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The main result of this paper, Theorem 1.1, gives explicit formulae for the kernels of the ergodic decomposition measures for infinite Pickrell measures on spaces of infinite complex matrices. The kernels are obtained as the scaling limits of Christoffel-Uvarov deformations of Jacobi orthogonal polynomial ensembles.

INTRODUCTION.

1.1. Outline of the main results.

1.1.1. Pickrell measures. We start by recalling the definition of Pickrell measures [START_REF] Pickrell | Separable representations for automorphism groups of infinite symmetric spaces[END_REF]. Our presentation follows [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF].

Given a parameter s ∈ R and a natural number n, consider a measure µ (s) n on the space Mat(n, C) of n × n-complex matrices, given by the formula

(1) µ (s) n = const n,s det(1 + z * z) -2n-s dz. Here dz is the Lebesgue measure on the space of matrices, and const n,s a normalization constant whose choice will be explained later. Note that the measure µ (s) n is finite if s > -1 and infinite if s ≤ -1. If the constants const n,s are chosen appropriately, then the sequence of measures [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] has the Kolmogorov property of consistency under natural projections: the push-forward of the measure µ (s) n+1 under the natural projection of cutting the n × n-corner of a (n + 1) × (n + 1)-matrix is precisely the measure µ (s) n . This consistency property also holds for infinite measures provided n is sufficiently large. The consistency property and the Kolmogorov Existence Theorem allows one to define the Pickrell measure µ (s) on the space of infinite complex matrices Mat(N, C), which is finite if s > -1 and infinite if s ≤ -1.

Let U (∞) be the infinite unitary group

U (∞) = n∈N U (n), 1 
and let G = U (∞) × U (∞). Groups like U (∞) or G are considered as nice "big groups", they are non-locally compact groups, but are the inductive limits of compact ones.

The space Mat(N, C) can be naturally considered as a G-space given by the action T u 1 ,u 2 (z) = u 1 zu * 2 , for (u 1 , u 2 ) ∈ G, z ∈ Mat(N, C). By definition, the Pickrell measures are G-invariant. The ergodic decomposition of Pickrell measures with respect to G-action was studied in [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF] in finite case and [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF] in infinite case. The ergodic G-invariant probability measures on Mat(N, C) admit an explicit classification due to Pickrell [START_REF] Pickrell | Separable representations for automorphism groups of infinite symmetric spaces[END_REF] and to which Olshanski and Vershik [START_REF] Olshanski | Ergodic unitarily invariant measures on the space of infinite Hermitian matrices[END_REF] gave a different approach: let M erg (Mat(N, C)) be the set of ergodic probability measures and define the Pickrell set by

Ω P = ω = (γ, x) : x = (x 1 ≥ x 2 ≥ • • • ≥ x i ≥ • • • ≥ 0), ∞ i=1 x i ≤ γ ,
then there is a natural identification:

Ω P ↔ M erg (Mat(N, C)) ω ↔ η ω .
Set Ω 0 P := ω = (γ, x) ∈ Ω P : x i > 0 for all i, and γ = ∞ i=1

x i .

The finite Pickrell measures µ (s) admit the following unique ergodic decomposition

µ (s) = Ω P η ω dµ (s) (ω). (2) 
Borodin and Olshanski [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF] proved that the decomposition measures µ (s) live on Ω 0 P , i.e., µ (s) (Ω P \ Ω 0 P ) = 0. Let B (s) denote the push-forward of the following map: conf : Ω 0 P → Conf((0, ∞)) ω → {x 1 , x 2 , . . . , x i , . . . } .

The above µ (s) -almost sure bijection identifies the decomposition measure µ (s) on Ω P with the measure B (s) on Conf((0, ∞)), for this reason, the measure B (s) will also be called the decomposition measure of the Pickrell measure µ (s) . It is showed that B (s) is a determinantal measure on Conf((0, ∞))

with correlation kernel

J (s) (x 1 , x 2 ) = 1 x 1 x 2 1 0 J s 2 t x 1 J s 2 t x 2 dt. (3) 
The change of variable y = 4/x reduces the kernel J (s) to the well-known kernel J (s) of the Bessel point process of Tracy and Widom in [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF]:

J (s) (x 1 , x 2 ) = 1 4 1 0 J s ( √ tx 1 )J s ( √ tx 2 )dt.
When s ≤ -1, the ergodic decomposition of the infinite Pickrell measure µ (s) was described in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF], the decomposition formula takes the same form as [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF], while this time, the decomposition measure µ (s) is an infinite measure on Ω P and again, we have µ (s) (Ω P \Ω 0 P ) = 0. The µ (s) -almost sure bijection ω → conf(ω) identifies µ (s) with an infinite determinantal measure B (s) on Conf((0, ∞)). One suitable way to describe B (s) is via the multiplicative functionals, for which we recall the definition: a multiplicative functional on Conf((0, ∞)) is obtained by taking the product of the values of a fixed nonnegative function over all particles of a configuration:

Ψ g (X) = x∈X g(x) for any X ∈ Conf((0, ∞)).
If the function g : (0, ∞) → (0, 1) is suitably chosen, then

Ψ g B (s)
Conf((0,∞)) Ψ g dB (s) (4) is a determinantal measure on Conf((0, ∞)) whose correlation kernel coincides with that of an orthogonal projection Π g : L 2 (0, ∞) → L 2 (0, ∞). Note that the range Ran(Π g ) of this projection is explicitly given in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF].

However, even for simple g, the explicit formula for the kernel of Π g turns out to be non-trivial. Our aim in this paper is to give explicit formulae for the kernel of the operator Π g for suitable g. The kernels are obtained as the scaling limits of the Christoffel-Darboux kernels associated to Christoffel-Uvarov deformation of Jacobi orthogonal polynomial ensembles.

1.1.2. Formulation of the main result. Let f 1 , • • • , f n be complex-valued functions on an interval admitting n-1 derivatives. We write W (f 1 , . . . , f n ) for the Wronskian of f 1 , . . . , f n , which, we recall, is defined by the formula

W (f 1 , • • • , f n )(t) = f 1 (t) f ′ 1 (t) • • • f (n-1) 1 (t) f 2 (t) f ′ 2 (t) • • • f (n-1) 2 
(t) . . . . . . . . . . . .

f n (t) f ′ n (t) • • • f (n-1) n (t) 
.

For s ′ > -1, we write

J s ′ ,y (t) def = J s ′ (t √ y), K s ′ ,v j (t) def = K s ′ (t √ v j ),
where J s ′ stands for the Bessel function, K s ′ for the modified Bessel function of the second kind. The main result of this paper is given by the following Theorem 1.1. Let s ≤ -1 and let m be any natural number such that s + m > -1. Assume that v 1 , . . . , v m are distinct positive real numbers.

Then for the function

g(x) = m j=1 4/x 4/x + v j = m j=1 4 4 + v j x , ( 5 
)
the kernel Π g is given by the formula

Π g (x, x ′ ) = 1 2 • A (s+m,v) (1, 4/x) B (s+m,v) (1, 4/x) A (s+m,v) (1, 4/x ′ ) B (s+m,v) (1, 4/x ′ ) m j=1 (v j + 4/x)(v j + 4/x ′ ) • [C (s+m,v) (1)] 2 • (x ′ -x) ,
where

A (s+m,v) (t, y) = W (K s+m,v 1 , . . . , K s+m,vm , J s+m,y )(t), B (s+m,v) (t, y) = ∂A (s+m,v) ∂t (t, y), C (s+m,v) (t) = W (K s+m,v 1 , . . . , K s+m,vm )(t).
Remark 1.2. When s > -1, the above theorem still holds for any m ≥ 1.

In this case, for the same g as given in [START_REF] Bufetov | Infinite determinantal measures[END_REF], by results of [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF], the kernel Π g obtained above is the kernel for the operator of othogonal projection from L 2 (R + , Leb) onto the subspace √ gRanJ (s) (here, with a slight abuse of notation, we let J (s) be the operator of orthogonal projection with kernel given in (3)). Even in this case, however, the only way we can derive the explicit formula, given above, for the kernel Π g is by using the method of scaling limits.

1.2.

Organization of the paper. The remainder of the paper is organized as follows. Section 2 is devoted to some preliminary Mehler-Heine type asymptotics for Jacobi polynomials, these asymptotics will be used in the explicit calculations of the scaling limits in section 4.

In Section 3, we show that, for three kinds of auxiliary functions g, the scaling limits of the Christoffel-Darboux kernels for the Christoffel-Uvarov deformations of Jacobi orthogonal polynomial ensembles coincide with the kernels Π g which generate the determinantal probability given in [START_REF] Bufetov | Multiplicative functionals of determinantal processes[END_REF].

In section 4, we continue the study of the three kinds of auxiliary functions g. In case I, we illustrate how we calculate the scaling limits, the obtained scaling limits are the kernels for the determinantal process which are deformations of the Bessel point process of Tracy and Widom. The main formulae in Theorem 1.1 will follow from the formulae obtained in case II, given in Theorem 4.18 after change of variables z → 4/x.
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w α,β (t) = (1 -t) α (1 + t) β .
The associated Jacobi polynomials are denoted by

P (α,β) n . The leading co- efficient of P (α,β) n is denoted by k (α,β) n and h (α,β) n := [P (α,β) n (t)] 2 w α,β (t)dt.
When α = s, β = 0, we will always omit β in the notation: so w s,0 will be denoted by w s , P (s,0) n will be denoted by P (s) n and the quantity ∆ (s,0;ℓ) Q,n defined in the sequel will be denoted by ∆

(s;ℓ) Q,n , etc. Given a sequence (f (α,β) n
) ∞ n=0 of functions depending on α, β, we define the differences of the sequence by

∆ (α,β; 0) f,n := f (α,β) n , and for ℓ ≥ 0, ∆ (α,β; ℓ+1) f,n := ∆ (α,β; ℓ) f,n+1 -∆ (α,β; ℓ) f,n . By convention, we set ∆ (α,β; -1) f,n ≡ 0.
In what follows, κ n always stands for a sequence of natural numbers such that lim

n→∞ κ n n = κ > 0.
Typical such sequences are given by κ n = ⌊κn⌋.

2.2.

Asymptotics for Higher Differences of Jacobi Polynomials. In this section, we establish some asymptotic formulae for higher differences of Jacobi polynomials ∆ (α,β; ℓ) P,n .

Lemma 2.1. For ℓ ≥ 0 and n ≥ 1, we have

(n + 1)∆ (α,β; ℓ+1) P,n (x) + ℓ∆ (α,β; ℓ) P,n+1 (x) + ℓ(1 -x)∆ (α+1,β;ℓ-1) P,n+1 (x) 
+(n + α + β 2 + 1)(1 -x)∆ (α+1,β;ℓ) P,n (x) = α∆ (α,β; ℓ) P,n (x). 
(

) 6 
Proof. When ℓ = 0, identity ( 6) is reduced to known formula (cf. [15, 4.5.4]):

(n + α + β 2 + 1)(1 -x)P (α+1,β) n (x) =(n + 1)(P (α,β) n (x) -P (α,β) n+1 (x)) + αP (α,β) n (x). (7) 
Now assume that identity [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF] holds for an integer ℓ and for all n ≥ 1. In particular, substituting n + 1 for n, we have

(n + 2)∆ (α,β; ℓ+1) P,n+1 (x) + ℓ∆ (α,β; ℓ) P,n+2 (x) + ℓ(1 -x)∆ (α+1,β;ℓ-1) P,n+2 (x) 
+ (n + α + β 2 + 2)(1 -x)∆ (α+1,β;ℓ) P,n+1 (x) = α∆ (α,β; ℓ) P,n+1 (x). (8) 
Then ( 8) -(6) yields that

(n + 1)∆ (α,β; ℓ+2) P,n (x) + (ℓ + 1)∆ (α,β; ℓ+1) P,n+1 (x) + (ℓ + 1)(1 -x)∆ (α+1,β;ℓ) P,n+1 (x) 
+ (n + α + β 2 + 1)(1 -x)∆ (α+1,β;ℓ+1) P,n (x) = α∆ (α,β; ℓ+1) P,n (x) 
.

Thus (6) holds for ℓ + 1 and all n ≥ 1. By induction, identity [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF] holds for all ℓ ≥ 0 and all n ≥ 1.

The classical Mehler-Heine theorem ([15, p.192]) says that for z ∈ C \ {0},

lim n→∞ n -α P (α,β) n 1 - z 2n 2 = 2 α z -α 2 J α ( √ z). (9) 
This formula holds uniformly for z in a simply connected compact subset of C \ {0}.

Applying the above asymptotics, we have Proposition 2.2. In the regime

x (n) = 1 -z 2n 2 , for ℓ ≥ 0, we have lim n→∞ n ℓ-α ∆ (α,β; ℓ) P,κn (x (n) ) = 2 α z ℓ-α 2 J (ℓ) α (κ √ z). ( 10 
)
The formula holds uniformly in κ and z as long as κ ranges in a compact subset of (0, ∞) and z ranges in a compact simply connected subset of C \ {0}.

Proof. When ℓ = 0, identity [START_REF] Olshanski | Ergodic unitarily invariant measures on the space of infinite Hermitian matrices[END_REF] is readily reduced to the Mehler-Heine asymptotic formula [START_REF] Olshanski | The quasi-invariance property for the Gamma kernel determinantal measure[END_REF] and the uniform convergence. Now assume identity [START_REF] Olshanski | Ergodic unitarily invariant measures on the space of infinite Hermitian matrices[END_REF] holds for 0, 1, • • • , ℓ, then by [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF], we have

lim n→∞ n ℓ+1-α ∆ (α,β; ℓ+1) P,kn (x (n) ) (11) = - ℓ κ • 2 α z ℓ-α 2 J (ℓ) α (κ √ z) - ℓ κ • z 2 2 α+1 z ℓ-1-(α+1) 2 J (ℓ-1) α+1 (κ √ z) - z 2 2 α+1 z ℓ-(α+1) 2 J (ℓ) α+1 (κ √ z) + α κ 2 α z ℓ-α 2 J (ℓ) α (κ √ z) =2 α z ℓ+1-α 2 -ℓ • J (ℓ) α (κ √ z) κ √ z -ℓ • J (ℓ-1) α+1 (κ √ z) κ √ z -J (ℓ) α+1 (κ √ z) + α J (ℓ) α (κ √ z) κ √ z .
From the known recurrence relation (cf. [1, 9.1.27])

J ′ α (z) = -J α+1 (z) + α z J α (z), (12) 
by induction on ℓ, one readily sees that, for all ℓ ≥ 1,

z J (ℓ+1) α (z) + J (ℓ) α+1 (z) = (α -ℓ)J (ℓ) α (z) -ℓJ (ℓ-1) α+1 (z). (13) 
Identity [START_REF] Olshanski | Ergodic unitarily invariant measures on the space of infinite Hermitian matrices[END_REF] for ℓ + 1 follows from [START_REF] Pickrell | Separable representations for automorphism groups of infinite symmetric spaces[END_REF] and [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties[END_REF], thus the proposition is proved by induction on ℓ.

We will also need the asymptotics for the derivative of the differences of Jacobi polynomials. The derivative of the Jacobi polynomials can be expressed in Jacobi polynomials with different parameters, more precisely, we have

Ṗ (α,β) n (t) = d dt P (α,β) n (t) = 1 2 (n + α + β + 1)P (α+1,β+1) n-1 (t). ( 14 
)
Using this relation, we have Proposition 2.3. In the regime

x (n) = 1 -z 2n 2 , for ℓ ≥ 0, we have lim n→∞ n -2+ℓ-α ∆(α,β; ℓ) P,κn (x (n) ) = 2 α z -2+ℓ-α 2 J (ℓ) α+1 (κ √ z),
where J α+1 (t) := tJ α+1 (t). The formula holds uniformly in κ and z as long as κ ranges in a compact subset of (0, ∞) and z ranges in a compact simply connected subset of C \ {0}.

Proof. The relation [START_REF] Soshnikov | Determinantal random point fields. (Russian)[END_REF] 

+ ℓ • ∆ (α+1,β+1;ℓ-1) P,n . (15) 
In view of Proposition 2.2 and identity [START_REF] Szegő | Orthogonal polynomials[END_REF], we have

lim n→∞ n -2+ℓ-α ∆(α,β; ℓ) P,n (x (n) ) =2 α z -2+ℓ-α 2 κ √ zJ (ℓ) α+1 (κ √ z) + ℓJ (ℓ-1) α+1 (κ √ z) =2 α z -2+ℓ-α 2 J (ℓ) α+1 (κ √ z).
The last equality follows from Leibniz formula

tJ α+1 (t) (ℓ) = tJ (ℓ) α+1 (t) + ℓJ (ℓ-1)
α+1 (t).

2.3.

Asymptotics for Higher Differences of Jacobi's Functions of the Second Kind. Let Q (α,β) n be the Jacobi's functions of second kind defined as follows. For x ∈ C \ [-1, 1],

Q (α,β) n (x) := 1 2 (x -1) -α (x + 1) -β 1 -1 (1 -t) α (1 + t) β P (α,β) n (t) x -t dt.
Proposition 2.4. Let s > -1 and r n = w 2n 2 with w > 0. Then

lim n→∞ n -s Q (s) κn (1 + r n ) = 2 s w -s 2 K s (κ √ w),
where K s is the modified Bessel function of second kind with order s. For any ε > 0, the convergence is uniform as long as κ ∈ [ε, 1] and w ranges in a bounded simply connected subset of C \ {0}.

Proof. We show the proposition when κ n = n, the general case is similar. Define t n by the formula

1 + r n = 1 2 t n + 1 t n , |t n | < 1.
By definition, we have

lim n→∞ n(1 -t n ) = √ w.
We now use the integral representation for the Jacobi function of the second kind (cf. [15, 4.82.4]). Write

Q (s) n (1 + r n ) = 1 2 4t n 1 -t n s ∞ -∞ (1 + t n )e τ + 1 -t n -s × × 1 + r n + (2r n + r 2 n ) 1 2 cosh τ -n-1 dτ.
Taking n → ∞ and using the integral representation for the modified Bessel function(cf. [1, 9.6.24]), we see that

lim n→∞ n -s Q (s) n (1 + r n ) = 2 s-1 w -s 2 ∞ -∞ e -sτ -√ w cosh τ dτ = 2 s-1 w -s 2 ∞ -∞ e -√ w cosh τ cosh(sτ )dτ = 2 s w -s 2 ∞ 0 e -√ w cosh τ cosh(sτ )dτ = 2 s w -s 2 K s ( √ w).
Proposition 2.5. In the same condition as in Proposition 2.4, we have for all ℓ ≥ 0,

lim n→∞ n ℓ-s ∆ (s; ℓ) Q,κn (1 + r n ) = 2 s w ℓ-s 2 K (ℓ) s (κ √ w), ( 16 
)
where K (ℓ) s is the ℓ-th derivative of the modified Bessel function of second kind K s . Moreover, For any ε > 0, the convergence is uniform as long as κ ∈ [ε, 1] and w ranges in a bounded simply connected subset of C \ {0}.

Proof. It suffices to prove the proposition in the case κ n = n. The general case can easily be deduced from this special case by using the uniform convergence.

From the identity (7) we obtain

(n + 1)∆ (s; 1) Q,n (x) + (n + s 2 + 1)(x -1)∆ (s+1; 0) Q,n (x) = s∆ (s; 0) Q,n (x).
By induction, it is readily to write

(n + 1)∆ (s; ℓ+1) Q,n (x) + ℓ∆ (s; ℓ) Q,n+1 (x) + ℓ(x -1)∆ (s+1; ℓ-1) Q,n+1 (x) (17) 
+(n + s 2 + 1)(x -1)∆ (s+1; ℓ) Q,n (x) = s∆ (s; ℓ) Q,n (x),
for all ℓ ≥ 0 where by convention, we set ∆ (s; -1) Q,n := 0 . Using the formula ([1, 9.6.26])

K ′ s (t) = -K s+1 (t) + s t K s (t), (18) 
we can show that for ℓ ≥ 1,

t K (ℓ+1) s (t) + K (ℓ) s+1 (t) = (s -ℓ)K (ℓ) s (t) -ℓK (ℓ-1) s+1 (t). ( 19 
)
Proposition 2.4 says that the equation ( 16) holds for ℓ = 0. Now assume ( 16) holds for 0, 1, • • • , ℓ. By [START_REF] Vershik | A description of invariant measures for actions of certain infinitedimensional groups[END_REF], we have

lim n→∞ n ℓ+1-s ∆ (s; ℓ+1) Q,n (1 + r (n) j ) = -ℓ • 2 s w ℓ-s 2 j K (ℓ) s ( √ w j ) -ℓ • w j 2 2 s+1 w ℓ-s-2 2 j K (ℓ-1) s+1 ( √ w j ) - w j 2 • 2 s+1 w ℓ-s-1 2 j K (ℓ) s+1 ( √ w j ) + s • 2 s w ℓ-s 2 j K (ℓ) s ( √ w j ) = 2 s w ℓ-s 2 j (s -ℓ)K (ℓ) s ( √ w j ) -ℓK (ℓ-1) s+1 ( √ w j ) - √ w j K (ℓ) s+1 ( √ w j ) = 2 s w ℓ+1-s 2 j K (ℓ+1) s ( √ w j ).
This completes the proof.

Asymptotics for Higher Differences of

R (α,β) n . Definition 2.6. Define for x ∈ C \ [-1, 1], R (α,β) n (x) := (x -1) -α (x + 1) -β 1 -1 P (α,β) n (t) (x -t) 2 (1 -t) α (1 + t) β dt. Definition 2.7. For any s ∈ R, define L s (x) := sK s (x) - xK s-1 (x) + xK s+1 (x) 2 .
Proposition 2.8. Let s > -1, and γ (n) = u 2n 2 with u > 0. Then we have

lim n→∞ n -2-s R (s) κn (1 + γ (n) ) = 2 2s+3 2 • u -s+2 2 L s (κ √ u).
Moreover, for any ε > 0, the convergence is uniform as long as κ ∈ [ε, 1] and u ranges in a compact subset of (0, ∞).

Proof. The uniform convergence can be derived by a careful look at the following proof. By this uniform convergence, it suffices to show the proposition for κ n = n. Define z by the formula

x = 1 2 z + 1 z , |z| < 1.
By the integral representation for the Jacobi function of the second kind ( [15, 4.82.4]), we have

Q (s) n (x) = 1 2 4z 1 -z s ∞ -∞ (1 + z)e τ + 1 -z -s × × x + (x 2 -1) 1 2 cosh τ -n-1 dτ. Denote Q (s) n (x) := 2(x -1) s Q (s) n (x) = 1 -1 P (s) n (t) x -t (1 -t) s dt.
Then

d dx Q (s) n (x) = - 1 -1 P (s) n (t) (x -t) 2 (1 -t) s dt = -(x -1) s R (s) n (x). ( 20 
)
We have

Q (s) n (x) = 2 s ∞ -∞ 1 + x + 1 x -1 e τ -s
x + (x 2 -1)

1 2 cosh τ -n-1 dτ. Hence d dx Q (s) n (x) = T (n) 1 (x) -T (n) 2 (x),
where

T (n) 1 (x) = s • 2 s (x -1) 2 x -1 x + 1 ∞ -∞ e τ 1 + x + 1 x -1 e τ -s-1 × × x + (x 2 -1) 1 2 cosh τ -n-1 dτ and T (n) 2 (x) = (n + 1)2 s ∞ -∞ 1 + x + 1 x -1 e τ -s
x + (x 2 -1)

1 2 cosh τ -n-2 × × (1 + x √ x 2 -1 cosh τ )dτ.
We have

lim n→∞ n s-2 T (n) 1 (1 + γ (n) ) = √ 2s • u s-2 2 ∞ -∞ e -sτ -√ u cosh τ dτ = 2 √ 2s • u s-2 2 K s ( √ u). lim n→∞ n s-2 T (n) 2 (1 + γ (n) ) = √ 2u s-1 2 ∞ -∞
e -sτ e -√ u cosh τ cosh τ dτ

= √ 2u s-1 2 K s+1 ( √ u) + K s-1 ( √ u) .
Hence

lim n→∞ n s-2 d dx Q (s) n (1 + γ (n) ) =2 √ 2u s-2 2 sK s ( √ u) - √ uK s+1 ( √ u) + √ uK s-1 ( √ u) 2 =2 √ 2u s-2 2 L s ( √ u).
In view of (20), we prove the desired result.

Remark. We have the following relations

L ′ s (x) = -L s+1 (x) + s x L s (x), (21) x L (ℓ+1) s (x) + L (ℓ) s+1 (x) = (s -ℓ)L (ℓ) s (x) -ℓL (ℓ-1) s+1 (x). (22) 
Let us for example show (21). The validity of ( 22) can be verified easily by induction on ℓ. We have

L ′ s (x) =sK ′ s (x) - xK ′ s-1 (x) + K s-1 (x) + xK ′ s+1 (x) + K s+1 (x) 2 = -sK s+1 (x) + s 2 x K s (x) - -xK s (x) + (s -1)K s-1 (x) 2 - -xK s+2 (x) + (s + 1)K s+1 (x) 2 = -(s + 1)K s+1 (x) - xK s (x) + xK s+2 (x) 2 + s x sK s (x) - xK s-1 (x) + xK s+1 (x) 2 = -L s+1 (x) + s x L s (x).
Proposition 2.9. Let s > -1, and γ (n) = u 2n 2 with u > 0. Then for ℓ ≥ 0, we have

lim n→∞ n ℓ-s-2 ∆ (s; ℓ) R,κn (1 + γ (n) ) = 2 2s+3 2 • u ℓ-s-2 2 L (ℓ) s (κ √ u).
Moreover, for any ε > 0, the convergence is uniform as long as κ ∈ [ε, 1] and u ranges in a compact subset of (0, ∞).

Proof. Again, we show the proposition only for κ n = n. The formula holds for ℓ = 0. Assume that the formula holds for all 0, 1, • • • , ℓ, we shall show that it holds for ℓ + 1. By similar arguments as that for ∆ (s; ℓ)

Q,n , we can easily obtain that

(n + 1)∆ (s; ℓ+1) R,n (x) + ℓ∆ (s; ℓ) R,n+1 (x) + ℓ(x -1)∆ (s+1; ℓ-1) R,n+1 (x) + (n + s 2 + 1)(x -1)∆ (s+1; ℓ) R,n (x) = s∆ (s; ℓ) R,n (x). Hence lim n→∞ n (ℓ+1)-s-2 ∆ (s; ℓ+1) R,n (1 + γ (n) ) =(s -ℓ)2 2s+3 2 • u ℓ-s-2 2 
L (ℓ) s ( √ u) -ℓ u 2 • 2 2s+5 2 • u ℓ-s-4 2 L (ℓ-1) s+1 ( √ u) - u 2 • 2 2s+5 2 • u ℓ-s-3 2 L (ℓ) s+1 ( √ u) =2 2s+3 2 • u ℓ-s-1 2 s -ℓ √ u L (ℓ) s ( √ u) - ℓ √ u L (ℓ-1) s+1 ( √ u) -L (ℓ) s+1 ( √ u) =2 2s+3 2 • u (ℓ+1)-s-2 2 L (ℓ+1) s+1 ( √ u).

BESSEL POINT PROCESSES AS RADIAL PARTS OF PICKRELL MEASURES ON INFINITE MATRICES

3.0.1. Radial parts of Pickrell measures and the infinite Bessel point processes. Following Pickrell, we introduce a map

rad n : Mat(n, C) → R n + by the formula rad n (z) = (λ 1 (z * z), . . . , λ n (z * z)). Here (λ 1 (z * z), . . . , λ n (z * z))
is the collection of the eigenvalues of the matrix z * z arranged in non-decreasing order.

The radial part of the Pickrell measure µ

(s) n is defined as (rad n ) * µ (s)
n . Note that, since finite-dimensional unitary groups are compact, even for s ≤ -1,

if n + s > 0, then the radial part of µ (s)
n is well-defined. Denote dλ the Lebesgue measure on R n + , then the radial part of the measure µ (s)

n takes the form const n,s • i<j (λ i -λ j ) 2 • 1 (1 + λ i ) 2n+s dλ.
After the change of variables

u i = λ i -1 λ i + 1 , the radial part (rad n ) * µ (s) n = (rad n • π n ) * µ (s) is a measure defined on (-1, 1) n by the formula const n,s • 1≤i<j≤n (u i -u j ) 2 • n i=1 (1 -u i ) s du i . ( 23 
)
For s > -1, the constant is chosen such that the measure ( 23) is a probability measure, it is the Jacobi orthogonal polynomial ensemble, a determinantal point process induced by the n-th Christoffel-Darboux projection operator for Jacobi polynomials. The classical Heine-Mehler asympotitics of Jacobi polynomials imply that these determinantal point processes, when rescaled with the scaling

u i = 1 - y i 2n 2 , i = 1, . . . , n, (24) 
have as scaling limit the Bessel point process of Tracy and Widom [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF], use the same notation as in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF], we denote this point process on (0, ∞) by B (s) .

For s ≤ -1, the scaling limit under the scaling regime ( 24) is an infinite determinantal measure B (s) on Conf((0, ∞)).

In both cases, B (s) is closely related to the decomposition measure B (s) for the Pickrell measure µ (s) : the change of variable y = 4/x reduces the decomposition measure B (s) to B (s) . 3.0.2. Christoffel-Uvarov deformations of Jacobi orthogonal polynomial ensembles and the scaling limits. Now consider a sequence of functions g (n) : (-1, 1) → (0, 1] such that the measures (1 -u) s g (n) (u)du on (-1, 1) have moments of all orders. On the cube (-1, 1) n , the probability measure

const n,s • 1≤i<j≤n (u i -u j ) 2 n i=1 (1 -u i ) s g (n) (u i )du i
gives a determinantal point process induced by the corresponding n-th Christoffel-Darboux projection. After change of variable

y = n 2 x -1 n 2 x + 1 , (25) 
this point process becomes

P (s,n) e g (n) := Ψ e g (n) B (s,n) Conf (0,+∞) Ψ e g (n) dB (s,n) , (26) 
where B (s,n) is the point process (rad n •π n ) * µ (s) after the change of variable given in (25) and g (n) is the function on (0, ∞) given by

g (n) (x) = g (n) ( n 2 x -1 n 2 x + 1 ). ( 27 
)
We shall need the following elementary lemma, whose routine proof is included for completeness. Lemma 3.1. Let (Ω, m) be a measure space equipped with a σ-finite measure m. Given two sequence of positive integrable functions

(F n ) ∞ n=1 and (f n ) ∞ n=1 satisfying (a) for any n ∈ N, f n ≤ F n . (b) lim n→∞ f n = f, a.e. and lim n→∞ F n = F, a.e.. (c) lim n→∞ F n dm = F dm < ∞ . Then lim n→∞ f n dm = f dm.
Proof. By Fatou's lemma, we have

f dm ≤ lim inf n→∞ f n dm.
Again by Fatou's lemma applied on the positive sequence F n -f n , we have

(F -f )dm ≤ lim inf n→∞ (F n -f n )dm = F dm -lim sup n→∞ f n dm. Hence lim sup n→∞ f n dm ≤ f dm.
Combining these inequalities, we get the desired result.

The following three kinds of auxiliary functions are considered:

g (n) I (u) = m i=1 (1 -w i 2n 2 -u) 2 (1 -u) 2 , w i = w j ; (28) g (n) II (u) = m i=1 1 -u 1 + v i 2n 2 -u , v i = v j ; (29) g (n) III (u) = (1 -u) 2 (1 + v 2n 2 -u) 2 .
(30)

Let g

(n)

I (x) denote the function given by g (n)

I (x) = g (n) I ( n 2 x-1 n 2 x+1 ). Simi- larly, let g (n) II (x) = g (n) II ( n 2 x-1 n 2 x+1
) and g

(n) III (x) = g (n) III ( n 2 x-1 n 2 x+1 ). If g (n) is one of the functions g (n) I , g (n) II g (n)
III , then there exists a positive function g : (0, ∞) → [0, 1] and a constant M > 0 satisfying (a) lim n→∞ g (n) (x) = g(x).

(b) for any (finite or infinite) sequence of positive real numbers

(x i ) N i=1 , we have N i=1 g (n) (x i ) ≤ M • N i=1 g(x i ).
(c) for any sequence {(x

(n) i ) 1≤i≤n } ∞ n=1 satisfying x (n) i ≥ 0, lim n→∞ x (n) i = x i and lim n→∞ n i=1 x (n) i = ∞ i=1 x i < ∞,
we have

lim n→∞ n i=1 g (n) (x (n) i ) = ∞ i=1 g(x i ).
The limiting functions are

g I (x) = m i=1 (1 - w i 4 x) 2 ∼ 1 - i w i 2 x, as x → 0+; (31) g II (x) = m i=1 4 4 + v i x ∼ 1 - i v i 4 x, as x → 0+; (32) g III (x) = 4 4 + vx m ∼ 1 -m • v 4
x, as x → 0 + . (33) Proposition 3.2. Assume we are in one of the following situations:

I. g (n) = g (n) I and g = g I with s -2m > -1, II. g (n) = g (n) II and g = g II with m + s > -1, III. g (n) = g (n) III and g = g III with m + s > -1.
Then the determinantal probability measure in (26) converges weakly in M fin (Conf((0, +∞))) to

P (s) g := Ψ g B (s) Conf((0,∞)) Ψ g dB (s) . ( 34 
)
Proof. We will use the notation in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF], where, following [START_REF] Borodin | Infinite random matrices and ergodic measures[END_REF], it is proved that the measure µ (s) is supported on the subset Mat reg (N, C) for any s ∈ R. By the remarks preceding the proposition, for any z ∈ Mat reg (N, C), we have

lim n→∞ Ψ e g (n) (r (n) (z)) = Ψ g (r ∞ (z)),
and

Ψ e g (n) (r (n) (z)) ≤ M • Ψ g (r (n) (z)
). Now take any bounded and continuous function f on Conf((0, ∞)), we have

f (X)dP (s,n) e g (n) (X) = Matreg(N,C) f (r (n) (z))Ψ e g (n) (r (n) (z))dµ (s) (z) Matreg(N,C) Ψ e g (n) (r (n) (z))dµ (s) (z)
. By Lemma 3.1, it suffices to show that

lim n→∞ Mat(N,C) Ψ g (r (n) (z))dµ (s) (z) = Mat(N,C) Ψ g (r (∞) (z))dµ (s) (z). ( 35 
)
If s > -1, the measure µ (s) is a probability measure, by dominated convergence theorem, the equality (35) holds.

If s ≤ -1, the measure µ (s) is infinite. The radial part of µ (s) is an infinite determinantal process which corresponds to a finite-rank perturbation of determinantal probability measures as described in §5.2 in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF]. By using the asympotic formulae (31), ( 32) and (33) respectively in these three cases, we can check that the conditions of Proposition 3.6 in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF] are satisfied, for instance, let us check the following condition

lim n→∞ tr 1 -gΠ (s,n) 1 -g = tr 1 -gΠ (s) 1 -g, (36) 
where Π (s,n) is the orthogonal projection onto the subspace L (s+2ns,n-ns) described in §5.2.1 in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF]. Combining the estimates given in Proposition 5.11 and Proposition 5.13 in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF], the integrands appeared in tr 1 -gΠ (s,n) 1 -g are uniformly integrable, hence by the Heine-Mehler classical asymptotics, the equality (36) indeed holds. Now by Corollary 3.7 in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF], we have

Ψ g B (s,n) Conf (0,∞) Ψ g dB (s,n) → Ψ g B (s) Conf (0,∞) Ψ g dB (s) . It follows that lim n→∞ Mat(N,C) f (r (n) (z))Ψ g (r (n) (z))dµ (s) (z) Mat(N,C) Ψ g (r (n) (z))dµ (s) (z) = Mat(N,C) f (r (∞) (z))Ψ g (r (∞) (z))dµ (s) (z) Mat(N,C) Ψ g (r (∞) (z))dµ (s) (z) . (37) 
Moreover, by Lemma 1.14 in [START_REF] Bufetov | Infinite determinantal measures and the ergodic decomposition of infinite pickrell measures[END_REF], there exists a positive bounded continuous function f such that

lim n→∞ Mat(N,C) f (r (n) (z))dµ (s) (z) = Mat(N,C) f (r (∞) (z))dµ (s) (z).
Again by Lemma 3.1, we have

lim n→∞ Mat(N,C) f (r (n) (z))Ψ g (r (n) (z))dµ (s) (z) = Mat(N,C) f (r (∞) (z))Ψ g (r (∞) (z))dµ (s) (z). (38) 
Finally, (35) follows from (37) and (38), as desired.

Remark 3.3. Note that n 2 x -1 n 2 x + 1 = 1 - 4/x 2n 2 + 2/x ∼ 1 - 4/x 2n 2 .
Thus under change of variable y = 4/x, in the sequel, we only consider the scaling regimes of type

x = 1 - z 2n 2 .

SCALING LIMITS OF CHRISTOFFEL-UVAROV DEFORMATIONS OF JACOBI ORTHOGONAL POLYNOMIAL ENSEMBLES.

In this section, we will calculate explicitly the kernels for the determinatal probabilities P (s) g given in Proposition 3.2. For avoiding extra notation, we mention here that in the sequel, in case I the s corresponds to s -2m in Proposition 3.2, in cases II and III, it corresponds to s + m in Propostion 3.2. For the case III, we give the result only for m = 2.

Observe that in the new coordinate x = ρ(y), the kernel K(x 1 , x 2 ) for a locally trace class operator on L 2 (R + ) reduces to ρ ′ (y 1 )ρ ′ (y 2 )K(ρ(y 1 ), ρ(y 2 )). ) ] s be the weight on (-1, 1) given by

Explicit Kernels for Scaling

Limit: Case I. Let s > -1. Consider a sequence ξ (n) = (ξ (n) 1 , • • • , ξ (n) m ) of m-tuples of distinct real numbers in (-1, 1). Let w [ξ (n
w [ξ (n) ] s (t) = m i=1 (ξ (n) i -t) 2 • w s (t) = m i=1 (ξ (n) i -t) 2 • (1 -t) s . Let K [s,ξ (n) ] n (x 1 , x 2 ) denote the n-th Christoffel-Darboux kernel for the weight w [ξ (n) ] s
. The aim of this section is to establish the scaling limit of

K [s,ξ (n) ] n (x 1 , x 2 ) in the following regime: ξ (n) i = 1 - w i 2n 2 , 1 ≤ i ≤ m, w i > 0 are all distinct; x (n) i = 1 - z i 2n 2 , z i > 0, i = 1, 2.
(39) 4.1.1. Explicit formulae for orthogonal polynomials and Christoffel-Darboux kernels. Let (π

[s,ξ (n) ] j
) j≥0 denote the system of monic orthogonal polynomials associated with the weights w [ξ (n) ] s

. To simplify notation, if there is no confusion, we denote π

[s,ξ (n) ] j by π (n) j .
The monic polynomials π (n) j 's are given by the Christoffel formula ([15, Thm 2.5.]):

π (n) j (t) = 1 m i=1 (ξ (n) i -t) 2 • D (n) j (t) k (s) j+2m • δ (n) j , where D (n) j (t) = P (s) j (ξ (n) 1 ) P (s) j+1 (ξ (n) 1 ) • • • P (s) j+2m (ξ (n) 1 ) . . . . . . . . . P (s) j (ξ (n) m ) P (s) j+1 (ξ (n) m ) • • • P (s) j+2m (ξ (n) m ) Ṗ (s) j (ξ (n) 1 ) Ṗ (s) j+1 (ξ (n) 1 ) • • • Ṗ (s) j+2m (ξ (n) 1 ) . . . . . . . . . Ṗ (s) j (ξ (n) m ) Ṗ (s) j+1 (ξ (n) m ) • • • Ṗ (s) j+2m (ξ (n) m ) P (s) j (t) P (s) j+1 (t) • • • P (s) j+2m (t) 
; and δ

(n) j = P (s) j (ξ (n) 1 ) P (s) j+1 (ξ (n) 1 ) • • • P (s) j+2m-1 (ξ (n) 1 ) . . . . . . . . . P (s) j (ξ (n) m ) P (s) j+1 (ξ (n) m ) • • • P (s) j+2m-1 (ξ (n) m ) Ṗ (s) j (ξ (n) 1 ) Ṗ (s) j+1 (ξ (n) 1 ) • • • Ṗ (s) j+2m-1 (ξ (n) 1 ) . . . . . . . . . Ṗ (s) j (ξ (n) m ) Ṗ (s) j+1 (ξ (n) m ) • • • Ṗ (s) j+2m-1 (ξ (n) m ) . Definition 4.1. Let h [s,ξ (n) ] j = 1 -1 π (n) j (t) 2 w [ξ (n) ] s (t)dt.
Proposition 4.2. For any j ≥ 0, we have

h [s,ξ (n) ] j = h (s) j k (s) j k (s) j+2m • δ (n) j+1 δ (n) j .
Proof. By orthogonality, for any ℓ ≥ 1, we have

1 -1 P (s) j+u (t)π (n) j (t)w s (t)dt = 0.
Note that

D (n) j = δ (n) j+1 P (s) j (t) + linear combination of P (s) j+1 , • • • , P (s) 
j+2m . Hence

h [s,ξ (n) ] j = 1 k (s) j+2m δ (n) j D (n) j (t)π (n) j (t)w s (t)dt = 1 k (s) j+2m δ (n) j δ (n) j+1 P (s) j (t)π (n) j (t)w s (t)dt = δ (n) j+1 k (s) j+2m δ (n) j P (s) j (t) 2 1 k (s) j w s (t)dt = h (s) j k (s) j k (s) j+2m • δ (n) j+1 δ (n) j
.

By the Christoffel-Darboux formula (cf. [15, Thm 3.2.2]), we have:

K [s,ξ (n) ] n (x (n) 1 , x (n) 2 ) = w [ξ (n) ] s (x (n) 1 )w [ξ (n) ] s (x (n) 2 ) • n-1 j=0 π (n) j (x (n) 1 ) • π (n) j (x (n) 2 ) h [s,ξ (n) ] j = w [ξ (n) ] s (x (n) 1 )w [ξ (n) ] s (x (n) 2 ) h [s,ξ (n) ] n-1 • π (n) n (x (n) 1 ) • π (n) n-1 (x (n) 2 ) -π (n) n (x (n) 2 ) • π (n) n-1 (x (n) 1 ) x (n) 1 -x (n) 2 . After change of variables x (n) i = 1 -z i 2n 2 , z i ∈ [0, 4n 2 
], i = 1, 2, and let ξ (n) takes the form as in the regime (39), these kernels can be written as:

K [s,ξ (n) ] n (z 1 , z 2 ) = 1 2n 2 K [s,ξ (n) ] n 1 - z 1 2n 2 , 1 - z 2 2n 2 (40) = (z 1 z 2 ) s 2 | m i=1 (z 1 -w i )(z 2 -w i )| • S n (z 1 , z 2 ),
where

S n (z 1 , z 2 ) = (2n 2 ) 2m-s-1 n-1 j=0 D (n) j (1 -z 1 2n 2 )D (n) j (1 -z 2 2n 2 ) h (s) j k (s) j+2m k (s) j δ (n) j δ (n) j+1 , (41) 
or equivalently

S n (z 1 , z 2 ) = (2n 2 ) 2m-s h (s) n-1 k (s) n+2m k (s) n-1 δ (n) n 2 × (42) × D (n) n (1 -z 1 2n 2 ) • D (n) n-1 (1 -z 2 2n 2 ) -D (n) n (1 -z 2 2n 2 ) • D (n) n-1 (1 -z 1 2n 2 ) z 2 -z 1 .
4.1.2. Scaling limits. To obtain the scaling limit of the Christoffel-Darboux kernels K

[s,ξ (n) ] n (z 1 , z 2 ), we shall investigate the asymptotics of the formulae (41) or (42). These two representations (41) and (42) will yield different representations of the scaling limit: an integrable form and an integral form.

The following formulae are well-known ([15, p.63, p.68]):

k (s) j = 1 2 j • j! Γ(2j + s + 1) Γ(j + s + 1) , h (s) j 
= 2 s+1 2j + s + 1 . (43) 
The following lemma will be used frequently in the sequel. Proof. It is an easy consequence of (43) and the Stirling's approximation formula for Gamma functions, here we can also use the following convenient formula:

for all a ∈ R, lim n→∞ Γ(n + a) n a Γ(n) = 1.
Proposition 4.4. If the sequence ξ (n) satisfies (39) , then

lim n→∞ n 2m 2 -2sm-3m δ (n) κn = 2 2ms (w 1 • • • w m ) 1+s C (s,w) I (κ), where C (s,w) I (κ) = W (J s,w 1 , • • • , J s,wm , J s+1,w 1 , • • • J s+1,wm )(κ) and J s,w i (κ) := J s (κ √ w i ), J s+1,w i (κ) = J s+1 (κ √ w i ).
Moreover, the convergence is uniform as long as κ is in a compact subset of (0, ∞).

Proof. To simplify notation, we denote ∆ (s; ℓ) P,n by ∆

[ℓ] P,n in this proof. By the multi-linearity of the determinant on columns, we have

δ (n) κn = ∆ [0] P,κn (ξ (n) 1 ) ∆ [1]
P,κn (ξ

(n) 1 ) • • • ∆ [2m-1] P,κn (ξ (n) 1 ) . . . . . . . . . ∆ [0] P,κn (ξ (n) m ) ∆ [1]
P,κn (ξ

(n) m ) • • • ∆ [2m-1] P,κn (ξ (n) m ) ∆[0] P,κn (ξ (n) 1 ) ∆[1] P,κn (ξ (n) 1 ) • • • ∆[2m-1] P,κn (ξ (n) 1 ) . . . . . . . . . ∆[0] P,κn (ξ (n) m ) ∆[1] P,κn (ξ (n) m ) • • • ∆[2m-1] P,κn (ξ (n) m )
.

Multiplying the matrix used in the above formula on right by the diagonal matrix diag(n -s , n 1-s , • • • , n 2m-1-s ) and on left by the diagonal matrix diag(1,

• • • , 1 m terms , n -2 , • • • , n -2 m terms
) and taking determinant, we obtain that

n 2m 2 -2sm-3m δ (n)
κn equals to the following determinant n -s ∆

[0] P,κn (ξ

(n) 1 ) n 1-s ∆ [1]
P,κn (ξ

(n) 1 ) • • • n 2m-1-s ∆ [2m-1]
P,κn (ξ

(n) 1 ) . . . . . . . . . n -s ∆ [0] P,κn (ξ (n) m ) n 1-s ∆ [1]
P,κn (ξ

(n) m ) • • • n 2m-1-s ∆ [2m-1] P,κn (ξ (n) m ) n -2-s ∆[0] P,κn (ξ (n) 1 ) n -1-s ∆[1] P,κn (ξ (n) 1 ) • • • n 2m-3-s ∆[2m-1] P,κn (ξ (n) 1 ) . . . . . . . . . n -2-s ∆[0] P,κn (ξ (n) m ) n -1-s ∆[1] P,κn (ξ (n) m ) • • • n 2m-3-s ∆[2m-1] P,κn (ξ (n) m ) 
. and ξ (n) satisfy (39) , then

Applying
lim n→∞ n 2m 2 -m-2ms-s D (n) κn (x (n) i ) = 2 2ms+s (w 1 • • • w m ) 1+s z -s 2 i • A (s,w) I (κ, z i ), where A (s,w) I (κ, z i ) = W J s,w 1 , • • • , J s,wm , J s+1,w 1 , • • • , J s+1,wm , J s,z i (κ).
Moreover, the convergence is uniform as long as κ is in a compact subset of (0, ∞).

Proof. The proof is similar to that of Proposition 4.4. Definition 4.6. Define the column vector function θ and ξ (n) satisfy (39), then

(n) j (t) by θ (n) j (t) = P (s) j (ξ (n) 1 ), • • • , P (s) j (ξ (n) m ), Ṗ (s) j (ξ (n) 1 ), • • • , Ṗ (s) j (ξ (n) m ), P (s) j (t) 
lim n→∞ n 1+2m 2 -m-2ms-s θ (n) κn (x (n) i ) • • • θ (n) κn+2m-1 (x (n) i ) θ (n) κn+2m (x (n) i ) -θ (n) κn-1 (x (n) i ) = 2 2ms+s (w 1 • • • w m ) 1+s z -s 2 i • B (s,w) I (κ, z i ), where B (s,w) I (κ, z i ) = η s,z i (κ) η ′ s,z i (κ) • • • η (2m-1) s,z i (κ) η (2m+1) s,z i (κ) and η s,z i (κ) is the column vector J s (κ √ w 1 ), • • • , J s (κ √ w m ), J s+1 (κ √ w 1 ), • • • , J s+1 (κ √ w 1 ), J s (κ √ z i ) T .
Proof. The proof is similar to that of Proposition 4.4, we emphasize that in the proof we used the elementary fact

∆ [2m+1] P,κn-1 =P (s) κn+2m + (-1) 2m+1 P (s) κn-1
+ linear combination of P (s) κn , P

(s) κn+1 , • • • , P (s) 
κn+2m-1 .

Remark 4.8. By the property of determinant, it is easy to see that

∂ ∂κ A (s,w) I (κ, z i ) = B (s,w) I (κ, z i ).
Theorem 4.9. In the regime (39) , we have

lim n→∞ K [s,ξ (n) ] n (z 1 , z 2 ) = A (s,w) I (1, z 1 )B (s,w) I (1, z 2 ) -A (s,w) I (1, z 2 )B (s,w) I (1, z 1 ) 2 m i=1 (z 1 -w i )(z 2 -w i ) • C (s,w) I (1) 2 • (z 1 -z 2 ) .
We denote this kernel by

K [s,ξ] ∞ (z 1 , z 2 ).
Proof. It is easy to see that

D (n) n-1 (x (n) i ) = θ (n) n (x (n) i ) • • • θ (n) n+2m-1 (x (n) i ) θ (n) n-1 (x (n) i ) , hence D (n) n (x (n) i ) -D (n) n-1 (x (n) i ) equals to θ (n) n (x (n) i ) • • • θ (n) n+2m-1 (x (n) i ) θ (n) n+2m (x (n) i ) -θ (n) n-1 (x (n) i ) .
Note that

D (n) n (x (n) 1 )D (n) n-1 (x (n) 2 ) -D (n) n (x (n) 2 )D (n) n-1 (x (n) 1 ) =D (n) n (x (n) 2 ) D (n) n (x (n) 1 ) -D (n) n-1 (x (n) 1 ) -D (n) n (x (n) 1 ) D (n) n (x (n) 2 ) -D (n) n-1 (x (n) 2 ) .
Now applying Propositions 4.5 and 4.7, we obtain that

lim n→∞ n 1+4m 2 -2m-4ms-2s D (n) n (x (n) 1 )D (n) n-1 (x (n) 2 ) -D (n) n (x (n) 2 )D (n) n-1 (x (n) 1 ) = 2 4ms+2s (z 1 z 2 ) -s 2 (w 1 • • • w m ) 2+2s A (s,w) I (1, z 2 )B (s,w) I (1, z 1 ) -A (s,w) I (1, z 1 )B (s,w) I (1, z 2 ) .
Combining with Proposition 4.4, we deduce that

lim n→∞ S n (z 1 , z 2 ) =(z 1 z 2 ) -s 2 • A (s,w) I (1, z 1 )B (s,w) I (1, z 2 ) -A (s,w) I (1, z 2 )B (s,w) I (1, z 1 ) 2 C (s,w) I (1) 2 (z 1 -z 2 ) .
Substituting the above formula in (40), we get the desired result. (z 1 , z 2 ) has the following integral form:

K (s,ξ) ∞ (z 1 , z 2 ) = 1 2 m i=1 (z 1 -w i )(z 2 -w i ) 1 0 A (s,w) I (t, z 1 )A (s,w) I (t, z 2 ) C (s,w) I (t) 2 tdt.
Proof. Let us fix z 1 , z 2 > 0. For any ε > 0, we can divide the sum in (41) into two parts:

S n (z 1 , z 2 ) = (2n 2 ) 2m-s-1 ⌊nε⌋-1 j=0 • • • =: In(ε) + (2n 2 ) 2m-s-1 n-1 j=⌊nε⌋ • • • =: IIn(ε)
.

The second term II n (ε) can be written as an integral:

II n (ε) = ⌊nε⌋ n ,1 (2n 2 ) 2m-s-1 D (n) ⌊nt⌋ (x (n) 1 )D (n) ⌊nt⌋ (x (n) 2 ) h (s) ⌊nt⌋ k (s) ⌊nt⌋+2m k (s) ⌊nt⌋ δ (n) ⌊nt⌋ δ (n) ⌊nt⌋+1 • n =: Tn(t)
dt.

By Propositions 4.4 and 4.5, we have the uniform convergence for t ∈ [ε, 1]:

lim n→∞ T n (t) = (z 1 z 2 ) -s 2 2(C [s,w] (t)) 2 A (s,w) I (t, z 1 )A (s,w) I (t, z 2 )t, hence as n → ∞, II n (ε) tends to II ∞ (ε) = 1 ε (z 1 z 2 ) -s 2 2(C (s,w) I (t)) 2 A (s,w) I (t, z 1 )A (s,w) I (t, z 2 )tdt.
For the first term I n (ε), we use Christoffel-Darboux formula to write it as

(2n 2 ) 2m-s h (s) ⌊nε⌋-1 k (s) ⌊nε⌋+2m k (s) ⌊nε⌋-1 D (n) ⌊nε⌋ (x (n) 1 ) • D (n) ⌊nε⌋-1 (x (n) 2 ) -D (n) ⌊nε⌋ (x (n) 2 ) • D (n) ⌊nε⌋-1 (x (n) 1 ) δ (n) ⌊nε⌋ 2 (z 2 -z 1 )
.

By similar arguments as in the proof of Theorem 4.9,

lim n→∞ I n (ε) = I ∞ (ε),
where I ∞ (ε) is given by the formula

I ∞ (ε) = (z 1 z 2 ) -s 2 2 • A (s,w) I (ε, z 1 )B (s,w) I (ε, z 2 ) -A (s,w) I (ε, z 2 )B (s,w) I (ε, z 1 ) C (s,w) I (ε) 2 (z 1 -z 2 ) • ε.
Hence for any ε > 0, we have

lim n→∞ S n (z (n) 1 , z (n) 2 ) = I ∞ (ε) + II ∞ (ε).
The theorem is completely proved if we can establish lim ε→0 I ∞ (ε) = 0. This is given by the following lemma.

Lemma 4.11. For any z 1 , z 2 > 0, we have

lim ε→0+ A (s,w) I (ε, z 1 )B (s,w) I (ε, z 2 ) -A (s,w) I (ε, z 2 )B (s,w) I (ε, z 1 ) C (s,w) I (ε) 2 • ε = 0.
Proof. To simplify notation, let us denote

F i = J s,w i and G i = J s+1,w i . We have C [s,w] I (ε) = W (F 1 , • • • , F m , G 1 , • • • , G m )(ε).
By [START_REF] Shirai | Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes[END_REF], we have

G i (ε) = -εF ′ i (ε) + sF i (ε). If we denote H i (ε) = -εF ′ i (ε), then C [s,w] (ε) = W (F 1 , • • • , F m , H 1 , • • • , H m )(ε). We can write F i (ε) = ∞ ν=0 a (i) ν ν! ε 2ν+s and H i (ε) = ∞ ν=0 b (i) ν ν! ε 2ν+s , with a (i) ν = (-1) ν ( √ w i ) 2ν+s 2 2ν+s Γ(ν + s + 1) , b (i) ν = -(2ν + s)a (i) ν .
Define entire functions:

f i (x) = ∞ ν=0 a (i) ν ν! x ν , h i (x) = ∞ ν=0 b (i) ν ν! x ν . Then F i (ε) = ε s f i (ε 2 ) and H i (ε) = ε s h i (ε 2 ). Using the identity W (gf 1 , • • • , gf n )(x) = g(x) n • W (f 1 , • • • , f n )(x),
we obtain that

C (s,w) I (ε) = ε 2ms • W f 1 (x 2 ), • • • , f m (x 2 ), h 1 (x 2 ), • • • , h m (x 2 ) (ε).
An application of the following identity

d n dx n f (x 2 ) = n! ⌊n/2⌋ k=0 (2x) n-2k k!(n -2k)! f (n-k) (x 2 ) yields C (s,w) I (ε) = 2 m(2m-1) ε 2ms+m(2m-1) W (f 1 , • • • , f m , h 1 , • • • , h m )(ε 2 ).
We state the following simple auxiliary Lemma 4.12.

W (f 1 , • • • , f m , h 1 , • • • , h m )(z)
is an entire function and does not vanish at z = 0.

Before proving Lemma 4.12, we derive from it Lemma 4.11. Indeed, from Lemma 4.12 we have

C (s,w) I (ε) ≍ ε 2ms+m(2m-1) as ε → 0. Similarly, A (s,w) I (ε, z i ) ≍ ε (2m+1)s+m(2m+1) as ε → 0.
By Remark 4.8, we also have

B (s,w) I (ε, z i ) ≍ ε (2m+1)s+m(2m+1)-1 as ε → 0.
Hence as ε → 0, we have

A (s,w) I (ε, z 1 )B (s,w) I (ε, z 2 ) -A (s,w) I (ε, z 2 )B (s,w) I (ε, z 1 ) C (s,w) I (ε) 2 • ε ε 4m+2s .
Since we always have 4m + 2s > 0, Lemma 4.11 is proved. Now we turn to the proof of the Lemma 4.12. By definition, we know that f i , h i are entire functions, hence

W (f 1 , • • • , f m , h 1 , • • • , h m ) is also entire. It is easily to see that W (f 1 , • • • , f m , h 1 , • • • , h m )(0) equals to a (1) 0 a (1) 1 a (1) 2 • • • a (1) 2m-1 . . . . . . . . . . . . a (m) 0 a (m) 1 a (m) 2 • • • a (m) 2m-1 b (1) 0 b (1) 1 b (1) 2 • • • b (1) 2m-1 . . . . . . . . . . . . b (m) 0 b (m) 1 b (m) 2 • • • b (m) 2m-1 ,
which is in turn given by a non-zero multiple of det W , where

W =           1 w 1 w 2 1 • • • w 2m-1 1 . . . . . . . . . . . . 1 w m w 2 m • • • w 2m-1 m 0 1 2w 1 • • • (2m -1)w 2m-2 1 . . . . . . . . . . . . 0 1 2w m • • • (2m -1)w 2m-2 m           .
We claim that det W = 0. Indeed, let θ = (θ 0 , θ 1 , • • • , θ 2m-1 ) T be such that W θ = 0. In other words, we have

2m-1 k=0 θ k w k i = 0, 2m-1 k=0 kθ k w k-1 i = 0, for 1 ≤ i ≤ m.
Let Θ be the polynomial given by Θ(x) = 2m-1 k=0 θ k x k , then the above equations imply that w 1 , • • • , w m are distinct roots of Θ, each w i has multiplicity at least 2. Since deg Θ ≤ 2m -1, we must have Θ ≡ 0 and hence θ = 0. This shows that W is invertible, hence has a non-zero determinant. 4.2. Explicit Kernels for Scaling Limit: Case II. Consider a sequence of m-tuples of distinct positive real numbers r (n) = (r

(n) 1 , • • • , r (n) 
m ) and the modified weights w (r (n) ) s given as follows:

w (r (n) ) s (t) = w s (t) m i=1 (1 + r (n) i -t) = (1 -t) s m i=1 (1 + r (n) i -t) .
The n-th Christoffel-Darboux kernel associated with w

(r (n) ) s is denoted by Π (n) n (x 1 , x 2 ).
We will investigate the scaling limit of Π

(n) n (x (n) 1 , x (n)
2 ) in the regime:

x (n) i = 1 - z i 2n 2 , z i > 0, i = 1, 2. r (n) i = v i 2n 2 , 1 ≤ i ≤ m, and v i > 0 are all distinct.
(44) 4.2.1. Explicit formulae for orthogonal polynomials and Christoffel-Darboux kernels. The Christoffel-Uvarov formula implies that the following polynomials q

(n) j

for j ≥ m are orthogonal with respect to w

(r (n) ) s : q (n) j (t) = Q (s) j-m (1 + r (n) 1 ) • • • Q (s) j (1 + r (n) 1 ) . . . . . . Q (s) j-m (1 + r (n) m ) • • • Q (s) j (1 + r (n) m ) P (s) j-m (t) • • • P (s) j (t) 
.

For 0 ≤ j < m, we also denote by q

(n) j the j-th monic orthogonal polynomial, here we will not give its explicit formula. Denote

d (n) j = Q (s) j-m (1 + r (n) 1 ) • • • Q (s) j-1 (1 + r (n) 1 ) . . . . . . Q (s) j-m (1 + r (n) m ) • • • Q (s) j-1 (1 + r (n) m ) 
.

Denote by k

(s,r (n) ) j the leading coefficient of q (n) j . When j ≥ m, it is given by k (s,r (n) ) j = d (n) j k (s) j . Definition 4.13. Define h (s,r (n) ) j = 1 -1 q (n) j (t) 2 w (r (n) ) s (t)dt.
Proposition 4.14. For any j ≥ m, we have

h (s,r (n) ) j = d (n) j d (n) j+1 k (s) j h (s) j-m k (s) j-m .
Proof. Let j ≥ m, by the orthogonality, we have

h (s,r (n) ) j = q (n) j (t)d (n) j P (s) j (t)w (r (n) ) s (t)dt = d (n) j k (s) j q (n) j (t)t j w (r (n) ) s (t)dt =d (n) j k (s) j q (n) j (t)(-1) m m i=1 (1 + r (n) i -t)t j-m w (r (n) ) s (t)dt =(-1) m d (n) j k (s) j q (n) j (t)t j-m w s (t)dt =(-1) m d (n) j k (s) j (-1) m+2 d (n) j+1 P (s) j-m (t)t j-m w s (t)dt = d (n) j d (n) j+1 k (s) j k (s) j-m P (s) j-m (t) 2 w s (t)dt = d (n) j d (n) j+1 k (s) j h (s) j-m k (s) j-m 
.

By change of variables, x

(n) i = 1 -z i 2n 2
, and let r (n) be as in the regime (44), the Christoffel-Darboux kernels are given by the formula

Π (n) n (z 1 , z 2 ) = (z 1 z 2 ) s 2 m i=1 (v i + z 1 ) 1 2 (v i + z 2 ) 1 2 Σ n (z 1 , z 2 ), (45) 
where

Σ n (z 1 , z 2 ) = (2n 2 ) m-s-1 n-1 j=0 q (n) j (1 -z 1 2n 2 )q (n) j (1 -z 2 2n 2 ) d (n) j d (n) j+1 k (s) j h (s) j-m k (s) j-m , (46) 
or equivalently

Σ n (z 1 , z 2 ) = (2n 2 ) m-s d (n) n 2 h (s) n-1-m k (s) n k (s) n-1-m • q (n) n (x (n) 1 )q (n) n-1 (x (n) 2 ) -q (n) n (x (n) 2 )q (n) n-1 (x (n) 1 ) z 2 -z 1 . (47)
4.2.2. Scaling limits. Now we investigate the scaling limits. Proposition 4.15. In the regime (44) we have

lim n→∞ n m(m-1) 2 -ms d (n) κn = 2 ms (v 1 • • • v m ) -s 2 C (s,v) II (κ), lim n→∞ n m(m+1) 2 -(m+1)s q (n) κn (x (n) i ) = 2 (m+1)s (v 1 • • • v m ) -s 2 z -s 2 i A (s,v) II (κ, z i ),
where C

(s,v)

II (κ) = W K s,v 1 , • • • , K s,vm (κ), A (s,v) II (κ, z) = W K s,v 1 , • • • , K s,vm , J s,z (κ), and K s,v i (κ) = K s (κ √ v i ), J s,z (κ) = J s (κ √ z).
Proof. For ℓ ≥ 1, we have

∆ (s,ℓ) Q,n = Q (s) n+ℓ + (-1) ℓ Q (s) n + linear combination of Q (s) n+1 , • • • , Q (s) n+ℓ-1 .
The same is true for ∆ (s,ℓ) P,n and with the same coefficients. Hence for k n ≥ m, we have

d (n) κn = ∆ (s,0) Q,κn-m (1 + r (n) 1 ) • • • ∆ (s,m -1) Q,κn-m (1 + r (n) 1 ) . . . . . . ∆ (s,0) Q,κn-m (1 + r (n) 
m ) • • • ∆ (s,m -1) Q,κn-m (1 + r (n) m ) 
;

q (n) κn (x (n) i ) = ∆ (s,0) Q,κn-m (1 + r (n) 1 ) • • • ∆ (s,m) Q,κn-m (1 + r (n) 1 ) . . . . . . ∆ (s,0) Q,κn-m (1 + r (n) m ) • • • ∆ (s,m) Q,κn-m (1 + r (n) m ) ∆ (s,0) P,κn-m (x (n) i ) • • • ∆ (s,m) P,κn-m (x (n) i ) 
.

The proposition is completely proved by applying the same arguments as in the proof of Proposition 4.4 and by applying Propositions 2.2, 2.3, 2.4 and 2.5.

Proposition 4.16. In the regime (44), we have

lim n→∞ n m(m+1) 2 -(m+1)s+1 q (n) κn (x (n) i ) -q (n) κn-1 (x (n) i ) = 2 (m+1)s (v 1 • • • v m ) -s 2 z -s 2 i B (s,v) II (κ, z i ), where 
B (s,v) II (κ, z) = ∂ ∂κ A (s,v) II (κ, z) = φ s,z (κ), φ ′ s,z (κ), • • • , φ (m-1) s,z (κ), φ (m+1) s,z (κ) 
, and φ s,z (κ) is the column vector K s (κ

√ v 1 ), • • • K s (κ √ v m ), J s (κ √ z) T .
Proof. To simplify notation, we show the proposition in the case κ n = n, the proof in the general case is similar. Define column vector

β (n) j (t) = Q (s) j (1 + r (n) 1 ), • • • , Q (s) j (1 + r (n) m ), P (s) j (t) 
T .

Then for i = 1, 2,

q (n) n (x (n) i ) = β (n) n-m (x (n) i ) • • • β (n) n-1 (x (n) i ) β (n) n (x (n) i ) ; q (n) n-1 (x (n) i ) = β (n) n-1-m (x (n) i ) • • • β (n) n-2 (x (n) i ) β (n) n-1 (x (n) i ) =(-1) m β (n) n-m (x (n) i ) • • • β (n) n-1 (x (n) i ) β (n) n-1-m (x (n) i ) .
Hence

q (n) n (x (n) i ) -q (n) n-1 (x (n) i ) = β (n) n-m (x (n) i ) • • • β (n) n-1 (x (n) i ) β (n) n (x (n) i ) + (-1) m+1 β (n) n-1-m (x (n) i ) = ∆ (s,0) Q,n-m (1 + r (n) 1 ) • • • ∆ (s,m-1) Q,n-m (1 + r (n) 1 ) ∆ (s,m+1) Q,n-1-m (1 + r (n) 1 ) . . . . . . . . . ∆ (s,0) Q,n-m (1 + r (n) m ) • • • ∆ (s,m-1) Q,n-m (1 + r (n) m ) ∆ (s,m+1) Q,n-1-m (1 + r (n) m ) ∆ (s,0) P,n-m (x (n) i ) • • • ∆ (s;m-1) P,n-m (x (n) i ) ∆ (s;m+1) P,n-1-m (x (n) i )
.

We finish the proof by using Propositions 2.2, 2.3, 2.4 and 2.5.

Combining Propositions 4.15 and 4.16, we obtain Corollary 4.17. In the regime (44), we have

lim n→∞ n m(m+1)-2(m+1)s+1 q (n) κn (x (n) 1 )q (n) κn-1 (x (n) 2 ) -q (n) κn (x (n) 2 )q (n) κn-1 (x (n) 1 ) = 2 2(m+1)s (v 1 • • • v m ) -s z -s 2 1 z -s 2 2 A (s,v) II (κ, z 1 ) -B (s,v) II (κ, z 1 ) A (s,v) II (κ, z 2 ) -B (s,v) II (κ, z 2 )
. Proof. We first write q

(n) κn (x (n) 1 )q (n) κn-1 (x (n) 2 ) -q (n) κn (x (n) 2 )q (n) κn-1 (x (n) 1 ) as q (n) κn (x (n) 1 ) q (n) κn-1 (x (n) 1 ) q (n) κn (x (n) 2 ) q (n) κn-1 (x (n) 2 ) = q (n) κn (x (n) 1 ) q (n) κn-1 (x (n) 1 ) -q (n) κn (x (n) 1 ) q (n) κn (x (n) 2 ) q (n) κn-1 (x (n) 2 ) -q (n) κn (x (n) 2 )
.

The corollary now follows from Propositions 4.15 and 4.16.

ε ε 2s-2m+3 .
Since 2s -2m + 3 > 0, the lemma is completely proved.

Remark. Let us consider the case where -1 < s < 0 and m = 1. Let us denote

I (s,v) (κ, z 1 , z 2 ) = K s (κ √ v) √ vK ′ s (κ √ v) J s (κ √ z 1 ) √ z 1 J ′ s (κ √ z 1 ) K s (κ √ v) √ vK ′ s (κ √ v) J s (κ √ z 2 ) √ z 2 J ′ s (κ √ z 2 ) 2 (v + z 1 )(v + z 2 ) • K s (κ √ v) 2 • κ. (48) 
For any ε, we divide the following sum into two parts:

Π (n) n (z 1 , z 2 ) = 1 2n 2 n-1 j=0 q j (x (n) 1 )q j (x (n) 2 ) h (s,r (n) ) j w (r (n) ) s (x (n) 1 )w (r (n) ) s (x (n) 2 ) = 1 2n 2 ⌊nε⌋-1 j=0 • • • :=S (1) n (ε,z 1 ,z 2 ) + 1 2n 2 n-1 j=⌊nε⌋ • • • :=S (2) n (ε,z 1 ,z 2 )
.

From the previous propositions and Theorem 4.18, we know that the following limits all exist

lim n→∞ S (1) n (ε, z 1 , z 2 ), lim n→∞ S (2) n (ε, z 1 , z 2 ), lim n→∞ Π (n) n (z 1 , z 2 ).
By denoting

S (1) ∞ (ε, z 1 , z 2 ) = lim n→∞ S (1) n (ε, z 1 , z 2 ), S (2) ∞ (ε, z 1 , z 2 ) = lim n→∞ S (2) n (ε, z 1 , z 2 ),
we have for any ε > 0,

Π (s,v) ∞ (z 1 , z 2 ) = S (1) ∞ (ε, z 1 , z 2 ) + S (2) ∞ (ε, z 1 , z 2 ). (49) 
If z 1 = z 2 , then every term is positive, hence

Π (s,v) ∞ (z 1 , z 1 ) ≥ S (2) ∞ (ε, z 1 , z 1 ) = 1 ε I (s,v) (κ, z 1 , z 1 )dκ.
By Cauchy-Schwarz inequality, we can show that

|I (s,v) (κ, z 1 , z 2 )| 2 ≤ I (s,v) (κ, z 1 , z 1 ) • I (s,v) (κ, z 2 , z 2 ).
Again by Cauchy-Schwarz inequality, we see that κ → I (s,v) (κ, z 1 , z 2 ) is integrable on (0, 1). Combining this fact with (49), we see that the limit lim ε→0+ S

∞ (ε, z 1 , z 2 ) always exists. Let us denote this limit by S

(1) ∞ (0, z 1 , z 2 ). Now we show that S

(1) ∞ (0, z 1 , z 2 ) is not identically zero. Let z 1 = z 2 , then for any ε > 0, we have S (1) n (ε, z 1 , z 1 ) ≥

1 2n 2 q 0 (x (n) 1 ) 2 h (s,r (n) ) 0 w (r (n) ) s (x (n) 1 ) = 1 2n 2 1 1 -1 w (r (n) ) s (t)dt (1 -x (n) 1 ) s 1 + r (n) -x (n) 1 = z s 1 v + z 1 1 (2n 2 ) s 1 -1 w (r (n) ) s (x)dx .
We have

(2n 2 ) s 1 -1 w (r (n) ) s (x)dx = 4n 2 0 t s v + t dt n→∞ ---→ ∞ 0 t s v + t dt = v s Γ(-s)Γ(s + 1). Hence S (1) ∞ (0, z 1 , z 1 ) ≥ 1 v s Γ(-s)Γ(s + 1) • z s 1 v + z 1 = 0. = K s (ε √ v) 2 ∂ ∂ε J s (ε √ z 1 ) K s (ε √ v) 2 ∂ ∂ε    ∂ ∂ε Js(ε √ z 2 ) Ks(ε √ v) ∂ ∂ε Js(ε √ z 1 ) Ks(ε √ v)    . (51) 
As ε → 0+, we have

K s (ε √ v) 2 ∼ π 2 sin(sπ) ( √ v 2 ) s Γ(s + 1) 2 ε 2s , (52) ∂ ∂ε J s (ε √ z 1 ) K s (ε √ v) 2 ∼ 2Γ(s + 1)( √ z 1 2 ) s π 2 sin(sπ) Γ(-s)( √ v 2 ) 3s 2 ε -4s-2 , (53) ∂ ∂ε    ∂ ∂ε Js(ε √ z 2 ) Ks(ε √ v) ∂ ∂ε Js(ε √ z 1 ) Ks(ε √ v)    ∼ √ z 2 √ z 1 s Γ(-s) Γ(s + 1) √ v 2 2s z 1 -z 2 2 ε 2s+1 . (54)
For example, let us check the asymptotic formula (54). We have

J s (ε √ z i ) K s (ε √ v) = 2 sin(sπ) π √ z i 2 s F (ε 2 z i ) G (ε 2 ) -ε -2s H (ε 2 )
,

where F , G , H are entire functions given by

F (z) = ∞ ν=0 (-1) ν ( z 4 ) ν ν!Γ(ν + s + 1) , G (z) = √ v 2 s ∞ ν=0 ( z 4 ) ν ν!Γ(ν + s + 1)
,

H (z) = √ v 2 -s ∞ ν=0 ( z 4 ) ν ν!Γ(ν -s + 1)
.

It follows that ∂ ∂ε    ∂ ∂ε Js(ε √ z 2 ) Ks(ε √ v) ∂ ∂ε Js(ε √ z 1 ) Ks(ε √ v)    = √ z 2 √ z 1 s 2ε • ∂ ∂x   ∂ ∂x F (xz 2 ) G (x)-x -s H (x) ∂ ∂x F (xz 1 ) G (x)-x -s H (x)   (ε 2 ) =: Q(ε 2 ) . For i = 1, 2, let us denote Q i (x) =z i F ′ (xz i ) x s+1 G (x) -xH (x) -F (xz i ) x s+1 G ′ (x) + sH (x) -xH ′ (x) , then Q(x) = ∂ ∂x Q 2 (x) Q 1 (x) . Note that Q 1 (0) = Q 2 (0) = -sF (0)H (0). Now we obtain that, as x → 0+, Q(x) ∼ (s + 1)x s Q 1 (0) 2 • Q 2 (0) z 2 F ′ (0)G (0) -F (0)G ′ (0) -Q 1 (0) z 1 F ′ (0)G (0) -F (0)G ′ (0) ∼ (s + 1)x s -sF (0)H (0) F ′ (0)G (0)(z 2 -z 1 ) ∼ Γ(-s) Γ(s + 1) √ v 2 2s z 1 -z 2 4 x s .
Combining the above asymptotics, we get (54). Substituting (52), ( 53) and ( 54) to (51), we have

A (s,v) II (ε, z 1 )B (s,v) II (ε, z 2 ) -A (s,v) II (ε, z 2 )B (s,v) II (ε, z 1 ) K s (ε √ v) 2 ∼ 2(z 1 -z 2 ) Γ(-s)Γ(s + 1) √ z 1 z 2 v s ε -1 , as ε → 0 + .
Finally, (50), we get the formula for S 

∞ (0, z 1 , z 2 ): 1 Γ(-s)Γ(s + 1) 1 (v + z 1 )(v + z 2 ) √ z 1 z 2 v s = N (s,v) (z 1 )N (s,v) (z 2 ).
For α > -1, we denote by J (α) (x, y) the Bessel kernel, i.e.,

J (α) (x, y) = J α ( √ x) √ yJ ′ α ( √ y) -J α ( √ y) √ xJ ′ α ( √ x) 2(x -y) .
It is well-known (cf. e.g. [START_REF] Tracy | Level spacing distributions and the Bessel kernel[END_REF]) that the Bessel kernel has the following integral representation:

J (α) (x, y) = 1 4 1 0 J α ( √ tx)J α ( √ ty)dt. Proposition 4.23. Let m = 1 and -1 < s < 0. Then lim v→0+ Π (s,v) ∞ (z 1 , z 2 ) = J (s+1) (z 1 , z 2 ).
Moreover, the convergence is uniform as soon as z 1 , z 2 are in compact subsets of (0, ∞).

Proof. Fix -1 < s < 0. It is easy to see that

lim v→0+ N (s,v) (z) = 0,
and the convergence is uniform for z in compact subset of (0, ∞). By ( 12) and (18), we have

A (s,v) II (κ, z i ) = K s (κ √ v) - √ vK s+1 (κ √ v) J s (κ √ z i ) - √ z i J s+1 (κ √ z i ) .
Then apply the asymptotics of K s , K s+1 near 0 to get

lim v→∞ A (s,v) II (κ, z i ) K s (κ √ v) = - √ z i J s+1 (κ √ z i ).
It follows that

lim v→0+ I (s,v) (κ, z 1 , z 2 ) = J s+1 (κ √ z 1 )J s+1 (κ √ z 2 ) 2 • κ.
For any 0 < ε < 1, the convergence is uniform as long as κ ∈ [ε, 1] and z 1 , z 2 in compact subsets of (0, ∞). Hence

lim v→0+ 1 ε I (s,v) (κ, z 1 , z 2 )dκ = 1 ε J s+1 (κ √ z 1 )J s+1 (κ √ z 2 ) 2 • κdκ.
The above term tends to

1 0 J s+1 (κ √ z 1 )J s+1 (κ √ z 2 ) 2 • κdκ = 1 4 1 0 J s+1 ( √ tz 1 )J s+1 ( √ tz 2 )dt uniformly as z 1 , z 2 in compact subsets of (0, ∞), when ε → 0. It is easy to see that sup 0<v<R,r<|z 1 |,|z 2 |<R ε 0 I (s,v) (κ, z 1 , z 2 )dκ ε s+1 . Hence lim v→0+ Π (s,v) ∞ (z 1 , z 2 ) = J (s+1) (z 1 , z 2 ),
with uniform convergence as long as z 1 , z 2 are in compact subsets of (0, ∞).

Remark 4.24. When m ≥ 2 and -1 < s < m -1, the situation is similar, but the formula and the proof will be slightly tedious.

4.3.

Explicit Kernels for Scaling Limit: Case III. Let s > -1. We consider in this section a sequence of positive real numbers γ (n) and modify the Jacobi weights given by

w (n) s (t) = w s (t) (1 + γ (n) -t) 2 = (1 -t) s (1 + γ (n) -t) 2 .
The n-th Christoffel-Darboux kernel associated with w

(n) s is denoted by Φ (n) n (x 1 , x 2
). We will investigate the scaling limit of Φ

(n) n (x (n) 1 , x (n)
2 ) in the regime:

x (n) i = 1 - z i 2n 2 with z i > 0, i = 1, 2. γ (n) = u 2n 2 with u > 0.
(55) 4.3.1. Explicit formulae for orthogonal polynomials and Christoffel-Darboux kernels. For j ≥ 2, we set

p (n) j (t) := Q (s) j-2 (1 + γ (n) ) Q (s) j-1 (1 + γ (n) ) Q (s) j (1 + γ (n) ) R (s) j-2 (1 + γ (n) ) R (s) j-1 (1 + γ (n) ) R (s) j (1 + γ (n) ) P (s) j-2 (t) P (s) j-1 (t) P (s) j (t) ; e (n) j := Q (s) j-2 (1 + γ (n) ) Q (s) j-1 (1 + γ (n) ) R (s) j-2 (1 + γ (n) ) R (s) j-1 (1 + γ (n) )
.

The leading term of p

(n) j is k (n) j = e (n) j k (s) j .
Proposition 4.25. For j ≥ 2, the polynomial q (n) j is the j-th orthogonal polynomial with respect to the weight w

(n) s on [-1, 1].
Proof. By the Uvarov formula, we know that for j ≥ 1,

p (n) j (t) = Q (s) j-1 (1 + γ (n) ) Q (s) j (1 + γ (n) ) P (s) j-1 (t) P (s) j (t)
is the j-th orthogonal polynomial with respect to the weight ws(t) 1+γ (n) -t . Applying the Uvarov formula again, we know that for j ≥ 2,

C j-1 (1 + γ (n) ) C j (1 + γ (n) ) p (n) j-1 (t) p (n) j (t) (56) 
is the j-th orthogonal polynomial with respect to the weight ws(t) (1+γ (n) -t) 2 , where we denote by

C j (x) = 1 -1 p (n) j (t) x -t • w s (t) 1 + γ (n) -t dt.
We can easily verify that the polynomial (56) is a multiple of p (n) j .

Definition 4.26. For j ≥ 2, denote

h (n) j = 1 -1 p (n) j (t) 2 (1 -t) s (1 + γ (n) -t) 2 dt.
Proposition 4.27. For j ≥ 2, we have the identity

h (n) j = e (n) j e (n) j+1 k (s) j h (s) j-2 k (s) j-2 
.

Proof. By the orthogonality property, we have The Christoffel-Darboux kernels Φ

h (n) j = 1 -1 p (n) j (t)e (n) j P (s) j (t) (1 -t) s (1 + γ (n) -t) 2 dt = e (n) j k (s) j 1 -1 p (n) j (t) • t j • (1 -t) s (1 + γ (n) -t) 2 dt = e (n) j k (s) j 1 -1 p (n) j (t) • t j-2 • (1 + γ (n) -t) 2 • (1 -t) s (1 + γ (n) -t) 2 dt = e (n) j k (s) j 1 -1 p (n) j (t) • t j-
(n) n in the (x

(n) 1 , x (n) 
2 )-coodinates are given by

Φ (n) n (x (n) 1 , x (n) 
2 ) = w

(n) s (x (n) 1 ) w (n) s (x (n) 2 ) n-1 ℓ=0 p (n) ℓ (x (n) 1 )p (n) ℓ (x (n) 2 ) h (n) ℓ = w (n) s (x (n) 1 ) w (n) s (x (n) 2 ) b h (n) n-1 b k (n) n b k (n) n-1 • p (n) n (x (n) 1 )p (n) n-1 (x (n) 2 ) -p (n) n (x (n) 2 )p (n) n-1 (x (n) 1 ) x (n) 1 -x (n) 2 .
These kernels in the (z 1 , z 2 )-coodinates are given by 

Φ (n) n (z 1 , z 2 ) = 1 2n 2 Φ (n) n 1 - z 1 2n 2 , 1 - z 2 2n 2 .
III (κ, z) = K s (κ √ u) u 1 2 K ′ s (κ √ u) uK ′′ s (κ √ u) L s (κ √ u) u 1 2 L ′ s (κ √ u) uL ′′ s (κ √ u) J s (κ √ z) z 1 2 J ′ s (κ √ z) zJ ′′ s (κ √ z)
.

Moreover, for any ε > 0, the convergences are uniform as long as κ ∈ [ε, 1] and z i ranges compact simple connected subset of C \ {0}.

Proof. The proof is similar to that of Proposition 4.4. .

Moreover, for any ε > 0, the convergences are uniform as long as κ ∈ [ε, 1] and z i ranges compact simple connected subset of C \ {0}.

Proof. The proof is similar to that of Proposition 4.7.

Now we obtain the following theorem. (1)

2 • (z 1 -z 2 ) .

For investigating the integral form of the scaling limit Φ (1 -t) w (n) s (t)dt.

The contribution of p

(n) 0 to the kernel is

w (n) s (x (n) 1 ) w (n) s (x (n)
2 ) 2n 2 • p

(n) 0 (x (n) 1 )p (n) 0 (x (n) 2 ) h (n) 0 = (z 1 z 2 ) s 2 (z 1 + u)(z 2 + u) • (2n 2 ) 1-s 1 - 1 
(1-t) s (1+ u 2n 2 -t) 2 dt . We note that for -1 < s < 1, we have

1 -1 (1-t) s (1+ u 2n 2 -t) 2 dt (2n 2 ) 1-s = 4n 2 0 t s (t + u) 2 dt n→∞ ---→ ∞ 0 t s (t + u) 2 dt = u s-1 B(1 + s, 1 -s) = u s-1 Γ(1 + s)Γ(1 -s).
The contribution of p 

(n) s (x (n) 1 ) w (n) s (x (n) 2 ) 2n 2 • p (n) 1 (x (n) 1 )p (n) 1 (x (n) 2 ) h (n) 1 = (z 1 z 2 ) s 2 (z 1 + u)(z 2 + u) • (2n 2 ) 1-s p (n) 1 (x (n) 1 )p (n) 1 (x (n) 2 ) h (n) 1 .
For -1 < s < 0, we have

1 h (n) 0 1 -1
(1 -t) w (n) s (t)dt = The detail proof of the following proposition is long but routine and similar to the proof of Proposition 4.22, so we omit its proof here.
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  w

  31. For -1 < s < 1, define a positive function on R * + :

Theorem 4.18. In the regime (44), we obtain the scaling limit

Proof. By (47) and Proposition 4.15, Corollary 4.17, we have

Combining this with (45), we get the desired result.

has the following integral form:

Proof. The proof is similar to that of Theorem 4.10, a slight difference is, instead of using Lemma 4.11, we shall use the following Lemma 4.20. Lemma 4.20. Let s > m -1, s / ∈ N. For any z 1 , z 2 > 0, we have

,

we can write

, where

By the assumption s > m -1, we know that A i are all differentiable up to order at least m -1 on the neighbourhood of 0, hence

is continuous, and

2

, as ε → 0. In a similar way, we can show that

Definition 4.21. For -1 < s < 0, define a positive function on R * + :

Proposition 4.22. For m = 1 and -1 < s < 0, we have

Proof. By (49), it suffices to show that

. By similar arguments in the proof of Theorem 4.18, S

For m = 1, we have