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Note on diffeomorphism extension for observer design

Vincent Andrieu∗, Laurent Praly†

March 10, 2014

Abstract

An often encountered way of designing an observer is to use coordinates different
from the given ones (or the ones of interest). This is done via the construction of a
diffeomorphism (maybe obtained following the extension of an injective immersion) and
an extended vector field on which is designed the observer. The estimated state is then
obtained by employing the left inverse of the diffeomorphism (which may be difficult
to obtained). A possible solution to overcome this difficulty is to use a diffeomorphism
extension. A first preliminary result is given in this note.

1 Introduction

Consider the system:
ẋ = f(x) , y = h(x) , (1)

with x in A ⊂ R
n is an open forward invariant set and y in R.

An often encountered way of designing an observer is to use coordinates different from the
given ones (or the ones of interest). This is done via the construction of a diffeomorphism
(maybe obtained following the extension of an injective immersion as in [1]) τ ∗ : A → R

n and
a (extended) vector field ϕ : Rn × R → R

n such that

ξ̇ = ϕ(ξ, y) , y = h(τ(ξ)) , ξ ∈ τ ∗(A) (2)

is the image of the system (1) with the diffeomorphism τ ∗ and such that the system

˙̂
ξ = ϕ(ξ̂, y) ,

defines an observer for the system (2). In other words, we have,

lim
t→+∞

∣

∣

∣Ξ̂(ξ̂, ξ, t)− Ξ(ξ, t)
∣

∣

∣ = 0 , ∀(ξ, ξ̂) ∈ τ ∗(A)× R
m

An observer for the system (1) is then defined as

x̂ = τ(ξ̂) ,
˙̂
ξ = ϕ(ξ̂, y) , (3)
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where τ is an inverse of τ ∗. A possible way to implement this observer is as follows (see for
instance [2] and [1])

˙̂x = f(x̂) +

(

∂τ ∗

∂x
(x̂)

)
−1

[ϕ(τ ∗(x̂), y)− ϕ(τ ∗(x̂), h(x̂))]

But this expression makes sense only in the set in which
(

∂τ∗

∂x
(x̂)

)
−1

is well defined, i.e. as
long as its solutions x̂ is in A. A possible solution to overcome this difficulty is to extend the
diffeomorphism outside A. Indeed, if we construct a diffeomorphism τ ∗e : Rn → R

n such that
for all x in A, we have τ ∗(x) = τ ∗e (x) then a possible implementation of the observer would
simply be:

˙̂x = f(x̂) +

(

∂τ ∗e
∂x

(x̂)

)
−1

[ϕ(τ ∗e (x̂), y)− ϕ(τ ∗e (x̂), h(x̂))]

In this note, based on [3] we investigate the possibility of extendeding a diffeomorphism.

2 Diffeomorphism extension

In the following, we denote by BR(0)) the open ball in R
n which is centered at 0 and has radius

R.

Proposition 1 (Extension of the diffeomorphism on a ball) Assume there exists a C2

function ψ : Rn → R
n such that ψ(0) = 0 and ψ : BR(0)) → ψ(BR(0)) ⊂ R

n is a diffeo-

morphism. Then for any δ in (0, R), there exists a diffeomorphism ψe : R
n → R

n such that

ψe(x) = ψ(x) for all x in the closure cl(BR−δ(0)).

Proof : Let δ in (0, R), we denote

T =

√

R

R − δ
> 1 , R2 = R

√

R − δ

R
, R1 = R− δ .

Note that we have
BTR1

(0) = BR2
(0) , BTR2

(0) = BR(0) .

Consider the function ϕ : BR2
(0)× (−T, T ) → R

n defined as

ϕ(x, t) =

(

∂ψ

∂x
(0)

)
−1
ψ(xt)

t
for t 6= 0 ,

ϕ(x, 0) = x .

We study the properties of the function x 7→ ϕt(x) = ϕ(x, t) with t fixed in (−T, T ).

• Let xa and xb be in BR2
(0) satisfying

ϕ(xa, t) = ϕ(xb, t) .

If t 6= 0, this implies readily
ψ(xat) = ψ(xbt) .
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Since the pair (xat, xbt) is in BR(0) for all t in (−T, T ) and since the function ψ is
injective on this set, we obtain

xa = xb .

If t = 0, we get this last inequality directly. So we have established the injectivity of ϕt
on BR2

(0) for all t in (−T, T ).

• we have

∂ϕt
∂x

(x) =

(

∂ψ

∂x
(0)

)
−1
∂ψ

∂x
(xt) for t 6= 0

∂ϕ0

∂x
(x) = Id

and

lim
t→0

(

∂ψ

∂x
(0)

)
−1
∂ψ

∂x
(xt) = Id

Hence ϕt is C
1 on BR2

(0). Moreover, since by assumption the matrix ∂ψ

∂x
(xt) is invertible

for all t in (−T, T ) and x in BR2
(0). ϕt is full rank on BR2

(0).

We conclude that, for all t in (−T, T ), the function x 7→ ϕt(x) = ϕ(x, t) is a diffeomorphism
from BR2

(0) onto ϕt(BR2
(0)). Let ϕ−1

t denote its inverse map.
Similarly, let us study the properties of the function ρ defined as :

ρ(x, t) =
1

t2

[

∂ψ

∂x
(xt)xt − ψ(xt)

]

for t 6= 0 ,

ρ(x, 0) =
1

2
x′
(

∂2ψ

∂x∂x
(0)

)

x

• The function ψ being C2, and satisfying ψ(0) = 0, we have

lim
t→0

ψ(xt)− ∂ψ

∂x
(0)xt

t2
=

1

2
lim
t→0

∂ψ

∂x
(xt)x− ∂ψ

∂x
(0)x

t
=

1

2
x′
(

∂2ψ

∂x∂x
(0)

)

x

This implies that the function ρ is well defined and the function t 7→ ρ(x, t) is continuous.

• We get
∂ρ

∂x
(x, t) =

∂2ψ

∂x∂x
(xt)x ∀t ∈ (−T, T ) .

Since xt is in BR(0) for all t in (−T, T ) and x in BR2
(0) and ψ is C2 on R

n, this implies
that the function x 7→ ρ(x, t) is Lispchitz on the closure BR2

(0) uniformly in t in (−T, T ).

Now we observe that we have

˙︷ ︷

ϕ(x, t) =
∂ϕ

∂t
(x, t) =

(

∂ψ

∂x
(0)

)
−1

ρ(x, t)

=

(

∂ψ

∂x
(0)

)
−1

ρ
(

ϕ−1
t (ϕ(x, t)) , t

)
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This motivates us for considering the time varying system

ż = ζ(z, t) =

(

∂ψ

∂x
(0)

)
−1

ρ
(

ϕ−1
t (z), t

)

(4)

is well defined on the open set

O =
{

(z, t) : t ∈ (−T, T ) , z ∈ ϕt(BR2
(0))

}

where it is continuous and Lipschitz in z. It follows that t 7→ ϕ(x, t) is the unique solution on
(−T, T ) of this system which goes through x at t = 0. With Z(z, t) denoting a solution of (4),
we have

Z(x, t) = ϕ(x, t) ∀(x, t) ∈ BR2
(0)× (−T, T ) .

The above time varying system can be extended to R
n × (−T, T ) as

ż = ζe(z, t) =







0 if z /∈ ϕt (BR2
(0)) ,

χ
(

ϕ−1
t (z)

)

(

∂ψ

∂x
(0)

)
−1

ρ
(

ϕ−1
t (z), t

)

if z ∈ ϕt (BR2
(0)) ,

(5)

where χ : Rn → R
+ is a C1 function satisfying

χ(x) =

{

0 if x /∈ BR2
(0) ,

1 if x ∈ BR1
(0) .

This extended system is continuous on R
n× (−T, T ) and Lipschitz in z. So it has well defined

and unique solutions on (−T, T ) for any initial condition z in R
n. We denote by Ze(z, t) such

a solution going through z at time t = 0. From this definition and since 1 is in (0, T ), the
function z 7→ Ze(z, 1) is a diffeomorphism. Also if, for some τ ≥ 0, a solution Z(z, t) of (4) is
in ϕt(BR1

(0), for all t in [0, τ ], then t 7→ Ze(z, t) is solution of (5) at least on [0, τ ]. But by
definition, when x is in BR1

, ϕ(x, t) is in ϕt(BR1
(0) for all t in (−T, T ). With uniquesness of

solutions, this implies
Z(x, 1) = ϕ(x, 1) ∀x ∈ BR1

(0) .

We are now ready to define the extension ψe as

ψe(x) =
∂ψ

∂x
(0)Z(x, 1) .

Since ∂ψ

∂x
(0) is an invertible matrix, it is a diffeomorphism on R

n. Moreover we have

ψe(x) =
∂ψ

∂x
(0)ϕ(x, 1) = ψ(x) ∀x ∈ BR1

(0) .

✷

Note that to realize the extended diffeomorphism we have to integrate the model (5) which
depends on the inverse of the function ϕt. Hence, we come back to our preliminary problem.
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Note however that for all x in R
n and t in [0, 1] such that Ze(x, t) is in ϕt(BR2

(0)), if we note
v = ϕ−1

t (Ze(x, t)) we have,

∂ϕt
∂t

(v) +
∂ϕt
∂x

(v) = χ(v)

(

∂ψ

∂x
(0)

)
−1

ρ (v, t)

where by definition
∂ϕt
∂t

(v) =
∂ϕ

∂t
(v, t) =

(

∂ψ

∂x
(0)

)
−1

ρ (v, t) .

Consequently, for all x in R
n and t in [0, 1] such that Ze(x, t) is in ϕt(BR2

(0)), if we note
v = ϕ−1

t (Ze(x, t)) we have,

v̇ = (χ(v)− 1)

(

∂ϕt
∂x

(v)

)
−1
∂ϕt
∂t

(v)

Note however that this is still difficult to implement. Indeed, in this case, Ze(x, t) is
solution to this time dynamical system:

{

ż = 0 , z /∈ ϕt(BR2
)

z = ϕt(v) , v̇ = (χ(v)− 1)
(

∂ϕt

∂x
(v)

)−1 ∂ϕt

∂t
(v) , z ∈ ϕt(BR2

)

However, if we have the property that, if t 7→ ϕt(BR2
) is a strictly decreasing set valued map.

Then this system can be implemented without inverting the function.
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