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THE EXPLICIT FORMULAE FOR SCALING LIMITS IN THE
ERGODIC DECOMPOSITION OF INFINITE PICKRELL
MEASURES

ALEXANDER I. BUFETOV , YANQI QIU

ABSTRACT. The main result of this paper, Theorem 1.1, gives explicit
formulae for the kernels of the ergodic decomposition measures for infi-
nite Pickrell measures on spaces of infinite complex matrices. The ker-
nels are obtained as the scaling limits of Christoffel-Uvarov deforma-
tions of Jacobi orthogonal polynomial ensembles.

1. INTRODUCTION.

1.1. Outline of the main results.

1.1.1. Pickrell measures. We start by recalling the definition of Pickrell
measures [11]. Our presentation follows [6].

Given a parameter s € R and a natural number n, consider a measure ,ugf)
on the space Mat(n, C) of n x n-complex matrices, given by the formula

M M;S) = consty, det(l + Z*Z)72nisd2_

Here dz is the Lebesgue measure on the space of matrices, and const,, 5 a
normalization constant whose choice will be explained later. Note that the
measure ,ugf) is finite if s > —1 and infinite if s < —1.

If the constants const,, s are chosen appropriately, then the sequence of
measures (1) has the Kolmogorov property of consistency under natural
projections: the push-forward of the measure ,uff}rl under the natural pro-
jection of cutting the n x n-corner of a (n + 1) x (n + 1)-matrix is pre-
cisely the measure qu’. This consistency property also holds for infinite
measures provided n is sufficiently large. The consistency property and the
Kolmogorov Existence Theorem allows one to define the Pickrell measure
1(*) on the space of infinite complex matrices Mat(N, C), which is finite if
s > —1 and infinite if s < —1.

Let U(oc0) be the infinite unitary group

U(oo) = [J U,
InEN
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and let G = U(o0) x U(c0). Groups like U(o0) or GG are considered as nice
“big groups”, they are non-locally compact groups, but are the inductive
limits of compact ones.

The space Mat(N, C) can be naturally considered as a G-space given by
the action

Ty n(2) = wy 2, for (uy, up) € G,z € Mat(N, C).

By definition, the Pickrell measures are G-invariant. The ergodic decom-
position of Pickrell measures with respect to GG-action was studied in [2]
in finite case and [6] in infinite case. The ergodic G-invariant probabil-
ity measures on Mat(N, C) admit an explicit classification due to Pickrell
[11] and to which Olshanski and Vershik [10] gave a different approach: let
Mere(Mat(N, C)) be the set of ergodic probability measures and define the
Pickrell set by

QP:{W:<%x)3x=($1Z@Z"'Z%Z"'ZO),Z%SV},
i—1

then there is a natural identification:
Qp < S)ﬁerg(Mat(N, C))

w e Nw

Set

QY = {w: (v,z) € Qp :2; >0 forall i, and 7229@}.

=1

The finite Pickrell measures (%) admit the following unique ergodic de-
composition

@) W = [ i)

Borodin and Olshanski [2] proved that the decomposition measures 71(*) live
on Q%, ie., i®(Qp \ Q%) = 0. Let B®) denote the push-forward of the
following map:

conf: Q% — Conf((0, o))
w o {r, X, Ty b

The above 7i(*)-almost sure bijection identifies the decomposition measure
7®) on Qp with the measure B on Conf((0, 00)), for this reason, the mea-
sure B(®) will also be called the decomposition measure of the Pickrell mea-
sure 1(*), Tt is showed that B(* is a determinantal measure on Conf((0, cc))
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with correlation kernel

) 1 ! t t
(3) J (Il,l'g) = JS 24— JS 24/ — | dt.
T1T2 Jo x X2

The change of variable y = 4/x reduces the kernel J(*) to the well-known
kernel .J(*) of the Bessel point process of Tracy and Widom in [16]:

T ar, ) = 1 /0 Jo(VEED) T (VT dt.

When s < —1, the ergodic decomposition of the infinite Pickrell measure
1*) was described in [6], the decomposition formula takes the same form as
(2), while this time, the decomposition measure 7(*) is an infinite measure
on Q2p and again, we have 77*) (2 \ Q%) = 0. The 77'*)-almost sure bijection
w — conf(w) identifies 7i*) with an infinite determinantal measure B(*) on
Conf((0,00)). One suitable way to describe B® is via the multiplicative
functionals, for which we recall the definition: a multiplicative functional
on Conf((0, 00)) is obtained by taking the product of the values of a fixed
nonnegative function over all particles of a configuration:

U (X) = H g(x) forany X € Conf((0,0)).

zeX

If the function ¢ : (0,00) — (0, 1) is suitably chosen, then
v, B

) .
) WydBG)

fConf((O,oo

is a determinantal measure on Conf((0, c0)) whose correlation kernel co-
incides with that of an orthogonal projection I19 : L?(0,00) — L?(0, 00).
Note that the range Ran(T19) of this projection is explicitly given in [6].

However, even for simple g, the explicit formula for the kernel of I19 turns
out to be non-trivial. Our aim in this paper is to give explicit formulae for
the kernel of the operator I19 for suitable g. The kernels are obtained as the
scaling limits of the Christoffel-Darboux kernels associated to Christoffel-
Uvarov deformation of Jacobi orthogonal polynomial ensembles.

1.1.2. Formulation of the main result. Let fi,--- | f, be complex-valued
functions on an interval admitting n—1 derivatives. We write W (f1, ..., fn)
for the Wronskian of fi, ..., f,, which, we recall, is defined by the formula

A A - B0

! . fln=D)
Wi, fa)t) = fa(t)  f5(t) | /2 (t)

ORI
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For s’ > —1, we write

Tou(t) S To(t/9), Koo, (1) = Ko(tyr;),
where J, stands for the Bessel function, K, for the modified Bessel func-
tion of the second kind. The main result of this paper is given by the fol-
lowing

Theorem 1.1. Let s < —1 and let m be any natural number such that
s+ m > —1. Assume that vy, ...,v,, are distinct positive real numbers.
Then for the function

m m

5) o) =1L =Tl

4/x 4 v; e 4+ vz’

j=1
the kernel 119 is given by the formula

AGEm) (1 4/z)  BEtm) (1, 4/7)
A(s—&-m,v)(l’ 4/1,/) B(S+m’v)(1, 4/1,/)

¥ (z,2') = = - ;
) [T/ /(v + 4/x)(v; + 4/a") - [CErmo(1)]2 - (2 — )

N —

where

A(S—me) (ta y) - W(Ks—i-m,vn R K5+mﬂ}m7 Js+m,y)(t)7

8A(s+m,v)

BETmO(t,y) = —

(t,y),

C(S—’_m’v) (t) = W(Ks-l-m,vu s 7K8+m,vm)(t)‘

Remark 1.2. When s > —1, the above theorem still holds for any m > 1.
In this case, for the same g as given in (5), by results of [6], the kernel 119
obtained above is the kernel for the operator of othogonal projection from
Ly(Ry., Leb) onto the subspace \/gRan.J () (here, with a slight abuse of
notation, we let J) be the operator of orthogonal projection with kernel
given in (3)). Even in this case, however, the only way we can derive the
explicit formula, given above, for the kernel 119 is by using the method of
scaling limits.

1.2. Organization of the paper. The remainder of the paper is organized
as follows. Section 2 is devoted to some preliminary Mehler-Heine type
asymptotics for Jacobi polynomials, these asymptotics will be used in the
explicit calculations of the scaling limits in section 4.

In Section 3, we show that, for three kinds of auxiliary functions g, the
scaling limits of the Christoffel-Darboux kernels for the Christoffel-Uvarov
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deformations of Jacobi orthogonal polynomial ensembles coincide with the
kernels 119 which generate the determinantal probability given in (4).

In section 4, we continue the study of the three kinds of auxiliary func-
tions g. In case I, we illustrate how we calculate the scaling limits, the
obtained scaling limits are the kernels for the determinantal process which
are deformations of the Bessel point process of Tracy and Widom. The
main formulae in Theorem 1.1 will follow from the formulae obtained in
case I, given in Theorem 4.18 after change of variables z — 4/x.

Acknowledgements. Grigori Olshanski posed the problem to us, and we
are greatly indebted to him. We are deeply grateful to Alexei M. Borodin,
who suggested to use the Christoffel-Uvarov deformations of Jacobi orthog-
onal polynomial ensembles. We are deeply grateful to Alexei Klimenko for
useful discussions.
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0001-02), financed by Programme “Investissements d’ Avenir” of the Gov-
ernment of the French Republic managed by the French National Research
Agency (ANR). A. B. is also supported in part by the Grant MD-2859.2014.1
of the President of the Russian Federation, by the Programme “Dynamical
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Academy of Sciences, by the ANR under the project "VALET” of the Pro-
gramme JCJC SIMI 1, and by the RFBR grants 11-01-00654, 12-01-31284,
12-01-33020, 13-01-12449 . Y. Q. is supported in part by the ANR grant
2011-BS01-00801.

2. PRELIMINARY ASYMPTOTIC FORMULAE.

2.1. Notation. If A, B are two quantities depending on the same variables,
we write A =< B if there exist two absolute values ci,co > 0 such that
c < ‘%‘ < ¢9. When A and B positive quantities, we write A < B, if
there exists an absolute value ¢ > 0 such that A < ¢B.

For o, 3 > —1, we denote the Jacobi weight on (—1, 1) by

Wap(t) = (1 —1)*(1+1)".

The associated Jacobi polynomials are denoted by " The leading co-
efficient of P\ is denoted by k' and b\ .= [P (t)]2we,s(t)dt.
When a = 5,3 = 0, we will always omit 3 in the notation: so w, o will
be denoted by w,, P\*” will be denoted by P\*) and the quantity AS:SL;@
defined in the sequel will be denoted by Agjﬁ), etc.

Given a sequence ( féa’ﬁ ));’fzo of functions depending on «, (3, we define
the differences of the sequence by

AlHO @D and for ¢ > 0, AF D = Al _ e,
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By convention, we set A}a B =,
In what follows, «,, always stands for a sequence of natural numbers such
that

. K
lim — =k > 0.

n—oo N,

Typical such sequences are given by k,, = |kn].

2.2. Asymptotics for Higher Differences of Jacobi Polynomials. In this
section, we establish some asymptotic formulae for higher differences of

Jacobi polynomials Agf 0,
Lemma 2.1. For ¢ > Q0 and n > 1, we have

) (n+ DAL () 4 AT (2) 4 0(1 — 2) AL ()
©) - | |
Hot TR )1 )AE0 () = Al )

Proof. When ¢ = 0, identity (6) is reduced to known formula (cf. [15,
4.54)):

e L et

=(n+ NP (@) = B (@) + aP (@),

Now assume that identity (6) holds for an integer ¢ and for all n > 1. In
particular, substituting n + 1 for n, we have

© (n +2)ASP D (@) 4 0ASS D () + 61 — 2) AT ()
a+ 3

(=5 +2)(1 - AR (@) = a1 (@),

Then (8) — (6) yields that
(n+ 1)A(a,5;6+2)(x) + (0 + 1)A(a,ﬁ;€+1)(x) F 0+ 1)(1 - x)A(aJrl,ﬁ;E)(x)

(7

Pn+1 Pn+1
+ (0% N [0
it )0 Al (@) = anfs ) ),
Thus (6) holds for £ + 1 and all n > 1. By induction, identity (6) holds for
all/ > 0andall n > 1. O

The classical Mehler-Heine theorem ([15, p.192]) says that for z € C \

{0},

. _a z e -2
) Tim =" P ><1 - 2—712) — 2975 1.(V/2).
This formula holds uniformly for z in a simply connected compact subset
of C\ {0}.

Applying the above asymptotics, we have
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Proposition 2.2. In the regime ™) = 1 — for ¢ > 0, we have

227

(10) lim n*" O‘Ag‘i;e)(x(")) = 2222 JO (kV/2).

n—oo

The formula holds uniformly in k and z as long as k ranges in a compact
subset of (0,00) and z ranges in a compact simply connected subset of

C\ {0}.

Proof. When ¢ = 0, identity (10) is readily reduced to the Mehler-Heine
asymptotic formula (9) and the uniform convergence. Now assume identity
(10) holds for 0, 1, - - - , ¢, then by (6), we have

(11)
nh_{go né-&-l—ozAgDO’lIﬁ; 5+1)(x(”))
/ o o () { z a+1 éli(‘wrl)
=——-2%72 JP(rV2) — —- 52%F1z a+1(”f\/_)
K K 2
Z oo ﬂ a5
= 2t SO, (evE) + D27 IO (V)

©)
_ga il a[_ﬁ- ﬁ(\’j‘\/_) ¢- a+;\(/2\/_) tgf—)u(“\/z)jLa%\/j\z/—Z)]'

From the known recurrence relation (cf. [1, 9.1.27])
(12) J(2) = =Jari(2) + SJa(2),
by induction on /, one readily sees that, for all ¢ > 1,
(13) 2| JVE) + ()| = (a = 0J0() = (15 (2):

Identity (10) for ¢ + 1 follows from (11) and (13), thus the proposition is
proved by induction on /. U

We will also need the asymptotics for the derivative of the differences
of Jacobi polynomials. The derivative of the Jacobi polynomials can be
expressed in Jacobi polynomials with different parameters, more precisely,
we have

a8y B = S{PEIN 0 = Lot ok 5+ DR,

Using this relation, we have

Proposition 2.3. In the regime ™) =1 — 503, for £ > 0, we have

lim n_2+£_°‘A§f"£J)(a:(")) — g, jc(ﬁl(/{\/z),

n—oo
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where ja+1(t) := tJoy1(t). The formula holds uniformly in k and z as long
as k ranges in a compact subset of (0, 00) and z ranges in a compact simply
connected subset of C \ {0}.

Proof. The relation (14) can be written as

QAgg;lﬁ;o) =(n+a+pB+ 1>A5§7¢;71,1[3+1;0)'
From this formula, it is readily to deduce by induction that for all ¢ > 0,
(15 2885 = (n 4o+ G+ 1AL g AfpTL D,
In view of Proposition 2.2 and identity (15), we have
—HK—aA%cf;f)(x(n))

lim n

n—oo

=202 V2, (nv/2) + I ()

2+f o Ng)

=2%z a+1(’f\/_>

The last equality follows from Leibniz formula

0 _
(o) =20 0) + LI ).

n

2.3. Asymptotics for ngher Differences of Jacobi’s Functions of the

Second Kind. Let Q ") be the Jacobi’s functions of second kind defined
as follows. For z € C\ [-1,1],

1 ! PO(t)

-(x—l)a(x+1)ﬂ/_ (1= (14 1)°

2 1 xr —

ng“’ﬁ)(x) = dt.

Proposition 2.4. Let s > —1 and r, = 55 withw > 0. Then
lim n QW (1 +7,) = 2w 2 K (ky/w),

n—oo

where K is the modified Bessel function of second kind with order s. For
any € > 0, the convergence is uniform as long as k € [e, 1] and w ranges in
a bounded simply connected subset of C \ {0}.

Proof. We show the proposition when x,, = n, the general case is similar.
Define t,, by the formula

1 1
1 n:—Qn —) ] <1,
+7r ) + P |tn]
By definition, we have

lim n(1 —t,) = Vvw.

n—oo
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We now use the integral representation for the Jacobi function of the second
kind (cf. [15, 4.82.4]). Write

1/ 4t, \s [ —s
QSLS)(1+T”):§<1 t>/ ((1~|—tn)67—|—1—tn> X

—n—1

X (1 + 1+ (2r, + Ti)% cosh 7'> dr.

Taking n — oo and using the integral representation for the modified Bessel
function(cf. [1, 9.6.24]), we see that

lim n QW (1+r,) = 251w§/ e STVweoshT g

:25111)3/ e~ VUeshT osh(s7)dT

o0

— w3 / e VYOS cosh(sT)dr = 25w K, (vVw).
0

O
Proposition 2.5. In the same condition as in Proposition 2.4, we have for
all ¢ > 0,
(16) lim 0’ AG) (1+7,) = 207 KO (ky/w),

n—oo

where K S(E) is the (-th derivative of the modified Bessel function of second
kind K. Moreover, For any € > 0, the convergence is uniform as long as
Kk € e, 1] and w ranges in a bounded simply connected subset of C \ {0}.

Proof. 1t suffices to prove the proposition in the case x,, = n. The general
case can easily be deduced from this special case by using the uniform
convergence.

From the identity (7) we obtain

(n+DAG (@) + (n+ 5 + D = DAGE (@) = sA5) (@),

By induction, it is readily to write
A7) (n+ DA @)+ AGY () + 6z — DAGHT ()

S s+1; S5
o+ 5+ D = DAGL (@) = 525 (@),

for all £ > 0 where by convention, we set AS; V.—p.
Using the formula ([1, 9.6.26])

(18) KU(t) = =Ko (t) + 7K (1),
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we can show that for ¢ > 1,
(19 1[KEN @) + KL0)] = (5 - HEO0) — k),

Proposition 2.4 says that the equation (16) holds for £ = 0. Now assume
(16) holds for 0,1, --- | . By (17), we have

lim nEH*SASEfH)(l + TJ(»H))

_ (.9 ’%‘“K(z) /. 325+1 572 1)
= —tr2w; (\/ w;) — w; s+1 (ij)
W s £—s—1 ¢ s L—s
L2 ey Kﬁjl(\/w—j)ﬂ-z w;? KO(/w;)

= 2w, (s — OKO(w5) — (K () — va K (i)
= 2w, * K" (w;).

This completes the proof. U

2.4. Asymptotics for Higher Differences of R,
Definition 2.6. Define for v € C\ [—1,1],

Oéﬂ)(t

_pe g
i P ——— (1 —=t)*(1 + t) dt.

RO (2) = (x — 1) *(z + 1)—6/

Definition 2.7. For any s € R, define

[EKS_l(I) + CL’KS_H (ZE)
5 .

Ly(z) = sK(z) —

Proposition 2.8. Let s > —1, and v\ = 303 with w > 0. Then we have

hm n —2— SR ( +'7(n)) _ 225;3 ) U,_S;2LS(/€\/E).
Moreover, for any € > 0, the convergence is uniform as long as k € [e, 1]
and u ranges in a compact subset of (0, 00).

Proof. The uniform convergence can be derived by a careful look at the fol-
lowing proof. By this uniform convergence, it suffices to show the proposi-
tion for k,, = n.

Define z by the formula

1(+1) 2] < 1
r= =%z — z .
2 z)’
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By the integral representation for the Jacobi function of the second kind
([15, 4.82.4]), we have

QY (x) = %(14_2Z>s/_00 ((1 +2)e" +1— z>_s><

o0

X (a: + (22 — 1) cosh 7') 7n71d7'.

Denote
A(s) s(s) LR (t) s
Q@) = 2e =1y QW() = [ Tty
—1
Then
(20) i@(s) (x) = — /1 PT(LS)(t) (1 —1t)°dt = —(z — 1)5R(5)(a:)
dr °" B 1 (ill' _ t)2 - n .
We have
QY (x) = 2° /OO 14 4/2 T 1eT B (m + (2?2 —1)2 cosh7'>n1d7
n . r—1 .
Hence
d (s n n
5] @ =16 - 1)
where

—s5—1

- 28 r—1 [ r+1

T (g) = 22, / (1 T
(@) (x—=12Va+1 _006 * 1 %

1 —n—1
X <x + (2% — 1)2 cosh 7') dr

and

e° 1 - —n—2
T2(n)(37):(71+1)28/ <1+\/$+167) <$+(x2—1)%cosh7'> X

o xr—

x
X (1 4+ ——=——=cosh)dr.
Va2 —1

We have

lim nsile(n)(l + ’Y(n)) = \/58 . usg2 / €*ST* UCOSthT

— 225 -1’7 K,(vu).
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lim ns’ZTZ(")(l + M) = Vou'T / e~ Te VIOt cogh Ty

= V2u'T (Ko (V) + Koy (V).

Hence
lim n® 2 i@(s) (14 ~™)
n—00 dx °"
- K, K,_
:2\/§u72 (SKS(\/E)— \/a —H(\/a);_\/a 1(@))
=2v2u"T Ly(v/u).
In view of (20), we prove the desired result. ]
Remark. We have the following relations
S
(21) L;(Z’) = —L5+1(.f17) + ELS(.T),

@) 2|l @)+ L(@)] = (s = OLY () — (LD (@),

Let us for example show (21). The validity of (22) can be verified easily by
induction on /. We have
CaK (@) + K () + 2K (7) + Ko (2)

2

= = sKy(o) + S K@) - =Kl ¥ (Z RDLE )

_xKS-&-Z(I) + (3 + 1)Ks+1(x>
2

_—<@+UKgﬂ@—

Li(z) =sK(x)

K, (@) + sz+2<as>>

:—Lﬁ¢m+§@@y

Proposition 2.9. Let s > —1, and ™) = 5z with u > 0. Then for { > 0,
we have
2543 L—s—2

lim ng_s_zAijfi(l +4™)y =2 cu 2 LY (k).

n—oo

Moreover, for any € > 0, the convergence is uniform as long as k € [e, 1]
and u ranges in a compact subset of (0, 00).
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Proof. Again, we show the proposition only for x,, = n. The formula holds
for £ = 0. Assume that the formula holds for all 0,1, - - - , £, we shall show
that it holds for £ + 1. By similar arguments as that for Agjf), we can easily
obtain that

(n+ 1)A§§;7f+1)(a;) + EAg;fj?fll(g;) + 0z — 1)ASZ%_1)($)

(S ) - DARE (@) = AR (@),

Hence
T A 144
=(s — 02" W LO (V) - 052 L (V)

Uu 2545 £—s—3

—5 2w L (Va)

o= e (S oy L pen sy — 10
2 (LW - =L v - L () )

(L+1)—s—2 ¢
s L (V).

\)

2s+3
2

3. BESSEL POINT PROCESSES AS RADIAL PARTS OF PICKRELL
MEASURES ON INFINITE MATRICES

3.0.1. Radial parts of Pickrell measures and the infinite Bessel point pro-
cesses. Following Pickrell, we introduce a map

tad,, : Mat(n,C) — R’}
by the formula
tad,(2) = (M(2%2),..., \(272)).
Here (A\;(2%2), ..., A\u(2"2)) is the collection of the eigenvalues of the ma-
trix z*z arranged in non-decreasing order.

The radial part of the Pickrell measure /. is defined as (tad,,)./u:”. Note
that, since finite-dimensional unitary groups are compact, even for s < —1,
if n 4+ s > 0, then the radial part of ,ugf) is well-defined.

Denote d the Lebesgue measure on R?;, then the radial part of the mea-

sure 1) takes the form

1

const,, ; - H(/\z - )\j>2 : md)"
i<j ’

After the change of variables

U; =

kg
+
—_
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the radial part (taon)*,uﬁf) = (tad, o m,).u' is a measure defined on
(—1,1)" by the formula

(23) consty, g - H ;— Uj) 2 ﬁ 1 — u;)*du;.
=1

1<i<j<n

For s > —1, the constant is chosen such that the measure (23) is a prob-
ability measure, it is the Jacobi orthogonal polynomial ensemble, a deter-
minantal point process induced by the n-th Christoffel-Darboux projection
operator for Jacobi polynomials. The classical Heine-Mehler asympotitics
of Jacobi polynomials imply that these determinantal point processes, when
rescaled with the scaling

Yi

24) w=1-o5,

1=1,...,n,

have as scaling limit the Bessel point process of Tracy and Widom [16], use
the same notation as in [6], we denote this point process on (0, co) by B,

For s < —1, the scaling limit under the scaling regime (24) is an infinite
determinantal measure B) on Conf((0, 00)).

In both cases, B® is closely related to the decomposition measure B(*)
for the Pickrell measure ;.(*): the change of variable y = 4/ reduces the

decomposition measure B() to B(*).

3.0.2. Christoffel-Uvarov deformations of Jacobi orthogonal polynomial
ensembles and the scaling limits. Now consider a sequence of functions
g™ : (=1,1) — (0, 1] such that the measures (1 — u)*g™ (u)du on (—1,1)
have moments of all orders. On the cube (—1,1)", the probability measure

n

const,, s - H (u;i — uj)? H(l — ) g™ (u;)du;

1<i<j<n i=1

gives a determinantal point process induced by the corresponding n-th Christoffel-
Darboux projection. After change of variable

n’r —1
25 = -
(25) Y= 1
this point process becomes
Uy B

(26) P = ot
g fConf((O,-i—OO)) \Ijg(n)dB( n)



THE EXPLICIT FORMULAE FOR THE SCALING LIMITS 15

where B(*™ is the point process (tad, o7, ),/(*) after the change of variable
given in (25) and ¢ is the function on (0, co) given by
nr —1

27) g @) = 9" (1)

We shall need the following elementary lemma, whose routine proof is
included for completeness.

Lemma 3.1. Let (2, m) be a measure space equipped with a o-finite mea-
sure m. Given two sequence of positive integrable functions (F,)°, and
(fn)S2, satisfying

(a) foranyn € N, f, < F,.

(b) lim,, . fn = f,a.e. and lim,_. F,, = F,a.e..

(¢) lim,— andm = dem < 0.
Then

lim fndm—/fdm.

n—oo

Proof. By Fatou’s lemma, we have

fdm < liminf/fndm.

n—oo

Again by Fatou’s lemma applied on the positive sequence F,, — f,,, we have

/(F — fdm < liminf/(Fn — £)dm = /de - limsup/fndm.

Hence
lim sup / fndm < /fdm.
Combining these inequalities, we get the desired result. U

The following three kinds of auxiliary functions are considered:

m (1_ wi2 _u)2

( ) g] (U) ZH1 (1_u)2 )w ?éwj’
(29) " () :ﬁl_—“ v % U
II 1:11+21;Z2_u7 7 7
n (1- u)2
(30) g () = —————.
II7 (1 + L — u)g
Let 34 (z) denote the function given by " (z) = ﬁ”(gig;}) Simi-

~(n n)n2z— ~\n n) (nlz—
larly, let G\ () = g§[)(n2z+}) and §i7)(z) = 9§1}<n2m+})-
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If 3™ is one of the functions §§n), 557;) ﬁ?}} , then there exists a positive

function g : (0, 00) — [0, 1] and a constant M > 0 satisfying

(a) lim, o g™ (z) = g(2).
(b) for any (finite or infinite) sequence of positive real numbers (),

we have
Hg (1) < M - Hg 7).
=1

(c) for any sequence {(2\™)1<;<n 22, satisfying 2™ > 0,

n [e.9]
lim xl(-n) =z; and lim g xz(n) = E x; < 00,
n—oo n—oo
i=1 =
we have

lim Hg(" " Hg ).

The limiting functions are

Bl gi(x) = H(l - %m) ~1-— (Z %) z, as & — 0+;

)

V;
(32) QII Jll i < E 4) x, as x — O+;

i

4
4+ vx

(33) 9111(37):( ) Nl—m-ga:, asx — 0+.

Proposition 3.2. Assume we are in one of the following situations:
I g = ggn) and g = gy with s —2m > —1,

II. g™ = g?}) and g = gy withm + s > —1,

1. ¢™ = g?}} and g = grry withm + s > —1.
Then the determinantal probability measure in (26) converges weakly in
M (Conf((0, +00))) to
v, B
W, dB()

(34) Pgs) = f
Conf((0,00))

Proof. We will use the notation in [6], where, following [2], it is proved that
the measure ;(*) is supported on the subset Mat,s (N, C) for any s € R. By
the remarks preceding the proposition, for any z € Mat,, (N, C), we have

Tim W (£ (2)) = W,((2)),
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and
Wi () (2)) < M- 0y (£7(2)).

Now take any bounded and continuous function f on Conf((0,00)), we
have

s,n fMatre (N,©) f(t(n)<z>)qj”<n>< (n)( ))dﬂ(s)(z)
/ fXdBG(X) = Sy Ty GO0

By Lemma 3.1, it suffices to show that

(35) lim Ty () (2))dpt) (2) = / Wy (€09 (2))dut (2).
Mat(N,C)

N0 JMat(N,C)

If s > —1, the measure y(* is a probability measure, by dominated con-
vergence theorem, the equality (35) holds.

If s < —1, the measure p,(s) is infinite. The radial part of ,u(s) 1s an infinite
determinantal process which corresponds to a finite-rank perturbation of
determinantal probability measures as described in §5.2 in [6]. By using the
asympotic formulae (31), (32) and (33) respectively in these three cases,
we can check that the conditions of Proposition 3.6 in [6] are satisfied, for
instance, let us check the following condition

(36) lim try/1 — gII™ /1 — g = tr\/l — gII® \/1 — g,

where I1(>™) is the orthogonal projection onto the subspace L(527s:m—7s)
described in §5.2.1 in [6]. Combining the estimates given in Proposition
5.11 and Proposition 5.13 in [6], the integrands appeared in

1— g™y /1 —yg

are uniformly integrable, hence by the Heine-Mehler classical asymptotics,
the equality (36) indeed holds. Now by Corollary 3.7 in [6], we have

W, Bl v, B
fCOnf((O,oo)) \Il dB(S " fConf((O,oo)) \IfgdB(S)

It follows that

fMdIN(C FEM(2) Ty (¢ (2))dp') (2)
fMatN(C) Wy (e (2))dput(2)
_fMat(N,(C)f( )(2)) Wy () (2))dp') (2)

E O, E)AOE)

lim

n—oo

(37)

fMat(N C)
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Moreover, by Lemma 1.14 in [6], there exists a positive bounded continuous
function f such that

lim FEENdE) = [ fEH ) ),
=00 JMat(N,C) Mat(N,C)
Again by Lemma 3.1, we have

lim FE ()0 (¢ (2))du) ()

=00 [May(N,C)
[ D)),
Mat(N,C)

Finally, (35) follows from (37) and (38), as desired. ]

Remark 3.3. Note that
n’r —1 4/x 4/x

—_—=1-—~1- .
nr +1 2n? +2/x 2n?

Thus under change of variable y = 4/, in the sequel, we only consider the
scaling regimes of type

(38)

z
r=1——.
2n?
4. SCALING LIMITS OF CHRISTOFFEL-UVAROV DEFORMATIONS OF
JACOBI ORTHOGONAL POLYNOMIAL ENSEMBLES.

In this section, we will calculate explicitly the kernels for the determinatal
probabilities Pgs) given in Proposition 3.2. For avoiding extra notation, we
mention here that in the sequel, in case I the s corresponds to s — 2m in
Proposition 3.2, in cases II and III, it corresponds to s + m in Propostion
3.2. For the case III, we give the result only for m = 2.

Observe that in the new coordinate * = p(y), the kernel K (z1,z5) for a
locally trace class operator on L*(R ) reduces to

P/ (y1) P (y2) K (p(y1), p(y2))-

4.1. Explicit Kernels for Scaling Limit: Case I. Let s > —1. Consider

a sequence £ = (f%"), e ,57(# )) of m-tuples of distinct real numbers in
(—1,1). Let w™ be the weight on (—1, 1) given by

W) = T — 0% wilt) = TJ €™ — 0 (1 - 1),

i=1 i=1

Let KLS’g(n)](a;l, xg) denote the n-th Christoffel-Darboux kernel for the

weight w?"”. The aim of this section is to establish the scaling limit of
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K™ (1, z2) in the following regime:
{'Z-(") —1- L .1 <4 < m,w; > 0 are all distinct;

2n?
(39) (n) Zi .

r, =1-— ERCE zi>0,1=1,2
4.1.1. Explicit formulae for orthogonal polynomials and Christoffel-Darboux
kernels. Let (W][-S’g(n)] );>0 denote the system of monic orthogonal polynomi-
als associated with the weights w[f(n)]. To simplify notation, if there is no

. )
confusion, we denote Wj[-s’g ] by 7rj(-").

The monic polynomials ﬂ](-") ’s are given by the Christoffel formula ([15,
Thm 2.5.]):
T 0= T e 00
Hizl(gi - t) j+2m Y5
where
PIE”) POE™) o P E")
PP PRAE) o Pl(E)
(TL) o 5(s n 5(s n S(s n
D) = | PEE™) PRE™) - PELE™) |;
PP PEAE) - Pl(E)
PO P e P
and (s) ( ¢(n) (5) (¢(n) (s) (n)
PE&G"Y) P&"Y) o Pl 1 (6Y)
o | BUED) BRED) e Bhaa(E)
J B 5(s n 5(s n S5(s n
PIEM) POE”) - P, (6"
POES) PEER) o P, ()

n 2 n
Definition 4.1. Let hgs,g( = f,ll {Wj(n)(t)} wl >](t)dt.
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Proposition 4.2. For any j > 0, we have

pls€™ hg‘s) ) 55‘1)1
J k S)k(s 5(”) ’

j it+2m J

Proof. By orthogonality, for any ¢ > 1, we have

1
/ P (1)r" (tyw,(t)dt = 0.

1
Note that

(5j 41 S)( t) + linear combination of P! +)1, . Pj(i)Qm.

Hence

j+2mYj
st 2 1
J+1 (s)

— [ fp (t)} w,(t)dt
) s / { j Ol
Kjvam0; k;

(s) (n)
(). (n) "
kj k]+2m 53’

By the Christoffel-Darboux formula (cf. [15, Thm 3.2.2]), we have:

561 \/ €01 (), € ) 3 T (277) -7 (257
K ( ) Z h[87§<n)]
Jj=0 J
(n) n (n) n n n n n n n n
) x/uéf )l el?) ) ) (@) =m0 @) - 7l
- h[s E(">] RONN

After change of variables 5’31( " = 5,2 € [0,4n%), 1 = 1,2, and let

& (") takes the form as in the regime (39), these kernels can be written as:

) _ b ey A 2
(40) RSz, 2) = 5 Kl }(1 = L 2n2>
(2122)5
— : Sn ) 9
(o —w)(a w0 ™)
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where
n—1 (n) z (n) 2z
@D Su(zzm) = @2ty o
j=0 J Jj+2m 5(”) 6(”)
k](,S) j Yi+l
or equivalently
(42)
(2n2>2m—s
Sn(21,22) = =0 X
( ! 2) hﬁizlkngm [52”)}2
kil
L D= ) - DM (1 = 5%) = D1 — 3%) - DIy (1 — 3%)

Z9 — 21
4.1.2. Scaling limits. To obtain the scaling limit of the Christoffel-Darboux

kernels K. ,[f’gw)} (21, 22), we shall investigate the asymptotics of the formulae
(41) or (42). These two representations (41) and (42) will yield different
representations of the scaling limit: an integrable form and an integral form.
The following formulae are well-known ([15, p.63, p.68]):

s 1 I'(2 1 s PARE
@y R L LEESED e 2
J 21 T(j+s+1) J 2j+s+1
The following lemma will be used frequently in the sequel.

Lemma 4.3. Let p € Z, then

(s)
Kn+Dp _ 2p

lim
n—oo kf,gs)
Proof. It is an easy consequence of (43) and the Stirling’s approximation
formula for Gamma functions, here we can also use the following conve-
nient formula:

r
foralla € R, lim Ln+a)

=1.
n—oo n2'(n)

]
Proposition 4.4. If the sequence ™ satisfies (39) , then
22ms
: 2m2—2sm—3m g(n) __ (s,w)
7}1_{1(}0 n 5“77. - (wl PP wm)1+8 CI <I€)’
where
CI(SM)(H) = W(JS,wu ) Js,wma Js+1,w1> e Js+1,wm)(/€)
and

Jswi (8) = Js(Ky/w;), js—f—l,wi(’f) = Jop1(ky/wy).
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Moreover, the convergence is uniform as long as k is in a compact subset of
(0, 00).

Proof. To simplify notation, we denote Agi;,f) by Aggn in this proof. By the
multi-linearity of the determinant on columns, we have

AR (6" Ab ") - AR
o | D &) AP &) o ARG
L ARLE™) ARLE™) - AR
ARk (&) Ap (&) - AR
Multiplying the matrix used in the above formula on right by the diago-
nal matrix diag(n=%,n'"% --- n?""17%) and on left by the diagonal ma-
trix diag(1,---,1,n"2 --- ,n~?) and taking determinant, we obtain that
—_—— ———
m terms m terms
p2m*=2sm=3m5(") e quals to the following determinant
—sAl0 n —sAll n m—1—s A [2m—1 n
A (67) AR () e e AR )
AR (6)  n AR (&) e AR e
AR () T AR () e AR )
nfzfsAEg}Kn( 7(??)> nflfsA%]Hn( T(:LL)) e n2m73—sAEj:n—1] (fﬁg))

Applying Propositions 2.2 and 2.3, we obtain the desired formula. The
last statement follows from the uniform convergences in Propositions 2.2,

2.3. O
Proposition 4.5. If the sequences QZER) and £™ satisfy (39) , then
: m2—m—2ms—s n n 22ms+s -3 S,w
JLIEORQ 2 D'i")@g )) N (wy - .wm)l+szi ’ 'AY )(“721')’
where

A([S’w)(li, z) = W(‘IS,wu c s s St ‘75""1’7“””“ JS’Zi> ().

Moreover, the convergence is uniform as long as k is in a compact subset of

(0, 00).



THE EXPLICIT FORMULAE FOR THE SCALING LIMITS 23
Proof. The proof is similar to that of Proposition 4.4. Ul

Definition 4.6. Define the column vector function 9;") (t) by

. T
0(t) = (PPE™), - POE), PO(E™) - e, PP )
Proposition 4.7. If the sequences m ) and £ satisfy (39), then

0 (™) - 00, () 8, () — o

Kn

lim n1+2m —m—2ms—s
n— oo

22ms+s _

= 22 B (g 2,
(wl__‘wm)prs % 1 ( )

where B (1, ) = | m,.(6) ., (0) o 02 7V(s) nl ) |
and 7, .. (k) is the column vector

~ ~ T
(Js(m/wl),m s Js(By/Wm ), Jsp1 (Fy/wi), - -+ Jspa(ky/wr), Js(k zi)> :

Proof. The proof is similar to that of Proposition 4.4, we emphasize that in
the proof we used the elementary fact

2m—+1 S m S
A =P g+ (-1 PEL

-+ linear combination of P(S) P,ES) FETEEEI P,Ei)JFQm_l.

Remark 4.8. By the property of determinant, it is easy to see that

9, s,w) S, W
%A (K, z) = B§ )</€,Zi>.

Theorem 4.9. In the regime (39), we have
lim Iaf’&(m](zl,z/g)

AP (1, 2) B (1, 2) — AP, 2) B (1, 21)
2‘ 17 (21— wi) (22 — wy)| - [CF w)(l)f (2 — 22)

We denote this kernel by A5 (2, 2,).

Proof. It is easy to see that
D (@) = [0 (1) -+ 00 1(a) 0|,

n

hence DY (z(™) — D™, (2™ equals to

n

(2

0% (") 0y (0 Oy (a™) = O (2)]
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Note that

Now applying Propositions 4.5 and 4.7, we obtain that

nlggo n1+4m2—2m—4ms—25 [D7(Ln) (xgn))Dr(ln_)l(l,gn)) . D7(’Ln) (xgn))D’EL"_)l (l‘gn))]
24ms+28(212:2) 3 sw s,w s,w s,w
= oy (AT LB ) = AP, 2B 2) ).

Combining with Proposition 4.4, we deduce that
lim Sn<21, 22)
AP (1, 2) B (1, 29) = AP (1, 2) B (1, 21)
EXT 2
2[C)(1)] (21 — 20)

Substituting the above formula in (40), we get the desired result. U

Theorem 4.10. The kernel ,%/off’g)(zl, 29) has the following integral form:
ASUENE
B ! / L AP @, ) AP (1, 2)
[T (- —w)| S0 [PV

Proof. Let us fix 21,29 > 0. For any € > 0, we can divide the sum in (41)
into two parts:

tdt.

[ne] -1 n—1
Salzr, ) = (20270 37 @2n2Pm e Y
N = j=Lne]
L) e

The second term /1,,(¢) can be written as an integral:

D(n) (x(n))D(n) (1‘(”))

_ 2\2m—s—1  |nt]\1 [nt] \ 72
I1(e) = /WJ (2n%) R () n b
Lnel 4 nt) ¥ ) +2m 5(n) £(n)
T OOl

— T (1)
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By Propositions 4.4 and 4.5, we have the uniform convergence for ¢ € e, 1]:

. (2 Z )‘% S, w S, w
7}1_).‘[1;.10 Tn(t) — 2(6’1[5,—’31](t))214g )(t7 Zl)Ag )(t, ZQ)t,

hence as n — oo, I1,(¢) tends to

I1o(c) = / 1 %A?’“”(t, 2) AP (¢, z)tdt.
e 2(C (1)

For the first term 7, (), we use Christoffel-Darboux formula to write it
as
(@2 DI («57) - DI (25) — D{1)

OIS [ 5

(@57 - DL (1")
|ne|—1"|ne|+2m LTLEJ:| 2(22 - Zl)

By similar arguments as in the proof of Theorem 4.9,
I 1,(e) = I(e).
where .. () is given by the formula
Lso(e)
_(mm)F AP (e 2) B (e m) — AT (e ) B (1)
2 [ ) (21— 2) |

Hence for any € > 0, we have

lim S, (2™, 28") = Io(e) + I (e).

The theorem is completely proved if we can establish lim._g /.(¢) = 0
This is given by the following lemma. U

Lemma 4.11. For any z1, zo > 0, we have
o AT e ) B (e ) — AT (e, 29) B (e, 21)

e =0.

Proof. To simplify notation, let us denote F; = J;,,, and G; = NS+1’wi. We
have
CPie) =W(Fy, o+ FpGooe,Gu)(e).
By (12), we have
Gi(e) = —eF!(e) + sF;(e).
If we denote H;(¢) = —cF](e), then

C[Sﬂﬂ](g) = W(Fla e 7Fm7H17' o 7Hm)(€>
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(4) (%)
We can write F(g) = Y 0% “c?*% and H,(c) = Y oo, 22", with

) —1) w; 2v+s ) )
o = S IR 0 (a4 sy
Define entire functions:
00 a,(f) 0o b,(f)

Then F;(e) = ° f;(¢?) and H;(¢) = e°h;(£?). Using the identity
Wigfr, - gfa)(@) = g(x)" - W(f1,- -+, fo)(2),

we obtain that

O (@) = e W (fi(a®), o fn(@®) (@), hn(2)) (E).
An application of the following identity

n [n/2] n—
) =m Y g e
yields
C}va)(g) = gm@m=D)2ms+tm@m=Uyyyy (g o b B )(E2).
We state the following simple auxiliary

Lemmad.12. W(fi, -, fom, h1, -+, hy)(2) is an entire function and does
not vanish at z = Q.

Before proving Lemma 4.12, we derive from it Lemma 4.11. Indeed,
from Lemma 4.12 we have

C’}s’w) (g) =< g2mstmm=1) a5 ¢ — (.

Similarly,
Ags’w) (g, z;) = eBmAlstmmtl) a5 o, .
By Remark 4.8, we also have
Bf,s’w) (g, ) = e@mHDstmCmil) =1 55 o _, 0

Hence as ¢ — 0, we have

AP (e, 20) B (e, 22) — AV (e, 2) BY™ (e, 1) .
2
ERD

Since we always have 4m + 2s > 0, Lemma 4.11 is proved.

< 84m+2s.

~Y
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Now we turn to the proof of the Lemma 4.12. By definition, we know that
fi, h; are entire functions, hence W (f1,- -+, fi, h1,- -+ , hy) is also entire.
It is easily to see that W (f1,-- -, fim, b1, , hn)(0) equals to

1 1 1 1
ag) ey ey
S LI IR o
1 1 1 1 ’
b BB b
TR
which is in turn given by a non-zero multiple of det %, where
1w, w? - wi™ !
1w, w? - wim=t
W —
0 1 2w - (2m-—Dwi™?
0 1 2w, - (2m—1)w?m?

We claim that det # # 0. Indeed, let @ = (g, 0y, - ,0o,,_1)" be such that
# 0 = 0. In other words, we have

2m—1 2m—1

Z kaf =0, Z k@kwf’I =0, forl <i<m.
k=0 k=0

Let © be the polynomial given by ©(z) = i’zo_ 1 9,2%, then the above
equations imply that wy, - - - , w,, are distinct roots of ©, each w; has multi-

plicity at least 2. Since deg©® < 2m — 1, we must have © = 0 and hence
6 = 0. This shows that # is invertible, hence has a non-zero determinant.
O

4.2. Explicit Kernels for Scaling Limit: Case II. Consider a sequence of

m-tuples of distinct positive real numbers (™) = (r@, el )) and the

(™)

modified weights w given as follows:

U}L(J(n))(t) — ws(t) _ (1 - t)s ‘
™ = T+ 1)

The n-th Christoffel-Darboux kernel associated with wg’“(")) is denoted by

Hy(ln) (l’l, ZL‘Q).
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We will investigate the scaling limit of II{"” (z{"™, z{") in the regime:

xgm —1- 2—2 %> 0,i=1,2.
(44) 2n
. > ( are all distinct.

4.2.1. Explicit formulae for orthogonal polynomials and Christoffel-Darboux

kernels. The Christoffel-Uvarov formula implies that the following polyno-
(n) (r(m)

mials ¢; for j > m are orthogonal with respect to ws
QL") oo QP+
(n) : :
q‘ ()_ S n S n
’ Q1) o Q7 (L)
POM e PO

For 0 < 5 < m, we also denote by q§") the j-th monic orthogonal polyno-

mial, here we will not give its explicit formula.
Denote

QP +7") o QA+
d™ = : :
J
Q(S) (1—}—7“(”)) Q() (1+T(n))
Denote by k;s’r(n)) the leading coefficient of q](-”). When j > m, it is given
(s;r™) _ (n) ()
by k) = @

(s,7(™) 1 )2 ()
Definition 4.13. Define h =/ {qj (t)} ws (t)dt.

Proposition 4.14. For any j > m, we have

(n) n) s)
J k(s)

J—m
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Proof. Let 5 > m, by the orthogonality, we have

(s,r(™)
hj

n); (s n - m. (r(n)
=Pk [ (PO T+ — el
=1

:(—1)mcz§">k<.5> / q§”><t)tﬂ Mg (t)dt

=(-1)"d" k) / (—1)™2d", PO (68w (t)dt

J j+1
d(”)d(") k( ) 2
R R ) (s)
o /{ ],m(t)} wy(t)dt

O

By change of variables, x(n) = 1— 5%, and let (™ be as in the regime

(44), the Christoftel- Darboux kernels are given by the formula

(45) 0 (21, 25) =

212 %
(2122) S (21, 20),
2

[T (vi 4 21)2 (v + 22)

[N

where

(n) (n) 2
m—s— 4; (1 T on )q ( 7? )
46)  Xn(z1,2) = (2n%) ' § : . d<n>z<j> k<]s>h<s> e
j ik R,

i,
or equivalently
Yn(z1, 22)
@n ey g @M)g (05”) — g (25 g (21)
el B

4.2.2. Scaling limits. Now we investigate the scaling limits.

Proposition 4.15. In the regime (44) we have

lim nm(n;_l)fmsd,(qﬁ) =2"(vy - - 'Um)igcj(?v)@{@)?

n—oo
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Ji_)ngonm(“;“) (D)3 g(m) (5 )y = o(mHDs(yy, .. .Um)*%z;%Agsf”)(n, %),
where

CHY(8) = W (Ko s Ko ) (5),
AG e, 2) = W (Ko, Ko Iz ) (),
and K., (k) = Ks(ky/0i), Js2(K) = Js(ky/2).
Proof For ¢ > 1, we have
= QY 24+ (=1)'QY + linear combination of Qﬁl, QY 1

The same is true for Ag;n and with the same coefficients. Hence for k,, >
m, we have

AS:SL_m<1+r§"’> AR ”<1+ ")
) = : ; ;
AGD L+ - AS;”_l)(1+r("))
AGD () e AGT (1—1—7“( )
(n) (n) = S : n s,m . n
W@ =AY () e AGT (1)
AGD_ @y AR (@)

The proposition is completely proved by applying the same arguments as in
the proof of Proposition 4.4 and by applying Propositions 2.2, 2.3, 2.4 and
2.5. O

Proposition 4.16. In the regime (44), we have

lim ™ s 0 )y ) ()

n—oo

s

= 2003 (y )2 P B (k, 2,),
where

S,V 8 S,V
By (s, 2) = &AL (5. 2)

[ (), B+ @Y (), SUT I ()

T
and @, (k) is the column vector <KS(H\/U_1), o Ko (K /Om), Js(K z)) .
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Proof. To simplify notation, we show the proposition in the case x,, = n,
the proof in the general case is similar. Define column vector

400 = (QP (1 4+ 7).+ Q1+ 4). PO 0)

Then for: =1, 2,

a0 =] @) B E) B ) |
@) =| B0 () - B B |
—(—1" | B ) e ALY B ) |
Hence
g\ (@) — gy (2"
=| B @) B ) B ) ¢ () @) |
AGY )y e AGmI @) AT (1)
= AGY (4 e AGTD ) AL, (14 1)
Al @) AR E) AR @)
We finish the proof by using Propositions 2.2, 2.3, 2.4 and 2.5. U

Combining Propositions 4.15 and 4.16, we obtain

Corollary 4.17. In the regime (44), we have
Tim D200 gl (g0 (0) — 00 (2§7) gl (2]

S
2

Alsv) K,z —BlsY) K,z
— 22(m+1)s(vln'vm)fszl II ( 1) I ( 1)

Agsfv)(/f, 22) —BS’U)(/@ 22)

Proof. We first write ¢\ (¢{") g™ (23") — ¢ (25)g™_, (")) as

0 @) iy @) | @) g @) — ) ()
g (@5) g @S || a @) a8 — g (@)

The corollary now follows from Propositions 4.15 and 4.16. U
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Theorem 4.18. In the regime (44), we obtain the scaling limit
IIEY (2, 25) := lim ﬁq(ln)(zl, 29)

_ AR, 2) B (1, )

— A1, 2) BEV(1, 2)

211, /(o + 20) (v + 22) - [C57(1)]

(21— 22)'

Proof. By (47) and Proposition 4.15, Corollary 4.17, we have

lim En(zl y 22)

(2122)"H{ A5 (1, 20) B (1, 2) = AR (1 2) B (1, 24) |

2[CH (D] (21 — =)

Combining this with (45), we get the desired result.

Proposition 4.19. Let s > m — 1,s ¢ N. The kernel e

following integral form:
5" (21, 29)
1

1 A(va)

11

(k,21) - AS (K, 20)

O

(21, 22) has the

KdK.

NN CEDCEE)

[C ()

Proof. The proof is similar to that of Theorem 4.10, a slight difference is,

instead of using Lemma 4.11, we shall use the following Lemma 4.20.

O

Lemma 4.20. Let s > m — 1,s ¢ N. For any 21, z3 > 0, we have

AR (e, 20) B (e, 2) —

A (e, 2) B (e, 21)

lim

e—0t

(@)

Proof. Recall that C\3") () = W <K5,U17 o

definition of K(z), namely

I, — I
k() = Tl L
2 sin s7
we can write
Ks v; = Ks i) —
’ (8) (5 v) 2s1n s7r

where

Q) —

(3vo)> ™
Y T(w—s+1)

e=0.

K (e)) (¢). By McDonald

00 (%Z>2y+s

I(2) = Z; VD +s+1)

o

<z

Z

o Sooﬁ()
g2zoyl

5(%‘) _

v

::,Q;iﬁ)

(%\/v—>2u+s
Fv+s+1)
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Thus
O (2) = Const, x g—msw(m (22), - - ,dm(ﬁ)) e)

_ m(m—1)
= Const, X ¢ ™t 2

W(m,... ,dm)(ez).

By the assumption s > m — 1, we know that .¢7; are all differentiable up to
order at least m — 1 on the neighbourhood of 0, hence W (<, - - - , o7,,)(¢)
1s continuous, and

1 rUl DR /Uin_l
W(@fh e ,;z/m> (0) = non-zero term X | : : # 0.
1 /Um e 'U'Z;Lil

Hence )
m(m—1
Cl(e) < et ase — 0.

In a similar way, we can show that

Aﬁ“}”) (6,2) < 5‘<1+m)5+%+2{5—(m_1”, ase — 0.

B}[ )(E Zz) E—(1+m)s+m(w21+1)+2(s—m)’ as e — 0.

Hence
A (e, 20) B (e, 22) — AS (e, 20) BE (e, 21)
P 2 11 1 22) 201 17U | < g25—2mA3
s, 2 ~ :
[O§I )(5)}

Since 2s — 2m + 3 > 0, the lemma is completely proved.
O

Remark. Let us consider the case where —1 < s < 0and m = 1. Let us
denote
ﬂ(s’”)(/@ 21, 22)
@ | D) || Kl I )
(vm) Valilsym) || Lnym) Valis/m)
2/(0+ 20) (v + 22) - [Ks(r/0)]”
For any ¢, we divide the following sum into two parts:

Q
I (21, 2) 2 53 E G an)) 2 Jul™ (@l )

p
1 el 1
:2—2 tom

J/

::5’,&1) (g,21,22)

= 7<z (E 122)
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From the previous propositions and Theorem 4.18, we know that the fol-
lowing limits all exist

lim Yél)(e,zl,zg), lim 5”752)(5,2’1,22), lim HT({L)(Z]_,ZQ).

By denoting
Yo(j)(a, 21,29) = lim 5”751)(5, zl,ZQ),&”O(OQ)(s, 21,29) = lim 5”752)(5, 21, 22),

we have for any € > 0,
(49) H(()f;”)(zl, 29) = 5”0(01)(5, 21, 22) + 5’0(3) (e, 21, 22).

If 21 = 29, then every term is positive, hence

1
MG (21, 21) > S (e, 21, 21) = / I (1, 21, 21) .
3

By Cauchy-Schwarz inequality, we can show that
|7 (5, 21, 20) 2 < I (K, 21, 21) - IO (K, 29, 7).
Again by Cauchy-Schwarz inequality, we see that k — .Z %) (k, 21, 25)
is integrable on (0,1). Combining this fact with (49), we see that the
limit lim, o, RS )(5, 21, 72) always exists. Let us denote this limit by
Z(0
0 ( 5y 21 22)'

Now we show that .74 )(O, 21, 72) is not identically zero. Let z; = 2o,
then for any € > 0, we have

1 {a@)Y o

I (e, 21, 21) > L) (@)
N2 h[()s,r( )

1 1 (1—2i™)ys
208 [T a4 70—
_ z7 1 .
U+ zZ1 (2n2)s f_ll wgr(n))(x)dx
We have
1 . an? s
(2n2)5/ w" )(x)dx:/ dt
1 0 v+
n—o00 > Al
dt = v°I'(—s)I 1).
== 7 Lt = o+ 1)
Hence

S
1 z7

730 > :
w021 21) 2 vI'(=s)I'(s+1) v+ 2z
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Definition 4.21. For —1 < s < 0, define a positive function on R7 :

1 28
(T + D)2V vtz
Proposition 4.22. Form = 1 and —1 < s < 0, we have

NG () =

1
TG (21, 22) = A (20) W 59 (25) +/ Ik, 21, 29) drs
0

Proof. By (49), it suffices to show that
yo(ol) (Oa 21 22) = ‘/V(S7U) (zl)‘/j/(s’v) (ZQ)
By similar arguments in the proof of Theorem 4.18, Y (€, 21, 22) is given
by the formula
(50)
A(va) B(s7v) A(va) B(svv)
11 (& 21) By (e, 22) — Ajy (e, 22) By (5721)'

(e, 21, 29) = € -
o (& ) 2(/(0+2) (0 + 2) [CF7 ()] (21 — 2)

For m = 1, we have

Ki(ev/v) VuK{(ev/v)
Js(evzi) Vil (ey/z)
and B (g, z;) = £ A(S (e, z), C") (e) = K,(1/v). By the differential

AP (e, 2) =

/
formula(g)’:flgg;fq:i2 f f’ , we have
AGD (e, ) = (K ey L (e
e 38 K, (e\/v)
and
A(Sy’U) B(va) _A(va) B(va)
i1 (&,21) B (€, 22) i1 (&,22) B (g, 21)
. 0 A% (e, 2
Al e )P (S
€ \A (g, 21)
Hence
A(S ) B(Sﬂ)) _A(S,v) B(Sﬂ))
(e,21) II (g, 22) II (€, 22) II (g,21)
2
[KS<5\/5)}
(51) 9 <Js<s¢5>>
Oe )

e (3 (pm)) o [
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As ¢ — 0+, we have

2 m (\/TE)S i 2s
(52) Kslevo) ~ | s T ) <

QSi&sw)F(_S)( 7

o (Jlevm)

(54) 2 Oe \ Ks(ey/v)
dz | 2 (sz)

Oe )

N

. <¢_) D(=s) (f) A

va) Ts+1)\ 2 2

Ks(e

9

For example, let us check the asymptotic formula (54). We have

Jo(ey/zi) _ 2sin(sm) (\/z_Z F(e2z;)

K(evo) 2 ) G(2) — 2 (2)’

where %, ¢, 7 are entire functions given by

N~ DG (VP N (3)"
J(z)_zy!l“(u—i-s—i-l)’ Iz) = (7) Zy!F(V—i-s—l—l)’

v=0 v=0

Hz) = (?) ) i y!r(y(i—)l 1)

v=0
It follows that

N EACNED) . o (__Fam)
0 | oe <K w%) NE 0 | oz <%(z)—z*s2%”(;r)> 9
— K ———— 3= =] 2e-— (7).
de | o (Js(wa) Nen dr | o ( F(221) )

Oe \ Ks(ey/v) Ox \ Y(x)—x—5(x)

—Q(e)

For i = 1, 2, let us denote
Qi(r) =27 (v2) (:ESH%(:U) — a:%”(x))
~ F(xz) (xsﬂg’(x) v s (x) — 1:%”’(:1:)),
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then Q(z) = 2 [Q—”] . Note that Q1 (0) = Qs(0) = —s.7(0).2(0). Now

T 0z | Qi(x)
we obtain that, as x+ — 0+,
(s+1)a* oy o~ ,
Q) ~ 50 | @O 0)90) - F0F'(0)
~ QuO) (2 Z(0)%(0) - Z(0)4'(0) }
(s 4+ 1)z*

~ _33-5(0)%«)) <9”(0){?(0) (ZQ - 21)

F(_S) \/6 2521_22 s
T(s+1) \ 2 VI
Combining the above asymptotics, we get (54).
Substituting (52), (53) and (54) to (51), we have
Aj" (e, 2) By (e z2) — A (e, ) By (e 1)
2
[KS(‘S\/E)}

2 —2) (Vaz\ .
F(—s)F(s—i—l)( ” e ,ase —=0+.

Finally, by (50), we get the formula for 7D (0, 21, 22):

1 1 VAR ey s,
T(=s)T(s + 1) \/{v + 21) (v + 22) ( v ) N (20) N (22).

O

For o > —1, we denote by j(a)(a:, y) the Bessel kernel, i.e.,

Fa) _ oWV (V) = Ja(/Y) VS (V)
S = 2(x —y) '

It is well-known (cf. e.g. [16]) that the Bessel kernel has the following
integral representation:

~ 1

T ay) = 1 / Jo (Vi) (Vig)dt.

Proposition 4.23. Let m = 1 and —1 < s < 0. Then

h%lJr Hgso’”) (21,29) = JtD (21, 22).

Moreover, the convergence is uniform as soon as z1, z are in compact sub-
sets of (0, 00).
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Proof. Fix —1 < s < 0. Itis easy to see that

lim A4 (2) =0,

v—0+

and the convergence is uniform for z in compact subset of (0, o).
By (12) and (18), we have

Ks(hvv) =K1 (k)
Js(k/Zi) —/Zidss1(k\/Z)

Then apply the asymptotics of K, K near O to get

Ak, 2) =

oAl K, %
JE&W = ~VaLalrva),

It follows that

Js Jy
lim 7% (15, 21, 29) = SIGVENESIGVED K

v—0+ 2

For any 0 < & < 1, the convergence is uniform as long as x € [¢, 1] and
21, 29 in compact subsets of (0, c0). Hence

1 b Js
lim j(s’v)('ﬁzhzz)dli:/ SLGVENRESIGIVED

v—0+ e 2

- kdk.

£

The above term tends to

L. J, 1 [t Vo /T
/ +1(K’\/Z_1)2 +1(/{ Zz) . H,d/‘i — 4_1\/ JS+1< tzl)‘]s-‘rl( tz?)dt
0 0

uniformly as z1, 2o in compact subsets of (0, c0), when £ — 0. It is easy to
see that

sup < gt

0<v<R,r<|z1|,|z2|<R

/ IS (), 21, 25)dk
0

Hence

hI(T)lJr TG (21, 29) = JEHD (21, 29),

with uniform convergence as long as z, 2, are in compact subsets of (0, c0).
O

Remark 4.24. When m > 2 and —1 < s < m — 1, the situation is similar,
but the formula and the proof will be slightly tedious.
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4.3. Explicit Kernels for Scaling Limit: Case III. Let s > —1. We con-
sider in this section a sequence of positive real numbers (™) and modify the
Jacobi weights given by

@gn) (t) _ w (t) _ (1 - t)s

T+ =02 (1+9M =)

The n-th Christoffel-Darboux kernel associated with @." is denoted by
(21, 7). We will investigate the scaling limit of ®(z{", z{") in the
regime:
2™ =1 = 2 withz > 0,0 = 1,2.

’ 2n?
(55) #
4.3.1. Explicit formulae for orthogonal polynomials and Christoffel-Darboux
kernels. For j > 2, we set

Q(1+9™) QP (1+4™) QP(1+4™)
p() = | BY,(14+40) RO(1+40) RY(14+40) |
Py (1) PELE) P ()

Q1 +9M™) QY (1+4M)

RY,(1+4M) R, (14+~™)

e =

The leading term of p;" Vis k;(”) (-")k](-s) .

Proposition 4.25. For j > 2, the polynomial qj(-n) is the j-th orthogonal

polynomial with respect to the weight W\" on [—1,1].

Proof. By the Uvarov formula, we know that for j > 1,
QY (1 +4™) QP (1 +~™)

PY(t) PY(t)

J

is the j-th orthogonal polynomial with respect to the weight ; :;S(%)_ - Ap-
plying the Uvarov formula again, we know that for j > 2,
Ga(1++4™) (1 4+4M)

P () p(t)

(56)
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is the j-th orthogonal polynomial with respect to the weight %,
where we denote by
1 5(n)
") (¢ (1
ng(x)—/ BB __w(®) dt.
o=t 14+~M —¢
We can easily verify that the polynomial (56) is a multiple of pg."). U

Definition 4.26. For j > 2, denote

W= [ e e

14~ — )2

Proposition 4.27. For j > 2, we have the identity

(n)_(n) 1.()7.(5)
%m_%%%ﬁ%z

VA s
kY,

Proof. By the orthogonality property, we have

~ ! 1—t)°
BV = / P ()l P (1) =0

1 r (L+~m —¢)2
1 S
(n) 1.(5) (n) : (1-1¢)
— Mgl ) () g dt
7 7 /_1p] ( ) (1_}_,7/(71)_25)2

(1-1)°

dt
(470 — 12

1
=R [ ) (1
-1
1 .
= o)k} / Py (1) 42wy (1)t
-1

1
:e@%@{/ e POy(t) - 72wy (t)dt
-1

J J J
(n) (n) 1.(s) 1
e e 1]{;‘ < 2
=S [ [pn]
ks —1
(n) (n) 1.(s)
_ ¢ ek n,
s J—2°
kY,



THE EXPLICIT FORMULAE FOR THE SCALING LIMITS 41

The Christoffel-Darboux kernels " in the (2\", 20")-coodinates are
given by

n)y (1) ¢ (n)
N ) At

~(n) (n)\ ~(n) (n) n n n n n n n
st @) ) (@)l ) i “)p&ﬂ )

A B PO (D)
o v
n—1

These kernels in the (21, z3)-coodinates are given by

n 1 n 29
(a1 2) = 5,50 (1 51— 5.5):

4.3.2. Scaling limits.
Proposition 4.28. In the regime (55), we have

lim n —1-2s (n) — 225+2u—1 sc}iﬁ (I{),

"’v'n

Tim n'“¥p (V) = 2550 T AR (k, 2),
where
Ly
0o () = K (kyu) u2K.L(ky/u)
11 \K .
Ly(kyvu) w2 Li(ky/u)
and

Ko(rv/u) usKl(kv/u) uK!(ky/u)
AR (k,2) = | Lu(syi) usLi(sv/u) uLl(sy/u)
J(sVz) 22 U(aVE) 2 (kV7)

Moreover, for any € > 0, the convergences are uniform as long as k € [e, 1]
and z; ranges compact simple connected subset of C \ {0}.

Proof. The proof is similar to that of Proposition 4.4. U
Proposition 4.29. In the regime (55), we have

tim 2= {0 ) = (o) | = 2 R B )

and
n11_{{)1071 {P,(fn)< ())P,(-;Z)—l( ()) p,(ﬁb)( ())p,(-;r,?—ﬂ (n))}

s

:265+3U_2_28(f312’2)_§{3511)(“ Zl)A.(IU)(’f 2) — 3511)(5 '22)f‘1§11)(’<G Zl)}
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where Bﬁ’lu)(/{,z) =2 AISI}L (K, 2), Le.,
Ko (i) ut K(ry/u) uf K (ky/u)
Biit'(k,2) = | Lu(kva) ubLi(sv/u) u3 L (ky/u)
J(kVz) 22 JlkVzE) 2200 (52)

Moreover, for any € > 0, the convergences are uniform as long as k € [e, 1]
and z; ranges compact simple connected subset of C \ {0}.

Proof. The proof is similar to that of Proposition 4.7. U
Now we obtain the following theorem.
Theorem 4.30. In the regime (55), we obtain the scaling limit
@((;:;u)(Zl,ZQ) = nhi& 5%")(2'1722)

A (1L 2) B (1, ) — AP (1, 2) B (1, 21)
- S, 2 .
2(u+ 21)(u + 25) - [CSF (D] - (21 — 20)

For investigating the integral form of the scaling limit oL

1

1
0 = Land 900 =1t - = [ (1= 0@ o
W )

1

, let us put

The contribution of p( ") to the kernel is

VT ) ) ) ()
o2n? ﬁén) (z1 4+ u)(29 + u) f . 1+ _ t)th'
on2

We note that for —1 < s < 1, we have

f t 4n? s
1 (1425 —0)2 t
+ t)2 :/ v
o

(2n2)1 s t+u)?

n—oo > t° s—1 s—1
/0 (t+u)2dt:u B(1+s,1—3s)=u"T(1+s)I(1—s).

The contribution of pﬁ’” to the kernel 1s

A(” (”) n n n n
V! O o e @)
2n2 ﬁgn)
(m22):  (@2n®)pi" @")pl" (25"

)

N (21 +u)(z2 +u) i
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For —1 < s < 0, we have

4n? ts+1
e Gt
%/ (1= t)y@™ (t)dt = Jo .
hy' J—1 2n? |, = )th
Hence
4n? ts+1
(), )y _ 1 Jo" rapdt
pio(z;”) o2 | 5T e e |
fO t+u dt
and

2

R An2 dn® s+l dt
Y = (2n%) 71 / y— —fo ) dy.
0

f04n2 (t+u)? dt

It follows that

i <:it§2 I git;
21 — 29 — s
i (2n ) - gn)( gn))pgn)(xgn)) ( I (t+u)2 Jo? (t+u>2
1m —_

n—00 h&") - fOOO :9-212 2 .
fo (y s E; )2 dt) (yiu)2 dy
(21 + 1+8 ) (22 + 1—fu)

I (y+ )’ pdy

Definition 4.31. For —1 < s < 1, define a positive function on R’ :

[ NIV

1 z
ME(2) : :
0 #)= Ve T(1+s)D)(1 +s) 2+u

For —1 < s < 0, define

1 1+ s 23

M (2) = - — 5 (2 + u) -
U5 v+ 2220)” iy

s z4u’

(s,u)
1

we extend the definition of M, (o) =

when 0 < s < 1 by setting M,

The detail proof of the following proposition is long but routine and sim-
ilar to the proof of Proposition 4.22, so we omit its proof here.
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Proposition 4.32. For —1 < s < 1, we have the following representation
of &) (21, 29):

DL (21, 22) =y () g™ (22) + M (1) A (22)

| VA (5, 20) A (, 22)
N o > KdK.
2(z1 +u)(z2 +u) Jo [Cr (R)]
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