formula [3, (2.72)] applied on the rectifiable set Cr with
the r-Lipschitz function f : x 7→ r|x + x0|, for which under the notation of [3] the
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coarea factor is equal to C1d
Pfx = r for all P ∈ G(N,N − 1), yields

ˆ

Cr

ϕ(y)dHN−1(y) =
1

r

ˆ

R+

(
ˆ

Cr∩∂B(−x0,t/r)

ϕ(w)dHN−2(w)

)

dt

=
1

r

ˆ

R+

(

ˆ

1

r

(

C∩∂Bt−x0

)
ϕ(w)dHN−2(w)

)

dt(4.1)

But since C is conical, we have that C ∩ ∂Bt = tE for all t and from the fact that
HN−2(tE) = tN−2HN−2(E) we deduce that
ˆ

1

r

(

tE−x0

)

ϕ(w)

r
dHN−2(w) =

ˆ

1

r

(

E−x0

)

1

r
ϕ
(

tz + x0(t− 1)/r
)

tN−2dHN−2(z).

Let us denote by µr the σ-finite measure on R
N defined by µr := HN−2| 1

r
(E−x0), that

we know to converge weakly to µ0 := HN−2|Tx0
(E). Returning to (4.1) and applying

Fubini Theorem we arrive to
ˆ

Cr

ϕ(y)dHN−1(y) =

ˆ

RN

(
ˆ

R+

1

r
ϕ
(

tz + x0(t− 1)/r
)

tN−1dt

)

dµr(z)

or, using the change of variable u = (t − 1)/r in the integral on the t variable, we
can also write it as
ˆ

Cr

ϕ(y)dHN−1(y) =

ˆ

RN

(

ˆ +∞

− 1

r

ϕ
(

(ru+ 1)z + x0u
)

(ru+ 1)N−1du

)

dµr(z)

=

ˆ

RN

(
ˆ +∞

−∞
ϕ
(

(ru+ 1)z + x0u
)

(ru+ 1)N−1du

)

dµr(z),(4.2)

the latter being true for r small enough, depending on the size of the support of ϕ,
i.e. the integration being in reality computed on a compact domain only. Now we
notice that, for 0 ≤ r ≤ 1 the family of continuous functions

gr : z 7→
ˆ +∞

−∞
ϕ
(

(ru+ 1)z + x0u
)

(ru+ 1)N−1du

are all supported on a same compact set, and converges uniformly as r → 0 to the
function

g0(z) :=

ˆ

R

ϕ
(

z + x0u
)

du.

Therefore, passing to the limit in (4.2) we obtain that
ˆ

Cr

ϕ(y)dHN−1(y) −→
r→0

ˆ

RN

(
ˆ

R

ϕ
(

z + x0u)du

)

dµ0(y) =

ˆ

Tx0
(E)×Rx0

ϕdHN−1

and this is exactly saying that Tx0
(C) = Tx0

(E)× vect{x0}, as desired. �

Remark 4.2. A direct consequence of Proposition 4.1 is that Neumann cones are
(N − 1)-rectifiable.
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Corollary 4.3. Let N ≥ 2, C ⊂ RN be a Neumann cone and K ⊂ C a closed set.
Then K is (N − 1)-rectifiable and for HN−1a.e. x ∈ K we have that x · νx = 0 for
any vector νx orthogonal to Tx(C).

Proof. The statement is trivial for N = 2 thus we assume that N ≥ 3. From the
fact that K ⊂ C we directly get that K is (N − 1)-rectifiable (because C is), and
moreover Tx(K) must be contained in Tx(C). But since they have same dimension
we must have Tx(K) = Tx(C). The conclusion then follows from Proposition 4.1. �

5. Integration by parts for SBV fields

Let us recall some standard definitions and properties of the functional spaces BV
and SBV that will be used later, and that one can find for instance in [3].

5.1. Short review on SBV theory. For any open set Ω ⊂ RN , the space BV (Ω)
is the class of all functions u ∈ L1

loc(Ω,R) such that Du (the derivative of u in the
distributional sense) is a finite measure. If u ∈ (BV (Ω))N is a BV vector field, a
point z ∈ RN is an approximate limit for u at point x if

lim
ρ→0

1

|B(x, ρ)|

ˆ

B(x,ρ)

|u(y)− z|dy = 0.

The set Su of points where this property does not hold is called the approximate
discontinuity set of u, and the points z for which the limit exists is called an ap-
proximative limit of u at point x and is denoted by ũ(x). A remarkable result of
Federer and Vol’pert (see [3, Th. 3.78.]) says that when u ∈ (BV (Ω))N , then Su

is (N − 1)-rectifiable and Dsu (the singular part of Du with respect to L N in the
Radon-Nikodym decomposition Du = Dau + Dsu) restricted to Su is absolutely
continuous with respect to HN−1. We will say that u ∈ (SBV (Ω))N when Dsu is
actually concentrated on Su.
The density of the regular part Dau of Du with respect to L N , denoted by ∇u,

coincides L N -a.e. with the approximate differential of u (see [3, Th. 3.83.]). A
function u is approximately differentiable at x if there exists a matrix ∇u(x) such
that

lim
ρ→0

1

|B(x, ρ)|

ˆ

B(x,ρ)

|u(y)− ũ(x)−∇u(x).(y − x)|
ρ

dy = 0.

In the sequel we will also use the notion of trace of u on the singular set Su. Since
Su is rectifiable, one can fix an orientation νu : Su → SN−1 in such a way that for
HN−1-a.e. x ∈ Su the approximate tangent plane to Su at x is orthogonal to the
vector νu(x). Then for any x ∈ Su and ρ > 0 we define B(x, ρ)+ := B(x, ρ) ∩
{y; 〈y, νu(x)〉 ≥ 0} and B(x, ρ)− := B(x, ρ) ∩ {y; 〈y, νu(x)〉 ≤ 0}. For HN−1-a.e.
x ∈ Su, Theorem 3.77. of [3] provides the existence of traces u+(x) and u−(x)
satisfying

lim
ρ→0

1

|B(x, ρ)±|

ˆ

B(x,ρ)±
|u(y)− u±(x)|dy = 0.(5.1)
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The set of points x ∈ Su where u±(x) exist is called the jump set and is denoted
by Ju. It can be shown that HN−1(Su \ Ju) = 0 and for x ∈ Ju the quantity
(u+(x) − u−(x)) is called the jump of u at point x, which sign depends on the
orientation of Su. Moreover for any u ∈ (SBV (Ω))N the representation

Du = Dau+Dsu = ∇uL
N + (u+ − u−)⊗ νuHN−1|Su,(5.2)

holds.
Let us also mention that a simple approximation argument [3, Proposition 4.4.]

says that, ifK ⊂ Ω is closed andHN−1(K) < +∞, then any u ∈ L∞(Ω)∩W 1,1(Ω\K)
belongs to SBV (Ω) and HN−1(Su \K) = 0.

5.2. Sets of finite perimeter. If U ⊂ RN is open we say that U has finite perime-
ter if 1U ∈ BV (RN). The reduced boundary ∂∗U is the set of points x ∈ R

N

such that the limit limr→0D(1U)(Br(x))/|Br(x)| =: −νU(x) exists and satisfies
|νU(x)| = 1 (here we chosed the normal to be pointing outwise). In particular
when HN−1(∂Ω) < +∞, then 1U ∈ SBV (RN) and ∂∗U is equal to the jump set of
1Ω. By consequence the following Gauss-Green formula holds

ˆ

U

divϕdx =

ˆ

∂∗U

∇ϕ · νU dHN−1(x) ∀ϕ ∈ (C1
c (R

N))N .

5.3. A Gauss-Green Formula for SBV fields.

Lemma 5.1. Let Ω ⊂ RN be open and F ∈ L∞ ∩ (SBV (Ω))N . Let divF a be the
trace of the absolutely continuous part of DF with respect to the Lebesgue measure
and SF be the singular set of F . Then for any open set U such that

(1) U ⊂ Ω
(2) HN−1(∂U) < +∞
(3) HN−1(SF ∩ ∂∗U) = 0

we have that
ˆ

U

divF a dx =

ˆ

∂∗U

F̃ · νU dHN−1 +

ˆ

SF∩U
(F− − F+) · νF dHN−1,(5.3)

where F̃ denotes the approximative limit of F , which exists HN−1-a.e. on the recti-
fiable set ∂∗U .

Proof. When F ∈ (SBV (Ω))N we recall that

DF = ∇F L
N + (F+ − F−)⊗ νF HN−1|JF .(5.4)

By consequence divF is a measure and taking the trace in the above identity
yields

divF = divF a
L

N + (F+ − F−) · νF HN−1|JF .(5.5)

Now let U be such that U ⊂ Ω. It is well known that L∞ ∩ (SBV (Ω))N is an
algebra, i.e. stable by products, as a consequence of the Chain-Rule in BV (see
[3, Example 3.97.]). By consequence, G = 1UF ∈ (SBV (Ω))N and SG ⊆ SF ∪ ∂U
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(Remember that 1U ∈ SBV because HN−1(∂U) < +∞). Since by assumption
HN−1(SF ∩ ∂U) = 0, we obtain that the decomposition of divG as a measure is the
following

divG = divF a
L

N |U + (F+ − F−) · νF HN−1|JF∩U − F̃ · νU HN−1|∂∗U(5.6)

(see again [3, Example 3.97.] for the characterization of G+ and G− on the jump
set in terms of F± and 1±

U).
Now let us prove (5.3). For this purpose we take a test function ψ ∈ C∞

c (Ω) such
that ψ = 1 on U . Then in the sense of distributions, 〈divG,ψ〉 = 〈G, divψ〉 =
´

Ω
G divψ dx = 0. But now returning to (5.6) we get

0 = 〈divG,ψ〉 =
ˆ

Ω

ψ d(divG)

=

ˆ

U

divF a dx−
ˆ

∂∗U

F̃ · νU dHN−1 +

ˆ

SF∩U
(F+ − F−) · νF dHN−1.

�

6. Spectrum of the Laplacian on a fractured sphere

The purpose of this section is to study a Neumann eigenvalue problem on SN−1\K
when K is a Neumann cone, or more generally contained in a Neumann cone.
We first assume that K is a Neumann cone. We will call Neumann-Laplace-

Beltrami operator on SN−1\K, the operator associated to the quadratic formQ(u) =
´

SN−1\K |∇u|2 dHN−1 on the Hilbert space L2(SN−1), with domain W 1,2(SN−1 \K).

Since by assumption the embedding W 1,2(SN−1 \ K) → L2(SN−1) is compact, the
quadratic form Q(u) + ‖u‖22 has a compact resolvent and it follows that the eigen-
values of the Neumann-Laplace-Beltrami operator on SN−1 \K is a countable and
discrete set starting from 0 and going to +∞, denoted by λk(S

N−1 \ K), k ∈ N.
Actually the eigenvalue problem can be studied separately in each connected com-
ponent of SN−1 \ K, in which the eigenvalue λ0(S

N−1 \ K) = 0 is simple. If U is
one connected component and γ denotes the first positive eigenvalue in this domain,
then the following Wirtinger inequality holds

ˆ

U

(u(x)−m)2dHN−1(x) ≤ 1

γ

ˆ

U

|∇τu(x)|2dHN−1(x), ∀u ∈ W 1,2(U),(6.1)

where m denotes the average of u on U and ∇τ is the tangential gradient on the
sphere.
Notice that if C is a Neumann cone and if K is an arbitrary closed set such that

K ⊂ C, then the embedding W 1,2(SN−1 \K) → L2(SN−1) is still compact because
‖u‖W 1,2(SN−1\C) = ‖u‖W 1,2(SN−1\K). By consequence all the above applies with K.
We will use several times the following simple fact.
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Remark 6.1. Let E = S2 ∩ {(x, y, z) ; z = 0} be the equator, and let F and G be
two subsets of E verifying F ⊆ G ⊆ E. Then

λ1(S
2 \G) ≤ λ1(S

2 \ F ).
This is a simple consequence of the Rayleigh formula, which says that

λ1(S
2 \G) = min

v∈W 1,2(S2\G)

´

S2\G |∇v|2
´

S2\G v
2
.

The claim then follows from the fact that W 1,2(S2 \ F ) ⊆ W 1,2(S2 \ G), thus the
eigenfunction in S2 \ F is a competitor in the minimum above, and its Rayleigh
quotient in S2 \G is still equal to λ1(S

2 \ F ) because G \ F has zero measure.

Remark 6.2. Notice that the monotonicity described in Remark 6.1 is the exact
opposite of what happens in dimension 2 ! Indeed, if I ⊂ S1 is an arc of circle, then
λ1(I) = (π/|I|)2, where |I| is the length of the arc I. Therefore if F ⊂ G are two
arcs in S1, then λ1(S

1 \G) > λ1(S
1 \F ). What does not work in the above argument

in dimension 2 is that the L2 norm is not preserved in the respective two domains so
that the Rayleigh quotient is not the same in the two domains, even if the inclusion
of the spaces W 1,2 still holds.

The eigenvalue in the special case of a half-plane is explicit. We sumarize some
known facts in the following proposition.

Proposition 6.3. Let

Sβ :=
{

(− cos(ϕ), 0, sin(ϕ)) ∈ S
2; ϕ ∈ [−β, β]

}

be an arc of circle of aperture 2β on the unit sphere (vertical and left sided according
to our parametrization). Then λ1(S

2 \ Sπ
2
) = 3

4
is simple and the eigenspace is

generated by the restriction on S2 \ Sπ
2
of the following cracktip function written in

cylindrical coordinates

f(r, θ, z) =
√
r sin(θ/2), r > 0 and θ ∈ (−π, π).(6.2)

In addition for β close to π
2
we have the following expansion :

λ1(S
2 \ Sβ) =

3

4
+

2

π
cos(β) + o(cos(β)).(6.3)

By consequence λ1(S
2 \ Sβ) = 3/4 if and only if β = π

2
(i.e. Sβ is a half-equator).

Proof. The fact that λ1(S
2\Sπ

2
) = 3

4
is simple and the eigenspace is generated by the

function in (6.2) is part of [7, Lemma 4.1.]. Notice that a completely independent
and somehow exotic proof can be found in [15, Section 3].
The expansion (6.3) has been proved by Robert Legendre in [13] (see alternatively

[12, page 53] or [5]). More precisely, Legendre found the expansion α = 1
2
+ 1

π
cos θ+

o(cos θ) for the first degree of homogeneity of an homogeneous Harmonic function
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with Neumann condition on a plane sector with aperture 2θ. Since the degree α is
linked to the eigenvalue λ1 through the relation

α =
1

2
(
√

1 + 4λ1 − 1),

we deduce (6.3) from Legendre’s expansion.
Finally, the fact that λ1(S

2\Sβ) = 3/4 if and only if β = π
2
follows by monotonicity

of the eigenvalue with respect to the length of Sβ (i.e. Remark 6.1), together with
(6.3) which proves a strict monotonicity near the value 3/4. �

Our main result is intimelly related to the knowledge of eigenvalues on the sphere.
For instance the following rigidity result will be pivotal.

Proposition 6.4. Let E ⊆ S2 be a half-equator and K ⊆ E a closed set such that
λ1(S

2 \K) = 3/4. Then K = E.

Proof. We already know by Proposition 6.3 that λ1(S
2 \ E) = 3/4. We also know

that λ1(S
2 \ C) > 3/4 for any arc of circle C ⊆ E with C 6= E.

Now assume that K ⊆ E is closed and K 6= E. Even if all cases could be treated
the same way, we shall give a separated and simpler argument in the case when,
denoting by dE the geodesic distance in E,

max
x,y∈K

dE(x, y) = α < π.

If this occurs then there exists an arc of circle C such that H1(C) = α < π and
K ⊆ C. We deduce that λ1(S

2 \ K) ≥ λ1(S
2 \ C) > 3/4 (see Proposition 6.3), a

contradiction.
Thus we are left with the case when

max
x,y∈K

dE(x, y) = π.

Since K is closed and K 6= E, there exists an open interval I ⊂ E \ K. Then
λ1(S

2 \K) ≥ λ1(S
2 \ (E \ I)). Now we will prove that λ1(S

2 \ (E \ I) > 3/4. Assume
by contradiction that λ1(S

2 \ (E \ I) = 3/4, and let ϕ be an eigenfunction. Then
ϕ ∈ W 1,2(S2 \ E), and

3

4
=

´

S2\E |∇ϕ|2
´

S2\E ϕ
2

= min
v∈W 1,2(S2\E)

´

S2\E |∇v|2
´

S2\E v
2
.

We deduce that ϕ is an eigenfunction for the Neumann-Laplacian in S2 \E as well,
but since the corresponding eigenspace have dimension 1, ϕ must be a multiple of
the first eigenfunction in S2 \ E, which is given in (6.2) (up to a suitable choice of
cylindrical coordinates). We deduce that ϕ must have a jump on I, in other words
does not belong to W 1,2(S2 \ (E \ I)). This is a contraction. �
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7. A monotonicity Lemma

Definition 7.1. Let K ⊂ RN be a closed set. We say that K satisfies the topological
condition (T) if the following holds. For almost every r > 0 such that ∂Br \K is not
connected, and for every connected component U of ∂Br \ K, there exists an open
set D ⊂ Br \K such that ∂D \ U ⊂ K.

Remark 7.2. For instance if ∂Br \K is connected for a.e. r > 0, then K satisfies
the topological condition (T). In particular this happens when K is contained in a
half-plane in R3.

The monotonicity Lemma relies on the following integration by parts formula.

Lemma 7.3. Let K ⊂ RN be a closed set satisfying the following assumptions.

(1) K satisfies the topological condition (T).
(2) K is contained in a Neumann cone.

Then for every local energy minimizer u in RN \ K (as in Definition 2.1) and for
a.e. r > 0 we have that

ˆ

Br\K

|∇u|2
|x|N−2

dx ≤
∑

i∈I
r2−N

ˆ

Ui

(u−mi)
∂u

∂ν
dω +

N − 2

2rN−1

ˆ

Ui

(u−mi)
2dω,(7.1)

where (Ui)i∈I denotes the connected components of ∂Br \K and mi is the average
of u on Ui.

Proof. This is just an integration by parts, but since the domain is not smooth, the
full details are a bit technical.
We first regularize |x|2−N in the following way. For ε > 0 we define

|x|ε :=
√

x21 + x22 + · · ·+ x2N + ε

so that |x|ε is a C∞ function on RN . A simple computation shows that

∆(|x|2−N
ε ) = (2−N)N

ε

|x|N+2
ε

≤ 0,

in other words |x|2−N
ε is superharmonic. Let us write, to lighten the notation,

hε := |x|2−N
ε .

We will successively integrate two times by parts. The first one can be treated
by a variational argument, using the fact that u is an energy minimizer. Indeed,
let δ > 0 be a small parameter, and let f(x) ∈ Lip(R+,R) be the piecewise affine
function such that f(x) = 1 for all x ∈ [0, r−δ], f(x) = 0 for all x ≥ r and f ′(x) ≤ 1

δ

a.e. on R
+. Then let ϕδ(x) := f(|x|).

Next, using that for any t ∈ R, the function u+ t(ϕδuhε) is a competitor for u in
W 1,2(Br \K), we deduce that

ˆ

Br\K
∇u · ∇(ϕδ u hε) dx = 0,
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which implies
ˆ

Br\K
|∇u|2 ϕδ hε dx+

ˆ

Br\K
u hε∇u · ∇ϕδ dx+

ˆ

Br\K
ϕδ u∇u · ∇hε dx = 0.

Letting δ → 0, we observe that ϕδ converges increasingly to 1 so that the first term
in the above converges by the monotone convergence theorem. For the convergence

of the second term we notice that ∇ϕδ = −1
δ

(

x
|x|

)

1Br\Br−δ
thus from Lebesgue’s

differentiation theorem we deduce that
ˆ

Br\K
u hε∇u · ∇ϕδ dx→δ→0 −

ˆ

∂Br\K
u hε∇u · ν,

for almost every r > 0. Finally, the last term easily converges by the dominated
convergence theorem so in total we arrive to

ˆ

Br\K
|∇u|2 hε dx−

ˆ

∂Br\K
u hε∇u · ν dx+

ˆ

Br\K
u∇u · ∇hε dx = 0.(7.2)

Now we want to apply a second integration by parts on the last term. Observe
that we cannot argue as before because, even if |x|2−N is harmonic outside the origin,
it is not an energy minimizer since it has infinite energy. So we need to integrate by
parts for real, and for this we shall use the SBV formula of Section 5.
We first assume u ∈ L∞ and we remark that F := u2∇hε ∈ W 1,1(Br\K)∩L∞(Br)

and therefore belongs to SBV (Br) due to [3, Proposition 4.4.]. In addition since
F is smooth outside K we have that SF ⊂ K and HN−1(K ∩ ∂Br) = 0 because it
is contained in a Neumann cone. By consequence, applying Lemma 5.1 to F with
U = Br yields

ˆ

Br

divF adx =

ˆ

∂Br

F · ν dHN−1 +

ˆ

K∩Br

(F− − F+) · νF dHN−1.(7.3)

Now let us identify each term: since F is smooth outside K it directly follows that

divF a = 2u∇u · ∇hε + u2∆hε a.e. in Br,

and

F · ν = u2
∂hε
∂ν

HN−1-a.e. on ∂Br.

Now we claim that

(F− − F+) · νF = 0 , HN−1-a.e. on K.

This is because F± = (u2)±∇hε, HN−1- a.e. on K and ∇hε · νF = 0. Indeed,
by definition, νF (x) must be orthogonal to the approximative tangent plane of K
at point x. But since K is contained in a Neumann cone, Corollary 4.3 says that
x · νF (x) = 0. Therefore, (7.3) simply becomes

ˆ

Br

2u∇u · ∇hε + u2∆hε dx =

ˆ

∂Br

u2
∂hε
∂ν

dHN−1.(7.4)
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This was assuming u ∈ L∞, but if not we could replace u by

uM := min(max(u(x),−M),M),

establish (7.4) for uM and then let M → +∞ to get (7.4) for u (notice that u ∈ L2,
∇u ∈ L2, ∇hε ∈ L∞ and that |uM | ≤ |u|, |∇uM | ≤ |∇u| so that uM∇uM · ∇hε
strongly converges in L1 to u∇u · ∇hε as M → +∞ by the dominated convergence
theorem. The other terms are treated by a similar way).
Gathering (7.4) together with (7.2) we obtain that

ˆ

Br\K
|∇u|2 hε dx =

ˆ

∂Br\K
u hε

∂u

∂ν
− 1

2

ˆ

∂Br\K
u2
∂hε
∂ν

+

ˆ

Br\K
u2∆hεdx.

and since ∆(|x|2−N
ε ) ≤ 0, we deduce that

0 ≤
ˆ

Br\K
|∇u|2 hε dx ≤

ˆ

∂Br\K
u hε

∂u

∂ν
− 1

2

ˆ

∂Br\K
u2
∂hε
∂ν

.(7.5)

Now if we write the explicit expressions of hε and
∂hε

∂ν
on the sphere ∂Br we get

0 ≤
ˆ

Br\K
|∇u|2hεdx ≤ (r2 + ε)

2−N
2

(
ˆ

∂Br

u
∂u

∂ν

)

+ (N − 2)
r

2(r2 + ε)
N
2

(
ˆ

∂Br

u2
)

.

Finally, letting ε→ 0 we obtain

0 ≤
ˆ

Br\K

|∇u|2
|x|N−2

dx ≤ r2−N

(
ˆ

∂Br\K
u
∂u

∂ν

)

+
N − 2

2rN−1

(
ˆ

∂Br\K
u2
)

.

Indeed notice that
´

Br\K |∇u|2hε dx→
´

Br\K
|∇u|2
|x|N−2 dx by the monotone convergence

theorem.
We are almost done, excepted the subtraction by the constants mi. But this fol-

lows easily by applying all the above argument to the function ũ := u−
∑

i∈I 1Di
(x)mi,

where the Di are given by the topological condition (T ). Notice that the domains Di

are necessarily disjoint and that ũ remains an energy minimizer in Br \K because
we subtracted a locally constant function. �

Remark 7.4. Observe that, from the fact that u ∈ W 1,2(B \K) for all B, the right
hand side of the inequality is bounded for a.e. r > 0, thus a free consequence of
Lemma 7.3 is that

´

B1
|∇u|2|x|2−Ndx < +∞, which is not obvious since a priori

∇u is only in L2(B(0, 1)). This says that ∇u is more integrable at the origin than
expected, and could be understood as a regularity result for energy minimizers
outside a set K contained in a Neumann cone.

Lemma 7.5. Let K ⊂ RN be a closed set satisfying the following assumptions.

(1) K satisfies the topological condition (T).
(2) K is contained in a Neumann cone.
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(3) ∃γ > 0 s.t. for a.e. r > 0 and for every connected component U of ∂Br \K,
the first positive eigenvalue of the Neumann-Laplace-Beltrami operator on U
satisfies λ1(U) ≥ γ/r2.

Then for every local energy minimizer u in RN \K we have that

ϕ : r 7→ 1

rα

ˆ

Br

|∇u|2
|x|N−2

dx(7.6)

is nondecreasing, where α is defined by

α = α(N, γ) =
√

(N − 2)2 + 4γ − (N − 2).

Moreover, if ϕ(r) is positively constant on an interval [a, b] then for a.e. r ∈ [a, b]
and for every connected component U of ∂Br \K, the value γ/r2 is the first positive
eigenvalue for the Neumann-Laplace-Beltrami operator on U and the restritction of
u on U is an associated eigenfunction.

Proof. We first apply Lemma 7.3 and then use Cauchy-Schwarz and the elementary
inequality ab ≤ 1

2δ
a2 + δ

2
b2 to write

ˆ

Br\K

|∇u|2
|x|N−2

≤
∑

i∈I
r2−N

ˆ

Ui

(u−mi)
∂u

∂ν
dHN−1 +

N − 2

2rN−1

ˆ

Ui

(u−mi)
2dHN−1

≤
∑

i∈I
r2−N

(
ˆ

Ui

(u−mi)
2

)
1

2
(
ˆ

Ui

(∂u

∂ν

)2
)

1

2

+
N − 2

2rN−1

ˆ

Ui

(u−mi)
2

≤
∑

i∈I
r2−N r

√

λ1(Ui)

(
ˆ

Ui

|∇τu|2
)

1

2
(
ˆ

Ui

(∂u

∂ν

)2
)

1

2

+
(N − 2)r2

2rN−1λ1(Ui)

ˆ

Ui

|∇τu|2

≤
∑

i∈I
r2−N r√

γ

(
ˆ

Ui

|∇τu|2
)

1

2
(
ˆ

Ui

(∂u

∂ν

)2
)

1

2

+
(N − 2)r2

2rN−1γ

ˆ

Ui

|∇τu|2

≤
∑

i∈I

r3−N

√
γ

(

δ

2

ˆ

Ui

|∇τu|2 +
1

2δ

ˆ

Ui

(∂u

∂ν

)2
)

+
(N − 2)r3−N

2γ

ˆ

Ui

|∇τu|2

≤
∑

i∈I
r3−N

(

δ

2
√
γ
+

(N − 2)

2γ

)
ˆ

Ui

|∇τu|2 +
r3−N

2δ
√
γ

ˆ

Ui

(∂u

∂ν

)2

.

Then we choose δ > 0 so that
(

δ

2
√
γ
+

(N − 2)

2γ

)

=
1

2δ
√
γ
.

This gives the value

δ =

√

(N − 2)2 + 4γ − (N − 2)

2
√
γ
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which implies the inequality,
ˆ

Br\K

|∇u|2
|x|N−2

≤ 1

α
r3−N

ˆ

∂Br\K
|∇u|2,(7.7)

with the α defined in the statement of the Lemma. But this exactly says that

E(r) ≤ 1

α
rE ′(r)

with

E(r) =

ˆ

Br\K

|∇u|2
|x|N−2

,

in other words d
dr
(r−αE(r)) ≥ 0 and r−αE(r) is nondecreasing.

Finally to finish the proof, we observe that when ϕ is constant, the derivative is
zero, in other words we must have E(r) = 1

α
rE ′(r) for a.e. r > 0, thus, since all

the inequalities that we used to prove the monotonicity (starting from the second
line) are nonnegative, or sum of nonnegative terms, they must all be equalities. In
particular the equality in the third line says that the restriction of u to almost every
sphere must be the optimal function in the Poincaré-Wirtinger inequality associated
with the constant r2/γ, and so follows the Lemma. �

Remark 7.6. Here for our convenience we considered energy minimizers, but the
statement of Lemma 7.5 (or a simple variant) would still be true for stationary solu-
tions, i.e. weak solution of a Neumann problem in all the B(0, R)\K. Furthermore,
arguing like in [6], it would be possible to prove a similar monotonicity result for
solutions of more general elliptic equations of the form −divA∇u = f for some
f ∈ Lp and Hölder regular coefficients A(x).

8. Proof of main result

Proof of Theorem 1.2. Without loss of generality, we can assume that the origin is
situated on the edge of the half-plane, and contained in K. Thanks to Remark 6.1
and Proposition 6.3, we are exactly under the hypothesis of Lemma 7.5 with γ = 3/4
because K is contained in a half plane. Therefore

ϕ(r) :=
1

r

ˆ

Br\K

|∇u|2
|x|N−2

is nondecreasing, and the limit in 0 and +∞ exists, let us denote them respectively
by f0 and f∞. We claim that f0 and f∞ are finite. To check this we shall use the
following elementary inequality valid for any global Mumfors-Shah minimizer (u,K)
in RN ,

ˆ

Br\K
|∇u|2dx ≤ ωNr

N−1 ∀r > 0,

obtained simply by taking (u1RN\Br
, K ∪ ∂Br) as a competitor. Notice that the

constant is only dimensional: ωN is the measure of the N − 1-dimensional unit
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sphere. Now using Fubini and Chebychev, for any r > 0 we can chose r0 ∈ (r, 2r)
such that

ˆ

∂Br0
\K

|∇u|2dω ≤ 1

r

ˆ

(B2r\Br)\K
|∇u|2dx ≤ ωN(2r)

N−2.

From (7.7) we deduce that
ˆ

Br\K

|∇u|2
|x|N−2

≤
ˆ

Br0
\K

|∇u|2
|x|N−2

≤ 1

α
r0

3−N

ˆ

∂Br0
\K

|∇u|2 ≤ C(N,α)r,(8.1)

with C(N,α) = α−12N−1ωN . This implies that ϕ(r) is uniformly bounded for r > 0
thus f0 and f∞ are finite, and we readily have that f0 ≤ f∞ < +∞.
Let us check moreover that f0 > 0. Indeed if not, then one would have, for r > 0

small enough,
1

rN−1

ˆ

Br\K
|∇u|2 ≤ 1

r

ˆ

Br\K

|∇u|2
|x|N−2

≤ ε0,

where ε0 is the same as the statement of Theorem 2.6. But then K ∩ Bcr must be
the image of a minimal cone by a C1-smooth map, containing 0 in its interior. This
is a contradiction with the fact that the origin lies on the edge of the half-plane
containing K. We therefore conclude that f0 > 0.
Now we take blow-up and blow-in limits. We begin with the blow-up. Let

uk := 1√
rk
u(rkx) and Kk := 1

rk
K. Then, by Theorem 3.2, up to a subsequence

(not relabeled), as rk → 0 the sequence (uk, Kk) converges to some (u0, K0) (in the
sense of Definition 3.1), and (u0, K0) is still a reduced global minimizer, with K0

still satisfying assumptions (1), (2), and (3) of Theorem 1.2. Moreover for any R > 0
and k ∈ N we have that

1

R

ˆ

BR

|∇uk|2
|x|N−2

dx =
1

rkR

ˆ

BrkR

|∇u|2
|x|N−2

dx −→
k→+∞

f0.(8.2)

On the other hand, we know that ∇uk converges to ∇u0 in L2(BM) for any M > 0.
We actually claim that the following stronger convergence holds true

ˆ

BR\K

|∇uk|2
|x|N−2

dx −→
k→+∞

ˆ

BR\K

|∇u0|2
|x|N−2

dx.(8.3)

To prove the claim, we use the estimate (8.1) and write
∣

∣

∣

∣

ˆ

BR

|∇uk|2
|x|N−2

dx−
ˆ

BR

|∇u0|2
|x|N−2

dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

ˆ

BR\Bε

|∇uk|2
|x|N−2

dx−
ˆ

BR\Bε

|∇u0|2
|x|N−2

dx

∣

∣

∣

∣

+

ˆ

Bε

|∇uk|2
|x|N−2

dx+

ˆ

Bε

|∇u0|2
|x|N−2

dx

≤
∣

∣

∣

∣

ˆ

BR\Bε

|∇uk|2
|x|N−2

dx−
ˆ

BR\Bε

|∇u|2
|x|N−2

dx

∣

∣

∣

∣

+2Cε
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where C = C(N,α). Passing to the limsup and using the strong convergence of
|∇uk| in L2 we deduce that

lim sup
k→+∞

∣

∣

∣

∣

ˆ

BR

|∇uk|2
|x|N−2

dx−
ˆ

BR

|∇u0|2
|x|N−2

dx

∣

∣

∣

∣

≤ 2Cε.

The claim then follows letting ε→ 0.
Returning now to (8.2), we obtain that

1

R

ˆ

BR

|∇u0|2
|x|N−2

dx = f0, ∀R > 0.

But, since f0 6= 0, the last conclusion of Lemma 7.5 then says that λ1(∂BR \K0) =
3/4 for a.e R > 0, and therefore Lemma 6.4 implies that, up to a HN−1 negligible
set G, K0 is a half-plane. Since K0 is reduced, then we claim that it must be the
half-plane itself. Indeed, applying Proposition 19 of [15] to the couple (K0 ∪G, u0)
we get that u must be the function cracktip × R, where cracktip is the function
√

2r/π sin(θ/2)+C in suitable polar coordinates. But then the only reduced global
minimizer in the equivalent class of couples (K, u) for which K coincides with the
half plane a.e. and u = cracktip×R a.e., is the whole half plane (because any “hole”
in the half plane would create an irreversible jump for the function u which would
not be admissible in W 1,2).
Then we do exactly the same for u∞ and conclude that, akin to the blow-up limit,

the normalized energy associated to the blow-down limit must be constant as well.
Thus up to an additive constant, u∞ is the same function

√

2r/π sin(θ/2) as u0
(with the same constant in front), and therefore f0 = f∞. But then returning to
the function u and in virtue of the monotonicity of ϕ(r), we deduce that ϕ(r) is
constant for all r > 0, and by consequence K must be a half-plane itself. �
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(A. Lemenant) Université Paris Diderot – Paris 7, CNRS, UMR 7598 Laboratoire

Jacques-Louis Lions, Paris, F-75005, France

E-mail address : lemenant@ljll.univ-paris-diderot.fr


