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Abstract: A Multi-Agent Minimum-Cost Flow problem is addressed in this paper. It can be seen as a basic multi-agent

transportation problem where every agent can control the capacities of a set of elementary routes (modeled

as arcs inside a network), each agent incurring a cost proportional to the chosen capacity. We assume that a

customer is interesting in transshipping a product flow from a source to a sink node through the transportation

network. It offers a reward that is proportional to the flow that the agents manage to provide. The reward is

shared among the agents according to a pre-established policy. This problem can be seen as a non-cooperative

game where every agent aims at maximizing its individual profit. We take interest in finding stable strategies

(i.e., Nash Equilibrium) such that no agent has any incentive to modify its behavior. We show how such

equilibrium can be characterized by means of augmenting or decreasing path in a reduced network. We also

focus on the problem of finding a Nash equilibrium that maximizes the flow value and prove its NP-hardness.

1 INTRODUCTION

Multi-agent network games have become a promising

interdisciplinary research area with important links

to many application fields such as transportation,

project scheduling, computer network, etc. In these

applicative areas, decision processes often involve

several actors, each one having its own autonomy, its

own objectives and its own constraints. These actors,

often referred to as agents, aim at maximizing their

own profits, provided a global objective should be

fulfilled. This kind of problem, called multi-agent

optimization, can be met in many real-life problems

such as transportation networks, supply chain man-

agement, web services, production, etc. The nature

and complexity of network optimization problems

change significantly when the multi-agent context is

considered. Besides optimizing a global objective, a

solution should also satisfy additional criteria related

to multi-agent games. In fact, on the one hand, a

solution should optimize the agent’s objective and, on

the other hand, should also be stable in the sense of

Nash (i.e.; no agent is able to improve its profit, to the

detriment of the others). Those additional features

are connected with multi-objective optimization and

Game Theory, respectively. This work sits at the

crossroads between two disciplines, namely multi-

agent systems and social networks. The former ties in

with distributed resolution of multi-agent problems,

while the latter is connected to game theory, which

formalizes the multi-agent optimization problem with

strategic game between different agents.

Recently, some researchers have paid attention to a

particular multi-agent network problem: the Multi-

Agent Project Scheduling (MAPS) problem. In the

seminal work of (Evaristo and Fenema, 1999), the

authors proposed a special framework for distributed

projects, with costs and rewards shared among agents.

In an earliest work (De et al., 1997), the authors

consider a MAPS problem where each agent can

control the duration of its activities at a given cost.

The project activities and precedence constraints are

classically modeled by an activity-on-arc graph. A

reward is offered to agents when they manage to

finish the project earlier than expected, as proposed in

(Fernandez, 2012). It was demonstrated in (Agnetis

et al., 2013) and (Briand et al., 2012a) that finding a

Nash equilibrium minimizing the project makespan

is NP-hard in the strong sense . Moreover, based

on the concepts of increasing and decreasing cuts,

as defined in (Kamburowski, 1994), and, on duality

between maximum flow and minimum cut problems,



Briand et al. (2012b) proposed an efficient integer

linear program formulation for this problem (Briand

et al., 2012b).

Another important application to the network opti-

mization is the well-known Network Flow theory

(Ford and Fulkerson, 1958). Several algorithms have

been developed in order to find a maximum flow in

a network. Ford and Fulkerson (1956) were the first

to develop a clever algorithm based on the duality

between minimum cut and maximum flow (Ford and

Fulkerson, 1956). Later on, efficiency improvements

were proposed see eg; (Edmunds and Karp, 1972),

(Goldberg and Tarjan, 1986), etc. The minimum cost

maximum flow problem, which is equivalent to the

minimum cost circulation problem, is solvable in

polynomial time (Tardos, 1985).

As regards to social networks, the prediction of

agents’ behavior is of interest. Several papers focus

on games associated with various forms of networks,

see (Tardos and Wexler, 2007) for an overview. In

a recent work, Apt and Markakis (2011) studied the

complexity of finding a Nash Equilibrium for the

multi-agent social networks with multiple products,

in which the agents, influenced by their neighbors,

can choose one out of several alternatives (Apt and

Markakis, 2011).

Specifically, this work considers a transportation

network that involve a set of agents, each one being

in charge of a part of the network. It is assumed

that each agent is able to control the transportation

capacities of its arcs. A lot of features of this work

are inspired by the multi-agent project scheduling

problems, as presented in (Briand et al., 2012a),

especially concerning the reward sharing policy.

In fact, the outcome of an agent depends on its

own strategy and on the satisfaction of a customer,

which depends on the network flow. As proposed

by Fernandez (2012) (Fernandez, 2012), we assume

that the customer gives a reward proportional to the

maximum-flow that can circulate inside the network.

This reward is shared among agents according to

some ratios predefined in the network design phase

(Cachon and Lariviere, 2005).

To the best of our knowledge, the research presented

here is an original way of presenting a transportation

problem using multi-agent network flow with con-

trollable arcs capacities. One important application to

the problem proposed in this paper is the distributed

control of transportation networks, like traffic, water,

where the road of the network are distributed among

several agents which can control the amount of

product or water to circulate on the network.

This paper mainly discusses the complexity of finding

a Nash Equilibrium that maximizes the flow in the

network.

The paper is organized as follows: Section 2 defines

formally the Multi-Agent Minimum-Cost Flow prob-

lem and introduces some important notations. There-

after, Section 3 introduces the duality between effi-

ciency and stability of a strategy and presents some

important definitions and properties. In Section 4 and

5, we illustrate some basic notions for the single agent

and the multi-agent cases, respectively. In Section 6,

an example is provided to illustrate the notions intro-

duced in previous sections. Section 7 deals with the

complexity of the problem of finding a Nash equilib-

rium with bounded flow. Finally, conclusions and fu-

ture directions are drawn in Section 8.

2 PROBLEM STATEMENT AND

NOTATIONS

We focus on a Minimum-Cost Flow problem under

a Multi-Agent context. This problem will be further

referred to as MA-MCF. Considering a transportation

network with limited arc capacities, this problem con-

sists in sending a maximum amount of products from

a source node to a sink node, at minimum cost. In

this work, a major assumption is that arc capacities

are controlled by agents, each arc being assigned to a

specific agent.

2.1 Problem Definition

The MA-MCF problem can be described as a tuple

< G,A ,Q,Q,C,π,W >, where:

• G= (V,E) is a flow network. V is the set of nodes,

s, t ∈V being the source and the sink nodes of the

flow network G, respectively. E is the set of arcs,

each one having its capacity and receiving a flow.

An arc e from node i to node j is denoted by e =
(i, j).

• A is a set of m agents: A = {A1, . . . ,Au, . . . ,Am}.

Arcs are distributed among agents. An agent Au

owns a set of mu arcs, denoted Eu. Each arc (i, j)
belongs to exactly one agent (i.e., Eu ∩Ev = /0 for

each agent’s pair (Au,Av) ∈ A
2 such that u 6= v).

• qi, j is the capacity of arc (i, j) which takes value in

an interval [q
i, j
,qi, j]. q

i, j
(resp. qi, j) is the normal

(resp. maximum) arc capacity. Q = (q
i, j
)(i, j)∈E

and Q = (qi, j)(i, j)∈E referred to as the vectors of

normal and maximum arc capacities, respectively.



For any circulating flow fi, j, it classically holds

fi, j ≤ qi, j with qi, j ∈ [q
i, j
,qi, j].

• C = {ci, j} is the vector of costs where ci, j is the

unitary cost incurred by agent Au, such that (i, j)∈
Eu, for increasing qi, j by one unit.

The vector Cu denotes the cost vector incurred by

augmenting the capacity of arcs by the agent Au.

• π referred to as a reward given by a final client.

This reward is proportional to the maximum flow

that can circulate from s to t.

• W = {wu} defines the sharing policy of rewards

among the agents. The Au reward for a gain of

one unit of maximum flow equals wuπ.

We denote by Qu, u = 1, . . . ,m the vector of

capacities chosen by the agent Au for the arcs

belonging to him. Q ≤ Qu ≤ Q represents the

individual strategy of the agent Au. We further

refer to S = (Q1, . . . ,Qm) as the vector of individual

strategies of all agents. A strategy S−u denote the

strategies of the (m− 1) players, but agent Au, such

that S−u = (Q1,Q2, ..,Qu−1,Qu+1, ..,Qm).
Given a strategy S, F(S) denotes the maximum flow

that can circulate on the network flow given the

current values of capacities. It is equal to the sum of

flow circulating in the forward arcs of source node

(i.e., F = ∑(s, j)∈E fs, j). F corresponds to the maxi-

mum flow when capacities qi, j are set to q
i, j

, in other

words, the largest possible flow at zero cost. F is the

maximum flow that can circulate when capacities are

set to their maximum values (qi, j = qi, j). Therefore,

for any strategy S, it holds that F ≤ F(S)≤ F .

It is assumed, in this paper, that the share of reward

among agents wu did not depend on the arcs used

by agents. It is nevertheless possible to extend this

work to the case in which the reward depends on how

much the resource owned by each agent is used at

optimum.

The cost incurred by agent Au for a strategy Qu

equals:

Cu(Qu −Q
u
) = ∑

(i, j)∈Eu

ci, j(qi, j −q
i, j
)

With respect to the above payment scheme, the total

reward given for a circulating flow F(S) under strat-

egy S is π (F(S)−F).
The profit Zu(S) of agent Au under strategy S is equal

to:

Zu(S) = wu π (F(S)−F)− ∑
(i, j)∈Eu

ci, j(qi, j −q
i, j
)

(1)

We denote by Z(S) = (Z1(S), . . . ,Zm(S)) the overall

profit vector.

Example of a MA-MCF Network

The network flow G(V,E) displayed in Fig. 1 is com-

posed of five arcs E = {a,b,c,d,e} distributed be-

tween two agents A1 and A2 such that E1 = {b,c,d}
and E2 = {a,e} (their assigned arcs are represented

with plain and dotted arcs, respectively). The set of

vertex is V = {A,B,C,D} where the source node is

A and sink node is D. Each arc in the graph 1 is

denoted by the interval of normal and maximum ca-

pacities, and by the cost of increasing arc capacities

([q
i, j
,qi, j],ci, j). Costs and capacities are such that

CAB = CBD = 50, CAC = CCD = 30, CBC = 10 and

qAB, qBD, qAC, qCD, qBC ∈ [0,1]. When increasing arc

capacities which leads to one additional unit of flow

circulating, a final client gives reward π = 120 which

will be shared between agents following the sharing

policy w1 = w2 =
1
2
.

B 

C 

Agent A1  

Agent A2 ,i jc

A 
D 

Figure 1: Problem description of example 1

2.2 Mathematical Formulation

Each agent should choose the capacities of its arcs,

having the objective of maximizing its own profit.

The problem can be formalized as the following

multi-objective mathematical program:



Max (Z1(S),Z2(S), . . . ,Zm(S))
s.c.
(i) fi, j ≤ qi, j, ∀(i, j) ∈ E

(ii) ∑(i, j)∈E fi, j −∑( j,i)∈E f j,i =







0 ∀i 6= s, t
F , i = s

−F , i = t

(iii) q
i, j

≤ qi, j ≤ qi, j, ∀(i, j) ∈ E

fi, j ≥ 0, ∀(i, j) ∈ E

Where Zu(S), u = 1, . . . ,m is the profit of agent Au

given by the equation (1) for each strategy S.

Constraints (i) represent the capacity constraints.

Constraints (ii) impose the conservation of the flow.

The aim of this problem is to find an overall strategy

S that maximizes agents’ profit. Each agent Au has to

decide the arc capacity qi, j, ∀(i, j) ∈ Eu in order to

maximize its profit.

3 EFFICIENCY VS. STABILITY

A strategy is said efficient if it corresponds to

a Pareto-optimal solution with respect to the above

multi-objective program. The notion of Pareto opti-

mality is concerned with social efficiency (Ehrgott,

2005). A Pareto strategy is preferred to any other

strategy dominated by it.

Definition 1. Pareto optimality: A strategy S is

Pareto-optimal if it is not dominated by any other

strategy S′. In other words, it does not exist any strat-

egy S′ such that Zu(S
′)≥ Zu(S) for all Au, with at least

one inequality being strict.

The set of Pareto optimal strategies is denoted by SP.

On the other hand, a strategy is stable if there is no in-

centive for any agent to modify its decision in order to

improve its profit. The stability of a strategy ensures

that agents can trust each other. It is connected to the

notion of Nash equilibrium in non-cooperative game.

Definition 2. Nash Equilibrium: given a sharing re-

ward policy wu, a strategy S = (Q1, . . . ,Qm) is a Nash

Equilibrium if for any agent Au with strategy Q′
u, the

following equation holds:

Zu(Qu,S−u)≥ Zu(Q
′
u,S−u), ∀Q′

u 6= Qu (2)

We refer to SN as the set of Nash equilibria.

Let us also define the concept of a poor strategy.

This concept will be useful for characterizing prop-

erly Nash equilibria.

Definition 3. Poor strategy: A strategy S =
(Q1, . . . ,Qm) with flow F(S) is a poor strategy if and

only if it exists an agent Au and an alternative strategy

Q′
u such that Zu(S)< Zu(S

′) and F(S′) = F(S), where

S′ = (S−u,Q
′
u).

In other words, S is a poor strategy if and only if

one agent is able to increase its profit by changing

unilaterally its strategy (modifying the capacity of

some of its arcs), without modifying the overall flow

in the network, nor the profits of other agents. It is

obvious that for any poor strategy S, S 6∈ SN
⋃

SP.

The set of non-poor strategies will be denoted by Ŝ.

Ideally, agents should choose a strategy which sat-

isfy both Pareto optimality and Nash stability (i.e.,

S ∈ SN
⋂

SP). Nevertheless, since SN
⋂

SP can be

empty, such a strategy is not always attainable. In

this case, we are looking for a Nash equilibrium that

is as efficient as possible with respect to the customer

viewpoint. A Nash equilibrium that maximizes the

flow circulating is indeed suitable both for maximiz-

ing the total reward and the customer satisfaction.

The aim of this study is to find an optimal strategy

profile S∗ such that the solution is a Nash Equilibrium

that maximizes the flow circulating, the share of re-

ward among agents wu being fixed.

Assumptions: For sake of simplicity, it is assumed

throughout this paper, that q
i, j

= 0. Therefore, the

initial minimum circulating flow at zero cost is equal

to F = 0. This assumption does not modify the fun-

damental results of this work.

4 THE SINGLE-AGENT CASE

This section presents some basic properties related to

classical network flow theory. In the single agent case

(all the arcs belong to a single agent), a non-poor strat-

egy S for a given flow F(s) is a strategy that mini-

mizes the overall cost. Such minimization problem is

well-identified in the literature as the minimum-cost

flow problem (Busacker and Gowen, 1961).

Let us recall in the following section how the total

flow can be either increased or decreased, at minimum

cost, using increasing or decreasing paths. These no-

tions will be used in section 5.

4.1 Increasing the Max-Flow

Given a flow F(S) for strategy S, we are interested in

increasing the flow value at minimum cost. For this

purpose, we recall the well-known notion of an aug-

menting path based on the concept of residual graph

G f (S), which is defined below.

Definition 4. Residual graph: Given a network G =
(V,E) and a flow F(S), the corresponding residual



graph G f (S) = (V,Er) is defined as follows: each arc

(i, j) ∈ E, having a maximum capacity q(i, j) and a

flow fi, j in G, is replaced by two arcs (i, j) and ( j, i).
The arc (i, j) has cost ci, j and residual capacity ri, j =
qi, j − fi, j and the arc ( j, i) has cost c j,i = −ci, j and

residual capacity r j,i = fi, j.

Definition 5. Augmenting path: An augmenting path

is a path P in G f (S) from s to t, where e1 = s and

ek = t.

We refer to P as the set of augmenting paths.

The greatest flow augmentation that can be achieved

using P is rp = min{ri j : (i, j) ∈ P}.

An augmenting path in G f (S) is made of forward arcs

(having the same direction in G) and backward arcs

(having the opposite direction than the ones in G).

The set of forward and backward arcs are denoted P+

and P−, respectively.

The cost of augmenting the flow by one unit using

the augmenting path P ∈ P is denoted cost(P). It is

expressed as follows:

cost(P) = ∑
(i, j)∈P+

ci, j − ∑
(i, j)∈P−

ci, j (3)

4.2 Decreasing the Max-Flow

When considering the problem of decreasing the flow

at minimum cost in the network, we introduce the new

concept of decreasing path.

Definition 6. Decreasing path: a decreasing path P

is a path in G f (S) from node t to node s through which

the flow can be decreased.

We refer to P as the set of decreasing paths.

Similarly, a decreasing path in G f (S) is made of for-

ward arcs (having the opposite direction than the one

in G f (S)) and backward arcs (having the same direc-

tion in G f (S)). The set of forward and backward arcs

are denoted P
+

and P
−

, respectively.

pro f it(P) = ∑
(i, j)∈P

+

ci, j − ∑
(i, j)∈P

−

ci, j (4)

5 THE MULTI-AGENT CASE

In the multi-agent context, one agent can decrease (or

increase) unilaterally its arc capacities to improve its

profit. In this context, we introduce the concept of

profitability of an augmenting or a decreasing path

and provide a characterization of Nash equilibrium.

5.1 Increasing the Max-Flow

Let us introduce the notion of profitable augmenting

path. In a similar way, in the multi-agent context, an

augmenting path is composed by a set of forward and

backward arcs P = {P+,P−} such that if qi, j is in-

creased by one unit ∀(i, j)∈ P+ and decreased by one

unit ∀(i, j) ∈ P−, it is possible to increase the overall

flow by one unit.

The cost of an augmenting path for agent Au,

costu(P), is defined as the net change in cost flow for

one unit of flow augmentation throughout this path. It

is expressed as follows:

costu(P) = ∑
(i, j)∈P+∩Eu

ci, j − ∑
(i, j)∈P−∩Eu

ci, j (5)

Definition 7. Profitable augmenting path. An aug-

menting path P ∈ P is said profitable path for all

agents if, for every agent Au, costu(P)< wu ×π.

This means that through a profitable augmenting

path, increasing the flow by one unit, is profitable for

all the agents owning the arcs of the path.

5.2 Decreasing the Max-Flow

Now, the notion of profitable decreasing path is intro-

duced. In the multi-agent context, a decreasing path

P = {P
+
,P

−
} is composed of forward and backward

arcs. If qi, j is decreased by one unit, ∀(i, j) ∈ P
+

, and

increased by one unit, ∀(i, j) ∈ P
−

, the overall flow is

decreased by one unit.

The profit pro f itu(P) generated by decreasing capac-

ity through a decreasing path, for an agent Au, is de-

fined as follows:

pro f itu(P) = ∑
(i, j)∈P

+
∩Eu

ci, j − ∑
(i, j)∈P

−
∩Eu

ci, j (6)

Definition 8. Profitable decreasing path. A decreas-

ing path P ∈ P is profitable if there is one agent Au

such that pro f itu(P)> wu ×π.

In other words, through a profitable decreasing

path, decreasing the flow by one unit is profitable for

one agent, to the detriments of the others.

In the multi-agent context, it is important to charac-

terize strategies in which an agent can decrease or

increase the overall flow. Therefore, it is important

to find profitable augmenting paths in order to in-

crease flow without generating decreasing paths that

are profitable for some agent, hence preserving stabil-

ity.

Proposition 5.1. Nash Equilibrium.

For a given non-poor strategy profile S, S is a Nash

Equilibrium if and only if:



• ∀Au ∈ A , ∀P ∈ P such that(i, j) ∈ Eu

costu(P)> wu ×π (7)

• ∀Au ∈ A , ∀P ∈ P

pro f itu(P)< wu ×π (8)

Proof. Consider a strategy S and an agent Au. If S

is non poor, Au can improve its situation only by in-

creasing or decreasing the flow. In the former case, for

an additional unit of flow, Au receives wu ×π. Since,

such increase is profitable to Au if and only if there is

an augmenting path P such that costu(P)< wu ×π. In

the latter case, viceversa, it is profitable for an agent

Au to decrease the flow by one unit if and only if there

is a decreasing path P such that pro f itu(P)> wu ×π.

Therefore, if and only if for no agent any of those con-

ditions holds, no agent Au can individually improve its

profit, and S is a Nash equilibrium.

6 ILLUSTRATIVE EXAMPLE

Let us come back to the previous example (section

2.1) to illustrate the optimality-stability duality of a

strategy. The initial flow on the network is equal to

its minimum value F = 0. It is possible to increase it

along the profitable augmenting path (A-C-D), which

leads to the strategy S1 = (0,1,0,0,1) (see Figure

2(a)) with F(S1) = 1 and Z1(S1) = Z2(S1) = 30. From

this strategy, it is still possible to increase the flow

along the profitable augmenting path (A-B-D), which

leads to the strategy profile S2 =(1,1,0,1,1) (see Fig-

ure 2(b)) with F(S2) = 2 and Z1(S2) = Z2(S2) = 40.

From this strategy, we observe that there exists a prof-

itable decreasing path (D−B−C−A) from sink node

D to source node A which is profitable for agent A1.

In fact, A1 can improve its own profit, by decreasing

back the flow on b and d by one unit and increasing

the flow on arc c by one unit. This leads to the strategy

S3 = (1,0,1,0,1) (see Figure 2(c)) with F(S3) = 1

and profits Z1(S3) = 50 and Z2(S3) = −20, which is

obviously bad for A2. Therefore, although the strat-

egy S2 corresponds to a Pareto Optimum, which leads

to a maximization of agent’s profits, it is not a stable

strategy. Strategy S1 is a Nash Equilibrium but not

Pareto Optimum. Therefore, in our example there is

no a strategy which is both in SN and SP. The mo-

tivation of this paper is to search for a Nash-stable

solution which is as efficient as possible, i.e., which

maximizes F(S).

7 PROBLEM COMPLEXITY

In this section, we discuss the complexity of finding a

Nash equilibrium that maximizes the flow in the net-

work. This problem can be described by the following

mathematical model.

PMA−MCF

Max F

s.c.
(i) fi, j ≤ qi, j, ∀(i, j) ∈ E

(ii) ∑ j∈P+(i) fi, j −∑ j∈P−(i) f j,i =







0 ∀i 6= s, t
F , i = s

−F , i = t

(iii) q
i, j

≤ qi, j ≤ qi, j, ∀(i, j) ∈ E

(iv) pro f itu(P)< wu ×π, ∀P ∈ G f (S)

fi, j ≥ 0, ∀(i, j) ∈ E

Constraints (i), (ii) and (iii) are the same as the one

of the multi-objective mathematical formulation pre-

sented above 2. They represent the constraints of arcs

capacities and flow conservation, respectively. Con-

straints (iv) impose that no decreasing path P exists

in solution S with profit pro f itu(P) greater or equal to

wu×π. In other words, it represent the constraints for

a solution to being Nash stable. Even if the constraint

(iv) is linear, we notice that the number of possible

paths in the residual graph can grow exponentially.

Moreover, a non-linearity can be recognized since the

residual graph G f (S) depends on the strategy chosen

by each agent.

Constraints (iv) impose that no decreasing path P ex-

ists in solution S with pro f itu(P) greater or equal to

wu ×π (See Proposition 5.1). Increasing paths do not

need to be bounded since since the network flow is

maximized.

7.1 Finding a Nash Equilibrium with

Bounded Flow

We consider the decision problem to find a strategy

which is a Nash equilibrium, with a flow greater than

a given value. This problem can be defined as follows.

Nash-Equilibrium Bounded Flow:

Instance: a tuple < G,A ,Q,Q,C,π,W > as defined in

section 2 and an integer Φ

Problem: Is there a Nash Equilibrium stra-

tegy profile S such that F(S)> Φ?

Proposition 7.1. Problem NE-Bounded Flow is

strongly NP-complete.



Figure 2: A multi-agent network flow with two agents and five arcs

Proof. The NP-completeness of this problem can be

proved using a reduction from the well-known 3-

partition problem, which is known to be NP-complete

in the strong sense (Garey and Johnson, 1979).

3-partition:

Instance: a set ζ = {a0, . . . ,aK−1} of K = 3k positive

integers, such that ∑
K−1
l=0 al = k×B and

al ∈]B/4,B/2]

Problem: Deciding whether ζ can be partitioned into

k subsets so that the sum of integers in each

subset is equal to B?

An instance of the MA-MCF problem with control-

lable capacities can be generated from an arbitrary in-

stance of the 3-partition problem as follows.

From the 3-partition problem instance, we build up a

network G with k×K arcs and K+1 nodes where the

first one is source node V0 = s and the last one is the

sink node VK = t. An agent Au ∈ A = {A1, . . . ,Ak}
owns K arcs.

The tail of an arc ei is VidivK , its head is V(idivK)+1.

Between nodes VidivK and VidivK+1, there are k par-

allel arcs, indexed from i to i + K step k, each of

them belonging to a specific agent: arc ei belongs to

AidivK . The cost of arc ei is cei
= aimodK . In other

words, to every positive integer al ∈ ζ is associated k

parallel arcs with, same head and tail, maximum ca-

pacity qei
= 1 and cost al . The total reward is set to

π= (B+ε)k, ε being an arbitrary small positive value.

The sharing policy is defined by wu = 1/k. Therefore,

agent’s unit reward is wuπ = B+ ε, identical for all

agents. The objective is to determine whether it exists

a Nash strategy such that F(S)> Φ?

For instance, Figure 3 illustrates the resulting flow

network obtained from the 3-partition instance de-

fined by k = 3, ζ = {7,8,7,7,7,8,9,10,9} and B =

24. We have k = 3 agents and K ∗ k = 27 arcs. Be-

tween nodes i and i+ 1, we find k = 3 arcs with cost

ai+1. The problem is to find, whether it exists, a Nash

strategy such that the flow is strictly greater than 0. In

that case, using the path with bold arcs allows to ob-

tain a one-unit total flow, which is a Nash equilibrium

since every agent does not pay more than its part of

reward (wuπ = B+ε = 24+ε). Any equivalent stable

path is also a solution to the original 3-Partition prob-

lem.

Let us prove this last property in a general way. Con-

sider the strategy S where all arcs have normal capac-

ity, qi, j = 0. The resulting flow obviously equals to

F(S) = 0. With respect to S, we observe that an agent

can increase the flow by the amount δ ∈]0,1], increas-

ing the capacities of all its arcs by the same amount

δ. However, doing so, the agent pays kBδ and only

gains (B+ ε)δ. Hence, the new strategy is not prof-

itable and cannot be a Nash equilibrium. In order to

obtain a Nash equilibrium, the total cost incurred by

each agent for increasing its arc capacities must not

exceed B, otherwise at least one agent will be inter-

ested in decreasing back its capacities.

Due to the topology of the network, in order to in-

crease the flow, exactly K = 3k arcs must be involved

in an augmenting path. In any Nash equilibrium strat-

egy with flow strictly greater than 0, the augmenting

path having to be profitable for every agent, it must be

made of exactly three arcs per agent. The total com-

pression cost for every agent equals exactly B.

8 CONCLUSIONS

This paper presents a new game theory framework for

a multi-agent flow network problem with controllable

capacities. We consider that a final customer gives a

reward, shared among agent, for any additional unit

of flow circulating in the network. Each agent has
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Figure 3: Reduction from 3-PARTITION problem with k = 3

the possibility to modify the capacities of its arcs at

a given cost. We particularly point out the notions of

efficiency and stability of a strategy. We also prove

that finding a Nash Equilibrium with maximum flow

is NP-hard in the strong sense. Further works are on-

going to linearize the mathematical model of finding a

Nash Equilibrium as a Mixed Integer linear program-

ming. Distributed heuristics able to find a Nash equi-

librium are also under study.
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