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A faster numerical scheme for a coupled system modelling soil
erosion and sediment transport

M.-H. Le! S. Cordier! C. Lucastand O. Cerdan®

Abstract

Overland flow and soil erosion play an essential role in water quality and soil degradation.
Such processes, involving the interactions between water flow and the bed sediment, are classically
described by a well-established system coupling the shallow water equations and the Hairsine-Rose
model. Numerical approximation of this coupled system requires advanced methods to preserve
some important physical and mathematical properties; in particular the steady states and the
positivity of both water depth and sediment concentration. Recently, finite volume schemes based
on Roe’s solver have been proposed by |[Heng et al.| (2009) and |[Kim et al.| (2013) for one and two-
dimensional problems. In their approach, an additional and artificial restriction on the time step
is required to guarantee the positivity of sediment concentration. This artificial condition can lead
the computation to be costly when dealing with very shallow flow and wet/dry fronts. The main
result of this paper is to propose a new and faster scheme for which only the CFL condition of
the shallow water equations is sufficient to preserve the positivity of sediment concentration. In
addition, the numerical procedure of the erosion part can be used with any well-balanced and
positivity preserving scheme of the shallow water equations. The proposed method is tested on
classical benchmarks and also on a realistic configuration.

1 Introduction

Soil erosion by water is a complex phenomenon affected by many factors such as climate, topography,
soil characteristics, vegetation and anthropogenic activities (e.g. cultivation practices) (Cerdan et al.,
2010). Soil erosion and sediment transport can have adverse effects on the stormwater quality (Quinton
et al., 2010)). Erosion processes due to rainfall and overland flow can be described in three stages:
detachment, transport and deposition of soil particles. Advanced mathematical models focus on the
simulating of hydrodynamic processes coupling with sediment transport and morphological evolution.
These approaches, sometimes called physically based models, rely on the conservation of mass and
energy principles. Several review papers on existing models can be found in literature where the
hydrodynamic erosion processes were described at plot or catchment scales (see e.g. |Merritt et al.l
2003; |Aksoy and Kavvas, 2005)). In general, water flow can be described by the well-known Navier-
Stokes equation but in context of shallow flow, a simplified model called the shallow water (SW)
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equations are commonly used (Hervouet}, 2007). On the erosion part, the sediment transport by water
can be described by equations of sediment mass conservation with source terms.

The source terms in the sediment transport equations express detachment and deposition processes.
Its formulas can be classified into two categories. The first one treats erosion processes with only one
(representative) sediment size. Related works can be found, for example, in the publications of |Nord
and Esteves| (2005); |Murillo et al| (2008); |Cao et al. (2004); |[Simpson and Castelltort| (2006); |Li and
Duffy| (2011)). Moreover, most of these models adopt the transport capacity concept to distinguish the
erosion and deposition situations. Several related limitations have been noted (Sander et al., 2007).
It is well known that soil erodibility depends on the particle size distribution and the deposition is
a size-selective process (Farenhorst and Bryan, 1995). The need to use a more advanced model, to
quantify the rate of detachment and/or deposition, has been suggested (see e.g.|Nord and Esteves), 2005;
Murillo et al., 2008)). The second type approach takes into account the particle’s size distribution and
their impacts on the process of erosion and sediment transport. The approach proposed by [Hairsiné
and Rose| (1991}, 1992), called the HR model hereafter, is such a model. In addition, this multi-size
class model considers the detachment-entrainment of the original soil, the redetachment-reentrainment
of deposited sediments and the sedimentation as concurrent processes. An important feature of this
model is the proposition of continuous deposition that creates a sediment layer protection the original
soil from erosive forces (Govers et al., 2007). This model has been investigated and applied with some
successes to various scenarios of soil erosion both at plot and catchment scales (see e.g. |Fiener et al.,
2008; | Van Qost et al., 2004; Heng et al., 2011} Kim et all 2013).

With the SW equations, a well-known difficulty of numerical solvers is to preserve the steady states,
to deal with large bottom slopes and wet /dry transitions. Such a solver is called a well-balanced scheme
whose construction is of interest to many researchers. A large variety of advanced numerical solvers
are able to produce accurate results (see e.g. |Gallouét et all [2003; | Audusse and Bristeau, 2005} |Castro
et al.l 2006; [Liang and Marche| 2009; |Bouchut and de Lunal, 2010}, |[Berthon and Foucherl, 2012; |Duran
et al., 2013, |Hou et all 2013, and the references given therein as a non exhaustive list). These papers
have shown that the numerical discretization of the bathymetry needs to be related to that of the
convective flux to avoid spurious oscillations appearing in the solution. On the modelling of erosion
processes, we observe that the numerical method for the coupled system SW-HR has been relatively
less studied except by |Heng et al.| (2009) and |[Kim et al.|(2013). They used the Roe-type approximate
Riemann schemes to solve one- and two-dimensional problems respectively.

The present work concerns the numerical simulation of soil erosion processes using the coupled
system SW-HR. We are interested in applying the cited well-balanced schemes for the hydrodynamic
part. An interesting feature of these methods is that the numerical fluxes guarantee the positivity
of the water depth at every control volume throughout the computation. Based on this property, we
propose and analyze a simple and robust numerical discretization for the sediment transport equation
linking the erosion part with the hydrodynamic one. It will be shown that the resulting method is
well-balanced and ensures the positivity of the water depth and the sediment concentration under the
classical CFL (Courant-Friedrichs-Lewy) condition of the SW equations.

The outline of the paper is as follows: in section [2| we present the system of governing equations
with the same notations as those in|[Heng et al| (2009) and [Kim et al|(2013). In section [3} we describe
our numerical scheme and analyze its main features. Next, we validate the proposed method in section 4]
with several benchmarks selected from the literature. We justify the quality of the scheme in terms of
performance by a two-dimensional test on a realistic configuration.



2 System coupling hydrodynamic, erosion and sediment transport

In this section, we recall the governing system of equations that has been studied by |Heng et al.| (2009)
and |[Kwm et al.| (2013]). This consists of a system coupling the two-dimensional SW equations with the
HR model for I classes of sediment, namely

Oh+V - (hu) =R — I,

h2
O¢(hu) +V - (hu®@u)+V <g2> = —gh(Vz + Sy),

Oi(cih) + V- (cihu) = e; + e +1i + 1y — di, (1)
om; = d; — € — Tri,
I
(1= ¢)psOizo = > (di — €i — €yi — 15 — T05),
\ i=1

(for i =1,...,1I), where the (2/ + 4) unknowns of system are
e h the water depth [L],

e u = (u,v) the horizontal velocity of the flow [L/T],

zp the bed surface elevation [L],

¢; the sediment concentration of i-th class [M/L3],
e m; their mass in the deposited layer [M/L2].

Let us recall the source terms of the SW equations: the water source terms are R and I, [L/T]
representing the rainfall intensity and the infiltration rate respectively. For the friction slope Sy, two
formulations are usually chosen in hydrological models: the Manning friction law Sy = n’ulul/ h*/3 or
the Darcy-Weisbach law Sy = fu|u|/(8¢gh). Both the Manning friction coefficient n and the Darcy-
Weisbach coefficient f [—] are regarded as constants. Finally, ¢ [—] represents the porosity of eroded
bed and g [L/T?] the gravity acceleration.

Figure 1: Processes interacting between the original soil, deposited layer and suspended sediments in
overland flow.

The HR model describes the erosion processes of I particle-size classes, as illustrated in Fig.[l] Note
that this model considers the detached sediments as passive pollutants in the flow. In other words,
the concentration of sediment is supposed to have no influence on the equations governing the water
dynamics. This hypothesis is fulfilled, for example, when the concentration in volume of sediment is
less than 10%. On the contrary, simulating a hyper-concentration of sediment requires sometimes a



strong coupling with the equations governing the water flow (see e.g.|Cao et al., 2002, [2004; |Simpson
and Castelltort, |2006; \Li and Duffyl 2011]).

For the i-th class, vs; [L/T] is the settling velocity, e; and r; [M/L?/T] are the rates of rainsplash
detachment and flow entrainment from the original soil respectively, e,; and 7,; [M/L?/T] are the rates
of rainsplash re-detachment and flow re-entrainment from the deposited layer respectively and finally
d; [M/L?/T] is the deposition rate. These source terms are given by:

e; = (1—H)piaR, (2)
€r; = Hmi adR, (3)
mr
Flw—we
o= (- mp ) ()
zF - Wer
re = g e 5)
mrp Ps pwgh
Ps
d; = cvy, (6)

where a and ag [M/L3] are the detachability coefficients of the original soil and the deposited layer
respectively, p,, and ps [M/L3] the densities of water and sediment respectively, and p; [—] the fraction
of i-th class in the original soil.

As soil erosion due to flow is a threshold process, the stream power w = p,gh|Sf||u| must exceed
the critical value we,. [M/T3] to entrain soil particles. In such a situation, F' (—) is the effective fraction
of excess stream power in entrainment and re-entrainment, and J [ML2 /T2/ M] is the energy expended
in entraining a unit mass of cohesive sediment. Once the deposited layer has been created, it protects
the original soil and consequently reduces the rate of detachment and entrainment of the original soil.
To characterise this effect, we define H = min{1, my/mJ}.} the fractional shielding of the original soil
by the deposited layer, with mp = ZZ'I:1 m; the accumulated mass per unit area of deposited layer and
m’. [M/L?] the required mass of deposited layer to shield completely the original soil. The modelling
of this process is a new and advanced point of the HR model compared to the others (Govers et al.,
2007).

Since the raindrop energy is reduced as it penetrates the surface water layer, the soil detachability
coefficients a, a4 and the critical mass m7, are decreasing functions of the water depth h. |Proffitt et al.
(1991) proposed the following power law

(2) = () < L e Esto o

and |Heng et al. (2011]) complemented this relation by

R if h < ho
T = IT0 X (ho /R)Y i h > kg

where ag, aqgo and m7, are the related maximum values at the breakpoint depth hg which is about 0.33
times the mean drop diameter, and b is an exponent depending on the type of soil. This equation was
used in |Heng et al|(2011) and Kim et al|(2013).

In the next section, we explain how to discretize equations f@, paying attention to preserve
physical properties such as non-negativity of the water height and the sediment concentration.



3 Numerical method

Finite volume schemes are known to be robust for the numerical simulation of conservative systems since
this method ensures their conservation by construction. The method for solving a multidimensional
system is described in detail in |Le Veque| (2002) for example. Briefly for the two-dimensional problem
that we can rewrite in generic form

ow + V- f(w) = s(w),

the basic principle of the method is to integrate the considered system over a control volume C of the
mesh and use the divergence theorem to obtain

/athX—f-/f-ﬁdF:/S(W) dx,
c r C

where I' stands for the boundary of the control volume and 1l its outward unit vector normal. The
first term concerning the time derivative is always computed with a finite difference method while the
right hand side expresses the total source applied on the control volume. A key aspect of any finite
volume scheme consists of evaluating the flux f - i over the interfaces of control volumes. From this
principle, the extension of an existing one-dimensional numerical scheme to the two-dimensional case is
straightforward, especially with the schemes based on the Riemann solvers (Toro, [2001) as used here.
For the sake of simplicity, we only describe hereafter the numerical method for the one-dimensional
system.

In the present work, we propose a numerical finite volume scheme, as in |Heng et al.| (2009)); |Kimi
et al. (2013), but the treatment of the equations is different. Two main characteristics of the proposed
method are: (i) it makes the numerical coupling of erosion part becoming less dependent on the
numerical solvers of hydrodynamic part; so that many recent and advanced schemes/computation
codes on the SW equations can be used. (i) it relaxes the additional restriction on the time step
related to the HR equations. Only the CFL condition of the SW system is sufficient to guarantee the
stabilization of the numerical solution.

Introducing the conservative variables

h
hu m
U= |ah|, v= : ,
. m]
Zp

crh

the one-dimensional system of governing equations becomes

o, U + &CF(U) =50+ 51,
0V = 59,



where the flux and the source terms are given by

hu 0
hu? + gh? /2 —ghdy,z
o= | et | s=| 0 |
c[hu 0
R -1,
—ghSy

S =|entert+ri+ra—d

e +er+rr+rp—dp

dy — e — 11

Sy = dr —epr —7r1
Ele(di — € — €pj — T — Tpj)

(1 - ¢)ps

Note that the topographical source term Sy contains the derivative 0.z, corresponding to the
bottom slope while S; and S are cell-centered terms related to water source terms, bed friction,
erosion and deposition. For this reason, Sy needs to be discretized together with the flux F(U). On
the contrary, S; and So can be treated in a separate step by a system of ordinary differential equations
(ODE), without adding numerical oscillations. In other words, we adopt a time-splitting strategy that
first solves the following hyperbolic system with source term Sy (called convective step)

8, U + 0,F(U) = S,,

and then correct the computed value by taking into account the source terms S and Sy via the system

oU = 51,
oV = 5.

Note that a scheme which is second-order accurate in time can be reached by repeating these
two steps with Heun’s method, i.e. the second-order total variation diminishing (TVD) Runge-Kutta
scheme. In the following it is sufficient to only consider a numerical scheme which is second order in
space but first order in time.

3.1 Convective step

We notice that in the convective step, the I transport equations of sediment concentrations have the
same form. For the sake of compactness, the last I equations are replaced by a generic one, using c
instead of ¢; to denote the concentration of the considered sediment-size class. Then, the compacted
system is writen as

Oh + 9y (hu) =0, (8)
Or(hu) + Oy (hu® + gh?/2) = —ghO, 2, (9)
O(ch) + 0, (chu) = 0. (10)

Starting from a given value U™, the variables obtained after this step are denoted with a bar: h, hu, ch.



3.1.1 Numerical schemes for the shallow water equations

These schemes are aimed at solving the well-known SW equations f@. Since this system contains
source terms, a numerical approximation must be made with more attention focussed on capturing
exactly the steady states of the system, i.e. the exact functions h,u satisfying

hu = const. and u?/2 + g(h + 2) = const. (11)

These solvers are called well-balanced methods since the pioneering work of |Greenberg and LeRoux
(1996). Moreover, it is well-known that small water depths near wet-dry interfaces can lead to numerical
instabilities. Numerical treatment of wet-dry fronts is thus a challenge when simulating shallow flow
over nonuniform bathymetries (Bouchut), 2004)).

The numerical discretization of the SW equations has been extensively studied. A large variety
of proposed numerical solvers are able to produce accurate results. A non-exhaustive list of these
methods can be found in (Gallouét et al., 2003; |Audusse et all 2004; |Audusse and Bristeaw, [2005;
Castro et al, 20006} |[Liang and Marchel, [2009; |Bouchut and de Lunal 20105 |Berthon and Foucher],|2012;
Duran et al., 2013 |Hou et all [2013). These finite volume schemes can be rewritten in the following
generic conservative form

At

U;=Uj - A (Fjs1/2r — Fj—1)2R) (12)

where the vector U; stands for the updated state (h;, hju;)! obtained from the given one U on
;. : : : h h ._

the current cell j; Az, At are the space and time steps respectively; Fj /o1 r = (FL7R, FijQ)t =
FL’R(U;‘, Uy, Azpji1/2) are the left and right numerical fluxes in which Azpjr1/2 = 2pjy1 — 2bj- In
the computation of F}j /57, r, we can replace the given state (U7”, ;ﬁrl) by its high order approximation
at the interface, e.g. using the MUSCL reconstruction (van Leer}, 1979), to get the high order scheme.
The cited numerical schemes differ from each other in the construction of Fi r(U}', UL 1, Azpji1/2)

which satisfy the following conditions (see |Bouchut), |2004):

1. conservativity of the water depth, i.e.

h h h
Fr (U Uiy, Azpjy12) = FR(UP, Ujpr, Azpjaye) == Filyy o (13)
2. consistency with the homogeneous system, i.e. F"(U,U,0) = hu, F*(U,U,0) = FE“(U, U,0) =
hu? + gh?/2,
3. asymptotic conservativity /consistency with the source term, i.e. Fﬁ‘l /2 R—thfl JoL =~ ghAzpj 410+

0(Azpjt1/2) when Ui = Ujyy and Azpjyq/9 — 0,

4. well-balancing, i.e. given the discrete steady states (UJ',U';,Azpji1/0) satisfying as
the numerical fluxes must satisfy Fj, o, = F(U}') and Fji0p = F(Ufy,) where F(U) :=

J
(hu, hu® + gh?/2) stands for the physical flux of the SW equations.

Defining sy gr = u £ v/gh the slowest and fastest wave speeds of the SW equations, a well-known
restriction on the space and time steps, called the CFL condition, is required for the stability of
numerical solution

At
Immax{|3L|a|3R‘} <C (14)

with C' =1 for the first order scheme, and C' = 0.5 in the case of a second order scheme.



Note that from and , the computation of the water depth reads

— At(

n h h
hy =hj = 1z \Fivae = Flap). (15)

It should be shown that under the CFL condition , the fluxes Fj /o1, g preserve the positivity at
interface (Bouchutl |2004) of the water depth in the sense that

N n 2At h n, n

hj+1/2L = h_] —E<F]+1/2—hjuj> Z 07

7 n 2A¢ n, n h

hj—l/?R = h] - Tw (h] 'U/] — Fj*l/Z) Z 0. (16)

Consequently, the positivity of the water depth at every control volume throughout the computation
is automatically guaranteed since Ej = O.5(Ej_1/2R + EjH/QL). In section we will exploit the
property to construct a simple and robust numerical scheme for the sediment transport problem.

In the present work, the scheme proposed by |Audusse et al| (2004) is chosen to solve the SW
equations. In particular, the numerical fluxes F}j /o1, g were derived using a hydrostatic reconstruction
technique. This scheme allows to preserve a particular steady state of called lake at rest, i.e.
h + zp = const. and u = 0. Nevertheless, it has difficulties to deal with a combination of large bottom
slopes and a small water depth (Delestre et all 2012). A recent modification in |Berthon and Foucher
(2012)) allows this limitation to be overcome.

Given the discrete data (U?,U M1 Azpji1/2), the scheme based on the hydrostatic reconstruction

J
technique carries out the two following steps:

1. computation of the reconstructed states U; /o1, g at the interface

hit1720 = max(0,h] — max(0, Azp;/2)),
hjr1or, = max(0,h],; +min(0, Azpjy1/2)),
Uipior = (hjsrjon, hjpjacul)',

Uisior = (hjr1jor, hjs12ruf40)"

2. construction of the numerical fluxes from the reconstructed states obtained before

9,2 2 t
Fj+1/2L = ]:(Uj-i-l/QL:Uj—i—l/QR) + (0, §(hj - hj+1/2L)> )

9,2 2 t
Fijior = FUjs1y20:Ujy1y2r) + <O7§(hj+1 _hj+1/2R)> ;

where F(Uji1/21, Ujr1/2 r) is a consistent numerical flux for the homogeneous SW equations.
In this work, we adopted the HLL formulation (Harten et al., [1983) for F(Ujti/or, Ujs1/2R)-
According to |Batten et al.| (1997)), an appropriate choice for the wave speed estimates can lead
the HLL Riemann solver to satisfy automatically an entropy inequality, to resolve isolated shocks
exactly, and to preserve positivity. When both sides of the cell interface are wet, a natural choice
is to compare the maximum and minimum characteristics velocities evaluated at both left and
right given states. These estimates can also be improved using the Roe average. For the wet/dry
transitions, a more suitable estimation for the wave speeds can be derived from the exact Riemann
solution (7Torol, 2001). Consequently, the resulting scheme preserves the positivity and is well

adapted to wet/dry transitionsﬂ

'The detailed method have been implemented in FullSWOF 2D, see https://sourcesup.renater.fr/projects/
fullswof-2d/
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3.1.2 A new approach for the sediment transport

An important remark is that, in equation , the sediments are simply convected by the water flow.
At the numerical level, contrary to|Heng et al. (2009)); |Kim et al.| (2013)), we choose an upwind scheme
to solve equation linking the transport of sediment to the SW equations

— _ = At h
(ch); = tjhy = i = - (Fetyye = Fit)s) - (17)
The related upwind flux F¢" e for sediment transport is given by
h
Feh o= ?Fg+1/2 lfF+1/2 >0, (18)
j+1/ J+1Fg+1/2 else,
where F] "1/2 is the numerical flux given by .

An important property of the scheme is that the positivity of the sediment concentration
¢; is automatically preserved under the CFL condition ( of the SW equations. In fact, denoting

+ h - +
F]_H/2 maX(F.H/Z, 0) and F'_ 12 = mln(Fj+1/2, 0), we have Fh =F it Fii and F¢!

c; FJ+1/2 + c’J?Jrle_H/2 The scheme can be rewritten as

j+1/2 = j+1/2 =

- F

o At
cihj = C'h'—7< G (F i—1/2)

i T Ax j+1/2

i F e G 1 1/2)
LAt .
_ <h = (Fhye - Fj_1/2)>

At At
+ —
+ejo (MFj—1/2> ~ <MFj+1/z>
= c?,laj_l + c?aj + C?+1aj+1, (19)

and we notice from equation that aj_1 + o + ajy1 = Ej. Let us assume for the moment that
o 1,0@,04]“ > 0. We deduce, by dividing equation by Ej, that ¢; is a convex combination
of ¢f_y,¢} and c},. Hence, we have the following inequalities also known as the discrete maximum
pr1n01ple

min(cj_q, ¢}, cjq) <& <max(cf_y, ¢}, ).

In particular, given c 1 c cj 1 = 0, the updated sediment concentration ¢; is non-negative.
The onl remalnln roblem concerns the non-negativity of a;_1, a;, a;11. We have immediatel
y gp g y j—15 Qs Qg y

aj+1 > 0 from the definition of F* 12 On the non-negativity of «;, we rewrite

It is enough to check that each of these two terms is non-negative. In the case when Fj__1 j2 = 0 or

F;‘H /2= j) which is non-negative under the CFL

condition because |uf| < Inax(|s |, |sr|). In the opposite case, the non-negativity of these terms
is guaranteed by the property (16) of the numerical fluxes Fj /o1, g-

= 0, the corresponding term reduces to %h? <1 + %u”



3.2 Source terms discretization

At the end of the convective step, we obtain the state U from the given value U™ via the well-balanced
scheme and the upwind scheme . The next step is to compute the contribution of the source
terms Sp, Sz. This step consists in the resolution of mentioned ODE system to obtain (U, V)"**! from
the initial value (U, V™).

The water source and friction terms are treated as in |Delestre et al. (2014). The rain and the
infiltration terms are treated explicitly as they involve no particular numerical difficulties such as
steady-state or stability requirements. In FullSWOF 2D, the infiltration rate is computed by the
Green-Ampt model (Green and Ampt|, 1911). Concerning the friction terms, FullSWOF 2D uses a
semi-implicit discretization (as in|Bristeau and Coussin),[2001; Liang and Marche),2009; Delestre et al.,
2014)) to preserve the stability when simulations involve wet/dry fronts, and to keep the well-balanced
property obtained in the convective step.

Let us turn to the main difficulty brought by the source terms: the contributions of erosion and
deposition given by system . This system expressing the HR model for I sediment classes can be

rewritten as the following equations, for i = 1,...,I:
O(cih) = e; + epi + 1 + 1y — di, (20)
8tmi + 6t(cih) =e; + 14, (21)
I
ps(1 = ®)Ohzy + Y Dy(cih) = 0. (22)
i=1

System f can be computed directly by using an explicit Euler’s method. Nevertheless, it
requires a special treatment for each situation called before-ponding and after-ponding that correspond
to two different behaviours of erosion processes. These cases are differentiated numerically by a small
artificial threshold h, of the water depth.

3.2.1 Classical approach for erosion and deposition, modifying the CFL condition

We detail here how equations f have been discretized, depending on the erosion process.
Before-ponding. When h < h), the detached sediments are not transported but accumulate into the
deposited layer on the soil surface. Equations f reduce to 9ym; = e;. This situation is treated
numerically, as mentioned in |[Heng et al.| (2011), by setting

(Cih)nJrl — 0,
(ma)"™1 = (m)™ + (cih) + At(e;)".

After-ponding. When h > h,, the detached sediments can be suspended in flow. Physically, the
amount of sediment deposited over a time increment cannot be greater than that in the flow. While the
positivity of sediment concentration is well preserved in the convective step, this is no longer evident
when using an explicit approximation to solve equations f. That is the reason why, in |Heng
et al.| (2009), an additional restriction on the time step has been introduced, namely

Atg(c"h> I (23)
di Vg

In |Kim et al. (2013)), a small improvement has been made by only checking on wetted regions
where the detached particles can be transported in suspension. This allows to avoid the fact that

10



At — 0 during the pre-ponding period. Equation becomes

3 n
minj—p, N 1

At < :
maX;=1,2,...1 Vfi

where N, is the number of wetted cells of the mesh. All these authors found that for small water
depths, the time step At is governed by this additional restriction rather than by the CFL condition
(14) of the SW equations.

3.2.2 A new approach for erosion and deposition, with an unchanged CFL condition

We notice that the additional restriction on the time step raises from the use of explicit discretiza-
tion for equation ([20]). To relax this limitation, we can solve numerically this equation in two successive
steps consisting of (i) the phase of deposition and (ii) the phase of erosion

: _ g Y,
(i) Oi(cih) = —d; = _T@Zh)’

(ii) Oi(cih) = €; + eri + 1 + 1.

Since the water depth remains constant in these steps, the advantage of this fractional method is
that the first equation can be solved analytically while an explicit discretization can be used for the
second one. Hence we replaced the classical approach by using the Strang-splitting method (see e.g.
McLachlan and Quispell |2002) to solve . This consists to compute sequentially (i) with a haft time
step At/2, next (i) with full time step At and lastly (i) again with A¢/2. Given an initial state (c;h),
the resulting scheme writes

(cih) = (cih) + At(e; + )™ + At(epi + 7)™, (24)

(7 e
byt = exp { L4 A TG

The proposed scheme presents several advantages. Firstly, equation is computed as second order
accurate and therefore achieves the accuracy required of the overall scheme. Secondly, as the Strang-
splitting is symmetric, the deposition process is treated both before and after erosion. This allows the
scheme to maintain the simultaneous nature of the erosion and deposition of these processes.

Another remark at the numerical level is that while (e; +7;)™ can be computed directly from equa-
tions , , the quantity At Zfil(em- + ;)™ may not be greater than (mp)™. Indeed At Zfil(em- +
rri)" is the quantity of sediment available for re-detachment and re-entrainment. From equations
and , we define (e, +7,)™ at each instant t™ as the total capacity of re-detachment and re-entrainment
from the deposited layer

(e, +m)"=H (adR + F(w—wm«)) .

Ps—Pw
Ps gh

The total rate of re-detachment and re-entrainment of the sediment class 4 is given by

At(ep; + 1) = ((:Z;))T; min {(mp)", At(e, +r.)"}. (25)
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The scheme together with shows that (c;h)"*! > 0 since (c;h) > 0 (obtained from the upwind
scheme ) The positivity of ¢; is thus preserved without requiring the supplementary condition
on the time step.

Using , we can now solve, in a conservative way, equations — to obtain the mass of
deposited layer and the topography at time t"+!

(M) = (ma)" + At(e + 70" = ((eih)™ = (eih))

(26)

I
(zb)nJrl = ()" — ps(ll_@ Zl ((Cih)n—&-l _ @) ‘

Let us summarise the main properties of proposed method. The numerical scheme combining ([12])—
, , is conservative, well-balanced, positivity preserving for both of the water depth and
the sediment concentration. In particular, only the CFL condition of the SW equations is required to
ensure the stability of the overall numerical scheme.

4 Numerical results

As explained before, the proposed model is a coupling between the SW equations and the HR model.
We thus use a SW code, to which we add an erosion component. For the SW part, we use the
C++ code FullSWOF (Full Shallow Water equations for Overland Flow). This software, developed in
the framework of the multi-disciplinary project METHODE ANR-07-BLAN-0232, is distributed un-
der CeCILL-V2 (GPL compatible) free software license, and available at http://www.univ-orleans.
fr/mapmo/soft/FullSWOF/, see |Delestre et al| (2014). The resolution of the SW equations can be
performed at second order in time and space using the MUSCL reconstruction and the hydrostatic
reconstruction, as noted in the previous section.

In this section, we present numerical validations of the proposed approximation for system
coupling the SW equations to the HR model, using equations 7, , . Unfortunately,
there is no time and space-dependent analytic solution available for this system. So we validate
separately the convective part, modelling overland flow and sediment transport, and the HR model
describing the processes of erosion and deposition. As the convective step has been developed on the
basis of FullSWOF, we do not need to perform any numerical validations for the hydrodynamic part,
since this has previously been done by Delestre et al.| (2013],2014) for various benchmark tests. After
these series of tests for the validation of the numerical method, we give a two-dimensional example on
a real topography for which we compare the maximum-allowed time step of CFL condition , and
that of condition (23)).

4.1 Tests on the convective step for the sediment transport

In order to test the new part of the convective step (equation ((17))), it is necessary to cancel the erosion
and deposition processes to impose S1 = S = 0; for this, it is sufficient to set Sy =a = aq =v; = 0.

We aim at testing two important properties of this numerical scheme computing the evolution of
sediment concentration in shallow flow: the consistency and the preservation of equilibria. We perform
two test cases proposed in |[Audusse and Bristeau| (2003) for the transport of a passive pollutant by the
flow.
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4.1.1 Dam break on a flat bottom with sediments

This classical test simulates the case of a dam break on a flat bottom with no friction, in which
the concentration of sediment is different at each side of the dam. In other words, the configuration
of this test is exactly the Riemann problem of the homogeneous system of |§|, . We consider
a spatial domain of length 2000 m, discretized by an uniform mesh with 100 cells, and we set the
final time of simulation to T" = 240 s. The dam is located at the center of the domain, that is at
xg = 1000 m. For the initial conditions, we set h; = 1, ¢t = 0, ¢ = 0.7 on the left boundary, and
h, =0.5, ¢- =0, ¢, = 0.5 on the right boundary.

The interest of this test is that we have an expression of the exact solution (see|Stoker,|1957)). From
left to right, the solution is separated by two constant intermediate states. The first one connects to the
left given state by a rarefaction wave propagating with a speed u — 1/gh. The second one connects to
the right given state by a shock wave propagating with a speed u 4 +/gh. These intermediate states are
separated by a discontinuity wave propagating with the flow speed. Recall that in the exact solution,
the values of h and u do not change across the contact waves in the intermediate region, while the
concentration ¢ transported with the flow does not change across the non-linear waves but changes,
discontinuously, across the contact wave. To check the convergence property of the proposed method,
we perform this test with the first and second order schemes.

T T
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Ana?ytical* 0.7 Ana?ytical*
A 1st order &y A 1st order
o 2nd order A o 2nd order
0
0.65 - B
A
[}
H A
0.6 B
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0.55 - I T
. A
. . on,
0.5 : Ve ponerreRe 0.5 [
I I I I I I I I I I I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

2(m) 2(m)

Figure 2: Dam break: water depth (left) and sediment concentration (right) at 7' = 240 s.

In Fig. [2 we plot the initial condition (dotted line), the analytic solution (continuous line), the
first order approximation (triangles) and the second order approximation (circles) for the water depth
and the sediment concentration. The numerical results show that the analytic solution is approximated
well and that the second order is, as expected, a better approximation.

4.1.2 Preservation of the steady state of the lake at rest

Next we want to verify numerically the steady state of the lake at rest. In this case, the equilibrium
of the concentration must be also preserved. So we use a non-flat bottom

0 if0<x<s8,
() =< 0.2—-0.05(x —10)? if8 <z <12,
0 if 12 <2 <20
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discretized by a uniform mesh with 100 cells. The initial condition is

0 if0<z<8,
and ¢(0,z) =< 1 if8 <z <10,
0 if 10 <z < 20.

h(0,x) + zp(z) =1,
u(0,z) =0,

Note that the initial condition of A and u satisfies the equilibrium of the lake at rest. Moreover, the
sediment flux is zero since hu = 0, which means that the given sediment concentration is maintained
in the exact solution. From the well-balancing condition of the numerical fluxes Fjj /o7, r, We have
Fyh+1 /2= hiuj = 0 and so the numerical flux of sediment transport F]?ﬁl /2= 0 by definition . Con-
sequently, the given sediment concentration is also preserved at numerical level. This is an interesting
feature of the upwind scheme .
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Figure 3: Lake at rest: free surface elevation (left) and sediment concentration (right).

We present in Fig. [3]the numerical results after 100 s, for the free surface elevation and the sediment
concentration. In both results, the stationary solution is preserved exactly.

4.2 Tests with some specific solutions of HR model

After the numerical tests on the convective step, let us check the functionality of the erosion and
deposition steps, approximated by schemes f. In the literature, some analytic, semi-analytic
or numerical solutions are available for the HR model with specific assumptions (Sander et al., |1996
2002; | Hairsine et al.,2002; | Hogarth et al.,[2004; |Rose et al.,2007;|Barry et al., 2010). Here, we compare
our numerical results with two reference solutions proposed by |Sander et al. (2002) and |Hogarth et al.
(2004) as these solutions have shown a good agreement with experiments.

4.2.1 A steady state analytic solution: net deposition in overland flow

In this section, we are interested in a special configuration which results in a net deposition region.
It is the zone where the sediment flux decreases downslope and the deposited layer develops very
rapidly to completely shield the original soil (so the shielding factor H ~ 1). We also assume that the
water flow is deep enough (greater than 3 drop diameter), allowing us to neglect the re-detachment
process by rainfall. Indeed the impact of raindrops in that case is largely absorbed by the water layer.
Hence re-entrainment and deposition are the only active erosion mechanisms. The equations of mass
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conservation of sediment reduce to

O(cih) + 0z (ciq) = 1vi — di
8tml- = dl — Tp;.
Hairsine et al.|(2002]) presented a steady state single-class analytic solution when there is no rainfall

and a constant flow rate imposed at the top of slope, i.e. ¢ = qo = const. |Sander et al. (2002) extended
the solution to the case of multi-size classes. Their solution is

v
ci(z) = e <cl(x)> T fori=1,2,... 11,
CIo
(27)
ol :
m;(t,x) = vyici(x) (1 — > t, fori=1,...,1,
iy vpici(x)

where ¢;g is the concentration of the sediment class ¢ upstream and

LT (1 _ qcr> = FpspuSK??
0 A Ps — Pu

VS Wer

with K = —, q¢ =
n

and S is the bottom slope. Finally, the concentration c;(z) of the last
Pwg
sediment class can be computed analytically by solving the following equation

der(z) y* _q | e
de oL q0
S vpicn (&)
which leads to .
cr(x) * de
i _ acr _ vrr
2 =1 Vficio (a)

We perform this benchmark with the parameters used in |Heng et al.| (2009):
e hydraulic parameters: S = 0.02, n = 0.01, go = 0.00125 m?/s.

e crosion parameters: 10 classes of sediments of a soil in the loam belt of central Belgium; vy; (in
mm /s) are taken from experimental data of | Beuselinck et al. (1999)): 0.00043, 0.0037, 0.02, 0.083,
0.23, 0.46, 0.74, 1.1, 1.7, and 3.2 respectively; ps = 2600 kg/m3, F = 0.01, we, = 0.186 W /m?2.

e boundary condition: ¢;p = 10 kg/m?, for i =1,..., 1.
e initial condition: ¢;(0,z) = 10 kg/m?3, fori =1,..., 1.

Fig. [ presents the numerical results with A¢ = 0.05s and 100 cells, at time 7" = 10 min, in order
to reach the steady state. More precisely, the sediment concentrations for the classes numbered 1, 4, 7,
9 and 10 are plotted as functions of the space variable. One can note that the numerical and analytic
results are similar.
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Figure 4: Net deposition in overland flow.

4.2.2 A transitory solution: rainfall-driven erosion

This benchmark is a case where the solution is time-dependent. However, there is no such analytic
solutions available in literature for the coupled system SW-HR. The solution, proposed by [Hogarth
et al| (2004])), is derived from the system coupling the kinematic wave model (Woolhiser and Liggettl,
1967)) and the HR model. This numerical solution of rainfall-driven erosion describes the dynamics of
sediment eroded by rainfall impacts when there is no inflow of water at the top of the eroded slope,
and no infiltration of water in the soil. This solution allows us to investigate the variation of sediment
concentration as a function of time, downslope distance and settling velocity.

Contrary to the previous test, the flow-driven processes are not present in the configuration of this

benchmark and the rainfall impact is the only erosion agent. The mass conservation equations of HR
model reduce to

Or(cih) + 0x(ciq) = ei + er; — di,

8tmi = dZ — €Epj.

Considering a stationary solution of the kinematic model with no inflow, and assuming that in
the original soil, each class contains an equal mass of sediment, i.e. p; = 1/I. A numerical solution

was computed by using a semi-implicit upwinding finite difference method which lead to the following
scheme after rearranging

n A K oy no A,
(i)™ = (1 -7 T (1 + ;;)) (i) + 57 (ci)ia

I ms n+1
+ % (5(mi)?“ + % (1 _ 2l *l)] )) , (29)

mr

RUf;
7 (ci)i.

(mg) ™ =(1 = wB)(ma)} +

where A = At/Az, k = RAt and 3 = ag/m’%.. An initial condition (at ¢ = 0) and a boundary condition
(at the upstream x = 0) for each sediment class ¢ = 1,..., I are required to close the scheme

j
boundary condition:  (¢;)g =0, (m;)j = 0.

initial condition:  (¢;)? = 0, (mz)(; =0,
We perform this last benchmark with the parameters used in |Heng et al.| (2009)):
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e domain setting: L = 5.8 m discretized by 100 cells, At = 0.002 s;
e hydraulic parameters: S = 0.004, n = 0.06, R = 100 mm/h;

e erosion parameters: 10 classes of sediment with vy; (in mm/s) = 0.21, 0.71, 3.3, 10.9, 19.4, 31.2,
69.1, 139, 210, and 300 respectively; a = 920 kg/m3, ay = 14190 kg/m3, m% = 0.0767 kg/m?.

Hogarth et al (2004) ©  Present work
25 T T T T

1 min

10 min

Total concentration (kg/m?)

0 I I I I I
0 1 2 3 4 5

2(m)

Figure 5: Rainfall-driven erosion.

On Fig. [fl we plot, for two different times, the variations in space of the total sediment concentration
obtained by our new method, coupling the SW system and the HR model, and the approximation of
the analytic solution of the kinematic wave coupled with HR model, given by equation . We find
again a good agreement between the two solutions, the difference on the left part of the domain lying in
the difference between the SW and the kinematic wave models. We also obtain good results compared
to experiment observations of |Proffitt et al. (1991): sediment concentration decreases with time until
the steady-state concentration is reached.

4.3 A two-dimensional test case

The previous one-dimensional tests using analytic solutions justify the important properties of proposed
method such as convergence and preserving steady state. Before entering into our last experiment,
it is important to keep in mind that the present objective is not to validate the physical model
since this has been investigated in several publications. For plot-scale, |[Heng et al. (2011) found a
good agreement with experiment on the dynamics of sediment concentration and the particle size
distribution. Recently, [Kim et al. (2013) obtained satisfactory results at catchment-scale with the
simulation using the database of the Lucky Hills watershed (located in southeastern Arizona, USA).
Moreover, in-depth discussions on the parameters can be found in |Heng et al. (2011) and |Kwm and
Ivanov| (2014). We perform here a two-dimensional simulation with a realistic irregular topography
taking into account the erosion and deposition effects. The chosen configuration includes wet/dry
fonts, water infiltration and rainfall-driven erosion processes with multiple sediment classes. On one
hand, this test case allows us to check the good coherence of the proposed solver. On the other hand,
it allows us to emphasize the gain in computational time of our method.

We use the database collected on the plot of Thies (Senegal) realized by IRD (Tatard et al.l 2008]) in
the project PNRH RIDES. The dataset is freely available at http://www.umr-1lisah.fr/Thies_2004/.
The plot was 10 m long by 4 m wide, with a 1% slope, and sandy soil (1% clay, 7% silt, 43% fine
sand, 49% coarse sand). The surface was raked in order to form a slight V shape, with 1% slope
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longitudinally and 1% transverse slope. The purpose of the V shape was to avoid rill development at
the lateral boundaries of the plot. A 2-hour long rainfall event was applied at a constant intensity of
70 mm/h in order to maintain a steady runoff and infiltration rate. See Miugler et al. (2011) for more
details on the experimental design. The granulometry of the sandy soil is given in Table [I| and the
related settling velocities of 10 classes of sediment are calculated using Cheng’s formula (Chengl, |1997).

Grain size (pm) 10 20 50 100 150 200 250 500 750 1000
Proportion (%) 1 2 4 13 1, 14 13 32 5 1
Settling velocity (mm/s) 004 016 1 38 78 126 178 43.1 646 82.1

Table 1: Granulometry of the sandy soil.

The plot surface was dry at the beginning of simulation while the sandy soil was considered as com-
pletely cohesive. The friction term is calculated by the Darcy-Weisbach’s formula and the infiltration
rate is given by the Green-Ampt model. Details on the parameters for the SW equations can be found
in Delestre et al.|(2014). An associated ponding depth h, = 1.5ds was set for each grain size ds. By
regarding the range of grain sizes in table [T} this setting allows us to simulate simultaneously before-
and after-ponding situations between the different sediment classes and in particular during transition
periods. According to the discussion in |[Heng et al| (2011), other parameters of the HR model are
chosen as: F' = 0.1, we = 0.1525 W/m?2, J = 100 J/kg, hg = 0.66 x 1072 m, b = 1, ag = 150 kg/m?>,
aqo = 1500 kg/m3 and m%, = 1 kg/m?.

The simulation result at the end of rainfall even (¢ = 120 mn) is shown in Fig. [f| Except for the
main flow located in the rill, the flow is very shallow (h ~ 1mm) as most of the water has infiltrated
(Fig. @a) Moreover, the water flux (Fig @b) is nearly negligible except at the outlet, so the stream
power is unlikely to exceed its critical value. This means that the flow has no contribution from
sediment entrainment but just caries the detached particles. Consequently, the chosen configuration is
typically rainfall-driven erosion. Fig. [6k, presenting the mass of deposited layer, showed that in large
regions of the plot, rainfall detachment accumulates soil particles into a non-cohesive (deposited) layer
and the related critical value was rapidly reached. In the main flow where the thickness of water layer
is sufficiently important, i.e. h > hg, rainfall erosivity is limited since the raindrop energy is reduced
as it penetrates the surface water layer.

Particle size-selectivity characteristics are shown in Fig. [6fd,e,f. As the flow is very shallow, we
pay attention particularly on the fine grains (ds < 100um), for example silt and fine-sand. Fig. |§|d—e
show that the 1st class (ds < 10um) and the 2nd class (ds < 20pm) occupy an important factor in the
total concentration of sediment in flow while it was initially only 1% and 2% in original soil. On the
contrary, the 4th class (ds < 10um) is nearly absent in the main flow as opposed to their significant
proportion (13%) in original soil (Fig. [6f).

Let us check an advantage of the proposed scheme relating on the computational efficiency. Recall
that only the CFL condition of the SW equations is required while an additional condition of HR
equations must be used in the approach of |[Heng et al. (2009) and |[Kim et al.| (2013). Fig. 7| presents
the maximum-allowed time steps given by conditions and . During transition period (first 10
minutes of rainfall event), the condition is very restrictive contrary to what happens for the SW
equations. When the flow reaches steady state, the time step of SW equations is in order of 10~2s and
two orders of magnitude higher than that of the HR equations (10~%s). Consequently, the condition
is at least 100 times more restrictive than . It is important to recall a well-known numerical
effect which states that the more the timestep is reduced, the more numerical diffusion is added.
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Figure 6: Simulation result at ¢ = 120 minutes
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Figure 7: Gain in performance by using large timestep

5 Conclusion

The system coupling of the SW equations with the HR model allows the simulation of complex scenarios
of soil erosion by rainfall and overland flow on a non-uniform topography. This model predicts not
only the topographical evolution and the eroded sediment flux but also the particle-selectivity during
erosion processes. |Heng et al.|(2009) and |[Kum et al. (2013)) proposed numerical finite volume methods
for one and two-dimensional systems. These schemes are based on Roe’s approximate of Riemann
solvers in which an additional restriction on the time step is required together with the classical CFL
condition of the SW equations in order to ensure the positivity of the sediment concentration.

We have proposed an alternative numerical finite volume solver in which (i) the approximation of
erosion part is less dependent on the numerical approximation of the hydrodynamics; (i) only the CFL
condition associated to the SW equations is sufficient to ensure the stability of numerical solution. It
has been shown that the present method is well-balanced and positivity preserving. The numerical
approximation for the erosion part can be adapted to any well-balanced and positivity preserving
approximation of the SW equations. This offers more possible solutions in the choice of numerical
solvers for the hydrodynamic component, especially the recent and advanced approaches published in
the last few years. In terms of performance, the scheme allows larger time steps than those required
by |Heng et al| (2009); |[Kim et al. (2013) and consequently offers a more efficient solution. A two-
dimensional test on a realistic topography shows that the computation is at least 100 times faster due
to the proposed new solver. Finally in each time step, the computation corresponding to each sediment
class is independent of each other and thus can be performed in parallel (for example with OpenMPI).
This property becomes interesting when we deal with a large number of sediment classes.

Table of notations

a, ag detachabilities of original soil.
aq, ado detachabilities of deposited layer.
b exponent used in equation .

C; mass sediment concentration.

d; deposition rate.

ds particle size.
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