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Abstract

Overland flow and soil erosion play an essential role in water quality and soil degradation. Such
processes, involving the interactions between water flow, suspended particles and soil, are classically de-
scribed by a well-established system of PDE coupling the shallow water equations and the Hairsine-Rose
model. The numerical approximation of this coupled system requires advanced methods to preserve
some important physical and mathematical properties in particular the steady states, the positivity
of both water depth and sediment concentrations. Recently, a well-balanced MUSCL-Hancock scheme
has been proposed by Heng et al. [25] in which an additional and artificial limitation on the time step
is required to ensure the positivity of sediment concentrations. This artificial condition can lead the
computation to be costly when dealing with very shallow flow and wet/dry fronts. The main result of
this paper is to propose a new and faster scheme for which only the CFL condition of shallow water
equations is sufficient to preserve the positivity of sediment concentrations. In addition, the use of
up-to-date numerical methods allows to obtain easily a well-balanced scheme, to guarantee the positiv-
ity of water depth and to verify the maximum principle for sediment concentrations in the convective
step. The numerical scheme is tested on classical benchmarks, and we also perform a test on a realistic
topography to justify again the quality of proposed approach.

Keywords: shallow water equations, finite volume method, well-balanced scheme, numerical stability,
positivity, CFL conditon, Hairsine-Rose model, soil erosion.

Introduction

Soil erosion is a complex phenomenon affected by many factors such as climate, topography, soil charac-
teristics, vegetation and anthropogenic activities such as cultivation practices (see e.g. [12]). Soil erosion
and sediment transport can have adverse effects on the stormwater quality [37]. Erosion process due to
rainfall and overland flow can be described in three stages: detachment, transport and deposition of soil
particles. The detachment occurs when the flow shear stress or the kinetic energy of raindrop exceeds the
cohesive strength of the soil particles. Once detached, the particles can be transported downstream as
non-cohesive sediments before their deposition [32].

Water flow induces sediment transport and changes in the surface morphology. The sediments carried
by the water flow can be transported either along the bed as bedload in the form of sliding and rolling
grains, or in suspension as suspended load advected by the main flow. Bedload particles are located in a
few grain diameters thick layer situated on the soil and the velocities of these particles are smaller than
the flow velocity. At the opposite, the suspended particles are transported at the velocity of the flow. In
practice, suspended load usually comprises finer fractions that are more controlled by supply than energy.



It is possible to discriminate between bedload and suspension of transport by using the Rouse number (see
e.g. [30]). But the threshold can be different depending on the experiment, see [29, 33].

The erodibility of a soil depends on the particle size distribution and in particular it is well known
that the sedimentation is a size-selective process [19]. In the context of erosion with suspension transport,
Hairsine and Rose [21, 22] developed a soil erosion model, called HR model hereafter, taking into account
the particle’s size distribution and their impacts in the process of erosion and sediment transport. Moreover,
the detachment-entrainment of the original soil, the redetachment-reentrainment of deposited sediments
and the deposition are considered as concurrent processes. It also models the development of the deposited
layer that differs from the original soil in its cohesion and particle size distribution.

The present work concerns to numerical simulation of overland flow including soil erosion. Recently,
Heng et al. [25] proposed an appropriate numerical method for the coupled system combining shallow
water (SW) equations and HR model. Numerical tests showed that this scheme performs well in terms
of accuracy and robustness for both the water and sediment transport. Moreover, this scheme is the
unique well-balanced method developed for this coupled model up to our knowledge, unlike the case of SW
equations where many advanced solvers can be found in literature. Later, Heng et al. [26] applied their
implementation to a series of detailed flume-scale experiments to test the model’s ability to reproduce the
observed data including the dynamic evolution of the sediment-size distribution.

A remarkable limit of the solver proposed in [25] is that in addition to the Courant-Friedrichs-Lewy
(CFL) condition of SW equations, an another artificial restriction on the time step must be verified to
ensure the non-negativity of sediment concentration. In particular, the authors stated that this restriction
can lead the computation to be costly when dealing with very shallow flow and wet/dry fronts. This
problem is the motivation of our work where we found a more efficient (and faster) scheme being able to
relax the mentioned restriction.

The outline of the paper is as follows: in section 1, the system of governing equations considered in Heng
et al. [25] is firstly generalized into two-dimension case. For the sake of completeness, the HR equations
are also recalled using the same notations with [25, 26]. In section 2, we propose a new approach for which
only the CFL condition of SW equations is sufficient to ensure the positivity of water depth and sediment
concentration. Next, we validate the implementation of the new method in section 3 with some benchmark
tests selected in the literature. We justify by a two-dimensional test on a realistic topography the quality
of proposed scheme in term of performance: for overall of simulation, the simulation is at least 100 time
faster thank to the proposed improvement.

1 Complete system, coupling hydrodynamic, erosion and sedi-
ment transport
In this section, we recall the equations we use in the following, expressing the conservation principle

of both water height and sediments (see [21, 22] for example). They consist in a system coupling the
two-dimensional SW equations with the HR model for I classes of sediments, namely

Oh+V - (hu) = R — I,

2
O¢(hu) + V- (hu®@u)+V (gh) = —gh(Vz, + Sy),

2
Or(cih) + V- (cihu) = e; + ep +1i + 10 — di, (1)
Orm; = di — eri — Tri,
. I
Opzy = ——~— > (ei+ep +1i + 1 —di),
' (1—o)ps ;( )

(for i =1,...,I), where the (21 + 3) unknowns of system are



h the water depth (m),

u = (u,v) the horizontal velocity of the flow (m/s),

zp the bed surface elevation (m),
e ¢; the sediment concentration in mass of i-th class (kg/m?),

e m; their mass in the deposited layer (kg/m?).

Note that the transport rate of suspended sediment was assumed to be lower than a turbidity threshold,
so it has no contribution in the momentum of the water flow. In other words, the sediment is considered
as a passive pollutant in the flow. This hypothesis is not too restrictive for the applications since the
concentration in volume of sediment is often less than 10%.

Let us recall the source terms of SW equations: the water source terms are R and I, representing the
rainfall intensity and the infiltration rate respectively (m/s). For the friction slope S, two formulations are
usually chosen in hydrological models: the Manning friction law Sy = n?ujul|/ h*/3 or the Darcy-Weisbach
law Sy = fulu|/(8gh). In this work, the Manning friction coefficient n and the Darcy-Weisbach coefficient
f are regarded as constants.

The HR model describes the erosion processes of I particle-size classes, as illustrated in Fig. 1. For the

SNNNNNNANN S

A R
\\\\\\\\\\\\\\\\\\\\\?T\\\\“\
AU RN RN R R RN

Figure 1: Processes interacting between the original soil, deposited layer and suspended sediments in
overland flow.

i-th class, we denote by vy; the settling velocity (m/s), e; and r; the rates of rainsplash detachment and
flow entrainment from the original soil respectively, e,; and r,; the rates of rainsplash re-detachment and
flow re-entrainment from the deposited layer respectively and finally d; the sedimentation rate (kg/(m?s)).
These source terms are given by the HR equations:

e; = (1 — H)piaR, (2)

eri = H UL aqR, (3)
mr

vy = (1= H)p; LW = wer) (4)

J )

po= g F@ = wer) 5)

Ps
d; = c;vyy, (6)

mr Ps _pwgh

where a and ag4 are the detachability coefficients of the original soil and the deposited layer respectively,
pw and ps the densities of water and sediment respectively, and p; the fraction of i-th class in the original
soil.



As soil erosion due to flow is a threshold process, the stream power w = p,,gh|Sf||u| must exceed the
critical value w., to entrain soil particles. In such a situation, we denote by F' the effective fraction of
excess stream power in entrainment and re-entrainment, and J the energy expended in entraining a unit
mass of cohesive sediment. Once the deposited layer has been created, it protects the original soil and
consequently reduces the rate of detachment and entrainment of the original soil. To characterise this
effect, we define H = min{1, myp/m}} the fractional shielding of the original soil by the deposited layer,
with mp = Zle m; the accumulated mass per unit area of deposited layer and m. the required mass of
deposited layer to shield completely the original soil.

Since the raindrop energy is reduced as it penetrates the surface water layer, the soil detachability
coefficients a, aq and the critical mass m# are decreasing functions of the water depth h. In [26], a power
law proposed by Proffitt et al. [36] was used to describe this depending:

; ;0 y { 1 if h < ho )
da | = do b
m; m}o (ho/h) if h > hg

where ag, aqo and m7,, are the related maximum values at the breakpoint depth hg, which is about 0.33
mean drop diameter and b is an exponent in the range of 0.66 + 0.07.

Finally, ¢ represents the porosity of eroded bed and g the gravity acceleration.

In the next section, we explain how to numerically discretize equations (1)—(6), paying attention to
preserve physical properties such as non-negativity of the water height and the sediment concentration.

2 Numerical method

The numerical method presented here is a finite volume approach, as in [25], but the treatment of the
equations differs. More precisely, the convection of sediments by the flow is computed thanks to an upwind
scheme, the homogeneous flux for the SW equations is not the same, and the erosion-sedimentation source
terms are split in two parts, instead of using an explicit discretization.

Finite volume schemes are known to be robust for numerical simulation of conservative systems since
this method ensures the conservation by construction. In the present works, structured grids have been
chosen for spatial discretization of the domain because on the one hand, digital topographic maps are often
provided on such meshes, and on the other hand, the extension of an existing one-dimensional numerical
scheme to the two-dimensional case is straightforward. For the sake of simplicity, we only describe hereafter
the numerical method for one-dimensional system.

Introducing the conservative variables U = (h,hu,cih,...,cih), V. = (my,...,my,2p), the one-
dimensional system of governing equations writes:

{ 0 U + 0, F(U) = Sy + S, (8)

OV =5y,



where the flux and the source terms are given by

hu 0
hu? + gh?/2 —gh0yzp
FO)=| a4 =] 0,
crhu 0
R—-1,. dy —er1 — 71
—ghS; )
S = e +em +ri+rm—dy Sy = d1*€'1*7"1
: _Zle(ei +ep +1i 10— d;)
er+epr+rr+rer —dp (1—¢)ps

Let us explain in what follows the main steps of the algorithm. First of all, remark that the topo-
graphical source term S; contains the derivative in space corresponding to the bottom slope while S; and
S are cell-centered terms related to water source terms, bed friction, erosion and sedimentation. For
this reason, Sy needs to be discretized together with the flux F(U). On the contrary, S; and Sy can be
treated in a separate step by a system of ODE, without adding numerical oscillations. In other words,
we adopt a time-splitting strategy that first solves the following hyperbolic system with source term Sy

(called convective step)
0 U + 0, F(U) = Sy, (9)

and then corrects the computed value by taking into account the source terms S; and Sy via the system

0,U = 51,
t 1 (10)
atV = 52.
Note that the second order in time can be reached repeating these two steps with Heun’s method,
i.e. the second order Runge-Kutta TVD scheme. In what follows, we detail the numerical scheme for
equations (9)—(10), at the second order in space but first order in time.

2.1 Convective step

The convective step corresponds to the resolution of system (9). We notice that the I transport equations
of sediment concentrations have the same formula. For the sake of compactness, we shorten the considered
system replacing the last I equations by a generic one, using c¢ instead of ¢; to denote the concentration of
the considered sediment-size class. Then, the compacted system writes

O¢th + 0x(hu) = 0, (11)
Oy (hu) + 0, (hu® + gh?/2) = —ghOyzp, (12)
O¢(ch) + 9, (chu) = 0. (13)

Starting from a given value U”, the variables obtained after this step are denoted with a bar: h, hu, ch.

2.1.1 Numerical scheme for the shallow water equations

This numerical scheme aims at solving the well-known SW equations (11)—(12). It has been recently
implemented in FullSWOF software. We only recall its main ideas, as it is not the central part of this
article. For more details, we refer the reader to [17].



The well-balanced numerical scheme reads

= h; At
U; =U" — — n — F" — Fc?
J (huj> i Ax ( jr172r — Filipor ch) (14)

= Uj Az (-F (Uj+1/2La Uj+1/2R> + Sj+1/2L -F (Uj—l/zLa Uj—1/2R) - Sj—1/2R - ch) )

where Az, At are the space and time steps respectively, j the current cell index and n the time iteration,
F is the numerical flux for the homogeneous SW equations, S, source terms due to the topography, and
Fc; an additional centered term that preserves comsistency and well-balancing. Note that the source
terms S, and F'c; do not contribute to the first component. In the computations of the values at the
interfaces U, ; 1 g, the numerical scheme (14) includes a linear reconstruction (we consider the MUSCL
reconstruction, see [46]) and the hydrostatic reconstruction (see [3] and recall the limitation for large
bottom slopes and small water depth given in [15]).

For the homogeneous flux F, any consistent numerical flux can be chosen, such as Godunov, Rusanov,
HLL, Roe, or the ones obtained by the kinetic or relaxation methods. Note that Heng et al. [25] used a Roe
type solver; however, a remarkable drawback is that, in certain situations, it can produce negative depths
which are obviously physically incorrect, and usually crashes the execution of the program. In particular
for applications where the flow is very shallow in parts of the domain, or in fact becomes dry in regions,
the Roe solver is almost certain to produce negative depths. In this work, we adopted the HLL flux [24]
which is known to be a simple and efficient solver for both accuracy and implementation aspects. An
appropriate choice for the wave speed estimates can lead the HLL Riemann solver to satisfy automatically
an entropy inequality, to resolve isolated shocks exactly, and to preserve positivity. When both sides
of the cell interface are wet, a natural choice is to compare the maximum and minimum characteristics
velocities evaluated at of both left and right given states. These estimates can also be improved using the
Roe average, see [6]. For the wet/dry transitions, a more suitable estimation for the wave speeds can be
derived using the exact Riemann solution [45]. Consequently, the resulting scheme preserves the positivity
and is well adapted to wet/dry transitions!.

2.1.2 A new approach for the sediment transport

A first important remark is that, in equation (13), the suspended sediments are simply convected by the
flow. At the numerical level, contrarily to Heng et al. [25], we choose an upwind scheme to solve this
equation, that is

A n At ch c
(Ch)j = (Ch)j T Az ( j4’r1/2 - Fjﬁ1/2> : (15)
The related upwind flux chi1 /2 for sediment transport is given by
n h : h _ n n
F = { CiFHZ/Q i E = (f (Uj+1/2L’Uj+1/2R))1 >0, (16)
GrFl s else,

in which F is the homogeneous numerical flux and (e); stands for the first component. In fact, combining
(16) with HLL flux (for SW equations) is equivalent to use a HLLC solver [45].

One must also note that this numerical scheme for the sediment transport does not bring any condition
on the time step: in the complete convection step (14)—(15), the CFL condition is only related to the wave
speeds sp, sg of the SW equations

C =1 at the first order, (17)
C = 0.5 at the second order.

At .
Emax{\sL|,|sR\} < C, with {

IThe detailed method have been implemented in FullSWOF_2D, see https://sourcesup.renater.fr/projects/
fullswof-2d/
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Let us recall that, under the positivity assumption on the water depth, which is guarantees by sec-
tion 2.1.1, the scheme (15) with the upwind flux (16) is consistent with equation (13) and preserves the
positivity of the sediment concentration, i.e. ¢ > 0. Moreover, the discrete form of the maximum principle
is also verified, i.e.

= n n n N
¢j < maX(cj—laCjaCj+1)v v j,n.

A detail proof of these properties can be found in [9].

2.1.3 Numerical treatment of boundary condition

The Riemann invariants of SW equations are used to compute the water depth and the flow velocity on
the ghost cells (see [11] and [17]). For the sediments, we can compute the sediment concentration at the
ghost cells thanks to definition (16) of the upwind flux F*". For example at upstream with transmissible
or reflexive boundary types, we set the value at the left ghost cell 0: ¢ = . For the case of an imposed
sediment flux ¢,, we set the value at the left ghost cell 0: ¢f} = g5/ Flh/Q.

2.2 Source terms discretization

At the end of the convective step, we obtain the state U from the given value U” via the well-balanced
scheme (14) and the upwind scheme (15). The next step is to compute (U, V)" *! from (U, V") by solving
the system of ODE (10). We apply an Euler type scheme performed on each cell to compute the new state
at time ¢"*!. We omit the cell index j to simplify the expressions of the scheme.

The water source and friction terms are treated as usual, see [17]. The rain and the infiltration terms
are treated explicitly as they involve no particular numerical difficulties such as steady-state or stability
preservations. The infiltration rate can be handled using any of the approximate methods available such
as Green-Ampt [20], Philip [35], and Horton [28] or a more exact method based on a solution to Richards
equation [39]. In this work, we will use the Green-Ampt model. See [4, 13, 18, 38] for more in-depth
discussions on the choice of the parameters of the model. Concerning the friction terms, we adopt a
semi-implicit discretization (as in [11, 31, 17]) to preserve the stability when simulations involve wet/dry
evolving fronts, and to keep the well-balanced property obtained in the convective step.

Let us turn to the main difficulty brought by the source terms: the contributions of erosion and
sedimentation given by system (10). This system expressing the HR model for I sediment classes can be
rewritten as the following equations, for: =1,...,1I:

Oi(cih) = € +epi +1i + 1y — dy, (18)
Oym; + O¢(c;ih) = e; + 14, (19)
I
ps(1 = )0z + Y Oh(cih) =0. (20)
im1

System (18)—(20) can be computed directly by using an explicit Euler’s method. Nevertheless, it requires a
special treatment for each situation called before-ponding and after-ponding that correspond to two different
behaviors of erosion processes. These cases are differentiated numerically by a small artificial threshold A,
of the water depth.

In the following, we first recall the method proposed in [25, 26]; in the second part, we introduce a new
treatment of theses equations, enabling us to keep the CFL condition of SW equations.

2.2.1 Classical approach for erosion and sedimentation, modifying the CFL condition

We detail here how equations (18)—(20) have been discretized, depending on the erosion process.



Before-ponding. When h < h,,, the detached sediments are not transported but accumulate into the
deposited layer on the soil surface. Equations (18)—(20) reduce to dym; = e;. This situation is treated
numerically, as mentioned in [26], by setting

(Cih)n—H = O7

(21)
(my)"*t = (mq)" + (cih) + At(e;)"™.

After-ponding. When h > h,,, the detached sediments can be suspended in flow. Physically, the amount
of sediment deposited over a time increment cannot be greater than that in the flow. In other words, a
negative value of ¢;h does not make sense. While the positivity of sediment concentration is well preserved
in convective step, this is no longer evident when using an explicit approximation to solve equations (18)—
(20). That is the reason why, in [25], another restriction on the time step has been introduced, namely

A\" A"

Atg(c’ > -2 fori=1,...,1. (22)
di Vi

The authors found that for small water depths, the time step At is governed by this condition rather than

by the CFL condition (17) of SW equations.

2.2.2 A new approach for erosion and sedimentation, with an unchanged CFL condition

We notice that the previous restriction is caused by the use of the explicit discretization for equation (18).
To overcome this problem, we can solve numerically this equation by two steps consisting successively in
(7) the phase of sedimentation and (i) the phase of erosion

. . o Ufl'
(1) Oi(cih) = —d; = *T(Cih),

(i1)  O¢(cih) = €; + epi + 13 + 1.

Since the water depth remains constant in these steps, the advantage of this splitting is that the first
equation can be solved using an analytic solution while an explicit discretization can be used for the
second one. The resulting scheme for equation (18) writes

(cih) = exp {U:At} (cih),

(Cih)"+1 = (Cih) + At(ei + Ti)n + At(em + 7‘,«,’)".

(23)

Another remark at numerical level is that while (e; + r;)™ can be computed directly from equa-
tions (2), (4), the quantity At 25:1 (eri +7;)™ may not be greater than (mr)™. Indeed At Zle(e,.i+r,.i)"
is the quantity of sediment available for re-detachment and re-entrainment. From equations (3) and (5),
we define (e, + r,.)™ at each time ¢" as the total capacity of re-detachment and re-entrainment from the

deposited layer
F - Wer
(erw)n:H(adM(ww),

Ps—Puw
Ps

Hence the total rate of re-detachment and re-entrainment of the sediment size class i is given by
(mq)"
(mp)"

The scheme (23) together with (24) shows that (c;h)"* > 0 since (c;h) > 0 (obtained from the upwind

scheme (15)). The positivity of ¢; is thus preserved without requiring the supplementary condition (22)
on the time step.

At(ep; + 1) = min {(my)", At(e, +7,.)"}. (24)



Using (23), we can now solve, in a conservative way, equations (19)—(20) to obtain the mass of deposited
layer and the topography at time t"*1

(ma)™ = (ma)" + Atles +13)" = ((eah)™ = (&) ) |
1 1 . +1 T (25)
()" = ()" = ——— > ((h)™ = (eh)) -
ps(l - ¢) ;

Let us sum up the main properties of proposed method. The numerical scheme combining (14)-(15),
(23), (25) is conservative, well-balance, positivity preserving for both of the water depth and the sediment
concentration. In particular, only the CFL condition of SW equations is required to ensure the stability
of the overall numerical scheme.

3 Numerical results

As explained before, the erosion model we consider is a coupling between the SW equations and the HR
model. We thus used a SW code, to which we added an erosion component. For the SW part, we used
the C++ code FullSWOF (Full Shallow Water equations for Overland Flow). This software, developed
in the framework of the multi-disciplinary project METHODE ANR-07-BLLAN-0232, is distributed un-
der CeCILL-V2 (GPL compatible) free software license, and available at http://www.univ-orleans.fr/
mapmo/soft/FullSWOF/, see [17]. The resolution of the SW equations can be performed at second order
in time and space using the MUSCL reconstruction and the hydrostatic reconstruction, as noticed in the
previous section.

In this section, we present numerical validations of the proposed approximation for system (1) coupling
SW equations to the HR model, using equations (14)—(15), (23), (25). Unfortunately, there is no time and
space-depending analytic solution available for this system. So we validate separately the convective part,
modelling overland flow and suspended sediment, and the HR model describing the processes of erosion
and sedimentation. As the convective step has been developed on the basis of FullSWOF, we do not need
to perform again the numerical validations for the hydrodynamic part, i.e. SW equations, discretized with
equation (14) (see [16, 17] for various benchmarks tested on FullSWOF'). After this series of tests for the
validation of the numerical method, we give a two-dimensional example on a real topography for which we
compare the time step of our new approach to the time step that must be used if we follow Heng et al. [25]
approach. We also show that the computed quantities (water height, concentrations) stay non-negative.

3.1 Tests on the convective step for the sediment transport

In order to test the new part of the convective step (equation (15)), it is necessary to cancel the erosion
and sedimentation processes to impose S1 = S = 0; for this, it is sufficient to set Sy = a = aq = vy = 0.

We want to test two important properties of this numerical scheme computing the evolution of sediment
concentration in shallow flow: the consistency and the preservation of equilibria. Thus we run two tests
proposed in [2] where a finite volume with kinetic interpretation is used to simulate the transport of a
passive pollutant by the flow.

3.1.1 Dam break on a flat bottom with sediments

This classical test simulate the case of a dam break on a flat bottom with no friction, in which the
concentration of sediment is different on each side of the dam. In other words, the configuration of this
test is exactly the Riemann problem of the homogeneous system of (11, 12, 13). We consider a spatial
domain of length 2000 m, discretized by an uniform mesh with 100 cells, and we set the final time of
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simulation to T'= 240 s. The dam is located at the center of the domain, that is at g = 1000 m. For the
initial conditions, we set

hy=1. h, =0.5
q = 0. on the left boundary, and qr = 0. on the right boundary.
c =0.7 ¢ =0.5

The interest of this test is that we have an expression of the exact solution (see [43]). From left to right,
the solution is separated by two constant intermediate states. The first intermediate state connects to the
left given state by a rarefaction wave propagating with a speed u — v/gh. The second intermediate state
connects to the right given state by a shock wave propagating with a speed u + v/gh. These intermediate
states are separated by a discontinuity wave propagating with the flow speed. Recall that in the exact
solution the values of h and u do not change across the contact waves in the intermediate region, while
the concentration ¢ transported with the flow does not change across the non-linear waves but changes,
discontinuously, across the contact wave. To check the convergence property of the proposed method, we
performed this test with the first and second order schemes.
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Figure 2: Dam break: numerical results at T" = 240s.

In Fig. 2, we plotted the initial condition (dotted line), the analytic solution (continuous line), the first
order approximation (triangles) and the second order approximation (circles) for the water depth and the
sediment concentration. The numerical results show that the analytic solution is approximated well and
that the second order is, as expected, a better approximation than the first order.

3.1.2 Preservation of the steady state of the lake at rest

Next we want to verify numerically the steady state of the lake at rest. In this case, the equilibrium of the
concentration must be also preserved. So we use a non-flat bottom

0 if0<z<8,
2(z) =1¢ 0.2-0.05(x —10)? if8 <z <12,
0 12 <x <20

discretized by a uniform mesh with 100 cells. The initial condition is

0 ifo<z<8

h(0,2) + z(z) =1, LU )
(0,2) + 2(2) and ¢(0,z)=¢ 1 if8 <z <10,
9(0,2) =0, 0 if 10 <z < 20.

10



T
naly 't,ica}
1 1 o umerical|
0.8 - — B 0.8 i
I nalytjca}
o umerica
0.6 - b 0.6 - bl
04 B 0.4 E
02 /\ E 02F g
0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
2(m) z(m)
(a) Free surface elevation (b) Sediment concentration

Figure 3: Lake at rest.

Note that the initial condition satisfies the equilibrium, which means that we test wether the code is able
to preserve the steady state.

In the exact solution, the initial state is preserved and it is analytically proved that the upwind
scheme (15) maintains this property (see [9]). We present in Fig. 3 the numerical results after 100 s,
for the free surface elevation and the sediment concentration. In both results, the stationary solution is
preserved exactly.

3.2 Tests with some specific solutions of HR model

After numerical tests presented on the convective step, let us check the functionality of the erosion and
sedimentation step, approximated by schemes (23)—(25). In the literature, some analytic, semi-analytic or
numerical solutions are available for the HR model with specific assumptions (see [41, 42, 23, 27, 40, 5]).
Here, we compare our numerical results with two reference solutions proposed by Sander et al. [42] and
Hogarth et al. [27] as these solutions have shown a good agreement with experiments.

3.2.1 A steady state analytic solution: net deposition in overland flow

In this section, we are interested in a special configuration called net deposition region. It is the zone where
the sediment flux decreases downslope and the deposited layer develops very rapidly to completely shield
the original soil (so the shielding factor is H ~ 1). We also assume that the water flow is deep enough
(greater than 3 drop diameters), allowing us to neglect the re-detachment process by rainfall. Indeed the
impact of raindrops in that case is largely absorbed by the water layer. Hence the re-entrainment and
deposition are the only active erosion mechanisms. The equations of mass conservation of sediment reduce
to

O1(cih) + O0x(ciq) = i — di, (26)
Om; = dy — Ty (27)

Hairsine et al. [23] presented a steady state single-class analytic solution when there is no rainfall and a
constant flow rate imposed at the top of slope, i.e. g = go = cst. Sander et al. [42] extended the solution
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to the case of multi-size classes. Their solution writes

v

vpi
ci(z) = cio <Cl(m)) fI, fori=1,2,...,1—1,
cro

(28)
m;(t, ) = vgici(x) (1—”) t, fori=1,2,...,1,
> i vrici(@)
where c¢;q is the concentration of the sediment size class i at upstream and
Fpspu,SoK3/? VE]
v =gy (1 - q) oy= PR it K= Y2 g =
q0 Ps = Pw n Pw9So

Finally, the concentration c;(z) of the last sediment size class can be computed analytically by solving the
following equation

der(z) ~ 1 verer
de , U’Z - do
2 i=1 Vficio (a)
which leads to .
cr(w) ’)/* dcy Vfr
/ v 1 — =T (29)
cro cr Qo

Yoimy vsicio (;‘Tﬂ)) e
We perform this benchmark with the parameters used in [25]:

e Sy =0.02, n=0.01, go = 0.00125 m?/s, p, = 2600 kg/m3;

e the settling velocity (in mm/s) of 10 sediment classes of a soil in the loam belt of central Belgium are
taken from experiments data of Beuselinck et al. [8]: 0.00043, 0.0037, 0.02, 0.083, 0.23, 0.46, 0.74,
1.1, 1.7, and 3.2 respectively;

e we set c;p = 10 kg/m? at the boundary and use F' = 0.01, w,,. = 0.186 W/m?;

e the initial condition is given by ¢;(0,z) = 10, fori=1,...,1.

Fig. 4 presents the numerical results with At = 0.05s and 100 cells, at time T' = 10 min, in order to
reach the steady state. More precisely, the sediment concentrations for the classes numbered 1, 4, 7, 9 and

10 are plotted as functions of the space variable. One can note that the numerical and analytic results are
similar.

3.2.2 A transitory solution: rainfall-driven erosion

This benchmark is a case where the solution is time-dependent. However, there is no such analytic
solutions available in literature for the coupled system of SW equations and the HR equations. The
solution proposed by Hogarth et al. [27] is derived from the system coupling the kinematic wave model
[47] and the HR equations.
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Figure 4: Net deposition in overland flow.

A solution for the kinematic wave approximation. This numerical solution of rainfall-driven erosion
was proposed to predict the dynamics of sediment eroded by rainfall impacts when there is no inflow of
water at the top of the eroded slope, and no infiltration of water in the soil. This solution allows to
investigate changes with time, downslope distance and settling velocity of the concentration of eroding
sediment. Contrary to the previous test, the flow-driven processes are not present in the configuration of
this benchmark and the rainfall impact is the only erosion agent. The mass conservation equations of HR
model reduce to

O¢(cih) + 02(ciq) = €; + eri — d;, (30)
Oym; = d;i — ey (31)

Considering a stationary solution of kinematic model with no inflow, and assuming that in the original
soil, each class contains an equal mass of sediment, i.e. p; = 1/I. A numerical solution was computed
by using a semi-implicit upwinding finite difference method which lead to the following scheme after
rearranging

e = (155 (1 5) )y e
I mantt
+ % <ﬂ(mi)?+1 + % (1 — W)) , (32)

(ma)j ™ =(1 = KB)(m:); + L (e}

where A = At/Az, kK = RAt and § = aq/m%. An initial condition (at ¢ = 0) and a boundary condition
(at the upstream = 0) for each sediment class are required to close the scheme (32)

initial condition:  (¢;)? =0, (mi)g =0,

J ) ==
boundary condition:  (¢;)§ =0, (my)§ =0, foréi=1,...,1.

Numerical results. Finally, we perform this last benchmark with the parameters used in [25]:

e domain setting: L = 5.8 m discretized by 100 cells, At = 0.002 s;
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e for the hydraulic part: Sy = 0.004, n = 0.06, R = 100 mm/h;

e about the sediment types, we consider 10 classes with settling velocities (in mm/s) 0.21, 0.71, 3.3,
10.9, 19.4, 31.2, 69.1, 139, 210, and 300 respectively;

e for erosion parameters, we set a = 920 kg/m?, a4 = 14190 kg/m?, m%. = 0.0767 kg/m>.

— Hogarth et al (2004) ©  Present work
25 T T \

Total concentration (kg/m3)

Figure 5: Rainfall-driven erosion.

On Fig. 5 we plotted, for two different times, the variations in space of the total sediment concentration
obtained by our new method, coupling the SW and HR equations, and the approximation of the analytic
solution of the kinematic wave coupled with HR model, given by equation (32). We find again a good
agreement between the two solutions, the difference on the left part of the domain lying in the difference
between the SW and the kinematic wave models. We also obtain good results compared to experiment
observations of Proffitt et al. [36]: sediment concentration decreases with time until the steady-state
concentration is reached.

3.3 A two dimensional case test

The previous one dimensional tests using analytic solutions justify the important properties of proposed
method such as convergence and steady state preserving. Before entering into our last experiment, it is
important to keep in mind that the present objective is not to validate the physical model (8) considered
in this paper. In fact, this topic has been investigated in several publications, and moreover Heng et al.
[26] presented an in-depth discussion of the model parameters. This case test aims to check the good
performance of the proposed solver and to emphasize the overall quality of this new approach.

We perform a two dimensional simulation with a realistic irregular topography taking into account
the erosion and deposition effects. The chosen configuration includes wet/dry fonts, water infiltration and
rainfall-driven erosion process with multiple sediment size class. Moreover, we will pay attention on the
gain in computational time only governing by (17) thank to the larger time stepping allowed of proposed
scheme.

This simulation used data collected on the plot of Thies (Senegal) realized by IRD [44] in the project
PNRH RIDES. The dataset is freely available at http://www.umr-1lisah.fr/Thies_2004/. The plot was
10 m long by 4 m wide, with a 1% slope, and sandy soil (1% clay, 7% silt, 43% fine sand, 49% coarse
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sand). The surface was raked in order to form a slight V shape, with 1% slope longitudinally and 1% slope
towards the median axis of the plot. The purpose of the V shape was to avoid rill development at the edge
of the plot. A 2-hour long rainfall was applied at a constant intensity of 70 mm/h in order to maintain
steady runoff and infiltration rate. See [34] for more detail on experiment design. The granulometry of
the sandy soil is given in Table 1 and the related settling velocities of 10 sediment classes are calculated
using Cheng’s formula [14].

Grain size (pm) 10 20 50 100 150 200 250 500 750 1000
Portion (%) 1 2 4 13 15 14 13 32 5 1
Settling velocity (mm/s) 0.04 0.16 1 38 78 126 17.8 43.1 646 82.1

Table 1: Granulometry of the sandy soil.

On initial condition and model parameters, the plot surface was dry at the beginning of simulation
while the sandy soil was considered as completely cohesion. This consists to set h® = ¢ =m? =0, Vi =
1,---,10. The friction was calculated by Darcy-Weisbach’s formula while the infiltration rate was given by
Green-Ampt model. Detail on the used parameters can be found in [17]. For each grain size dg, we set an
associated ponding depth h, = 1.5ds. By regarding the range of grain size in table 1, this setting allows to
simulate simultaneously the before- and after-ponding situation between the different sediment classes in
particular during transition period. We used p,, = 1000, ps, = 2000, and according to the discussion in [26],
others parameters of the HR model, i.e. those in equations (2-7), are chosen as: F = 0.1, w.- = 0.1525,
J =100, hg = 0.66 x 1073, b = 1, ag = 150, ago = 1500 and m’}, = 1.

The simulation result at the end of rainfall even (¢ = 120 mm) is given by Fig. 6. First, we see that
except at the main flow localising in the rill, the flow at all most of other regions in the plot are very
shallow (h ~ 1lmm) or rather dry (fig. 6a). Moreover, the water flux (fig 6b) is nearly negligible except at
the outlet, so the stream power is unlikely to exceed its critical value (we = 0.1525 was calculated from
Abrahams et al. [1]’s formula). This means that the flow has no contribution into sediment entrainment but
just caries the detached particles. Consequently, the phenomenon which happened in the plot is typically
rainfall-driven erosion. This conclusion can be justified again by regarding fig. 6¢ which visualizes the
mass of deposited layer. In major region of the plot, rainfall detachment accumulates soil particles into
non-cohesive (deposited) layer and the related critical value was rapidly reached. Recall that the soil was
initially cohesive. In the main flow where the thickness of water layer is sufficient important, i.e. h > hg
in equation (7), the rainfall erosivity is limited since the raindrop energy is reduced as it penetrates the
surface water layer.

Fig. 6d,e,f expresses the size-selectivity characteristic of suspended flow. Recall that the grain size
distribution was initially uniform in space and given by table 1. As the flow is very shallow, we pay a
particular attention on the fine grains (ds < 100pm), for example silt and fine-sand. Fig. 6d-e show that
the first class in grain size (ds < 10um) contributes a major portion in suspended while it was initially
only 1% in original soil. On the contrary, the 4th sediment class (ds < 10um) is nearly absent in the main
flow and oppositely with their significant portion (13%) in original soil (fig. 6f).

Finally, it is important to check the main interest of proposed scheme by regarding the gain in com-
putational efficiency. Recall that our method only requires the CFL condition of SW equations while the
additional condition of HR equations must be verified in the works of Heng et al. [25]. For this propose,
we compare the maximum allowed timestep given by (17) et (22). Moreover, it is useful to recall that
condition (22) can be relaxed slightly, as proposed in [26], by only applying it on the wet region of the
plot where the detached particles can be transported in suspension (h > h,,). This allows to avoid the fact
that At — 0 during pre-ponding period. Fig. 7 presents the maximum allowed timesteps given by (17)
et (22) which allows to justify the quality of proposed approach. Firstly, during transition period (first
10 minutes of rainfall event), the timestep of HR equation is very restrictive contrary to what happens
for SW equations. Next, when the flow reaches steady state, the timestep of SW equations is in order of
10725 and two orders of magnitude more than that of HR equation (10~*s). Consequently for overall of
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Figure 6: Simulation result at t = 120 minutes
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simulation, the condition (22) is at least 100 time more restrictive than (17). It is important to recall a
well-known numerical effect which states that more the timestep is reduced, more numerical diffusion is
added.

01 N T T T T R
: : —— SW equations

—--m-e- HR equations

0.01 | 3

| transition§
0.001 | period i

0.0001 |~ i

maximum allowed timestep (s)

roos L1 ; ; ; ;
0 10 20 30 40 50 60

time (min)

Figure 7: Gain in performance by using large timestep

Conclusions

The system coupling SW equations with HR model allows to simulate complex scenarios of soil erosion by
rainfall and overland flow on a non-uniform topography. This model predicts not only the topographical
evolution and the eroded sediment flux but also the particle-selectivity during erosion processes. We have
constructed an alternative numerical solver, based on the hydrostatic reconstruction, with some advanced
properties compared to the well-balanced scheme proposed recently by Heng et al. [25]. It has been shown
that the present method preserves important physical and mathematical properties of the system as it
is well-balanced and positivity preserving. An additional advantage of the presented scheme is that it
requires only the CFL condition associated to SW equations to ensure the stability of numerical solution
and consequently offers a more efficient solution.

In term of modularity and robustness, the proposed approximation of the erosion part is less depending

on the numerical approximation of the hydrodynamic part. Indeed, only the numerical flux of water th_H /2

is required to compute the flux of sediments F' ?ﬁl 5 via equation (16). In other words, the numerical method
presented in this paper can be adapted to any well-balanced and positivity preserving approximation for
SW equations. Over the last few years, other advanced solvers for SW equations have been proposed,
e.g. those presented in [10, 7]; a natural extension of this work will be to investigate the coupling with
these recently proposed solvers. Finally in each timestep, the computation corresponding to each sediment
class, i.e. equation (23), is independently each others and thus can be performed by the way parallel (for
exemple with OpenMPI). This property becomes interesting when we deal with an important number of
sediment class.
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