
HAL Id: hal-00957644
https://hal.science/hal-00957644v1

Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient algorithms for the 2-Way Multi Modal Shortest
Path Problem

Marie-José Huguet, Dominik Kirchler, Pierre Parent, Roberto Wolfler Calvo

To cite this version:
Marie-José Huguet, Dominik Kirchler, Pierre Parent, Roberto Wolfler Calvo. Efficient algorithms
for the 2-Way Multi Modal Shortest Path Problem. International Network Optimization Conference
(INOC), May 2013, Tenerife, Spain. pp.431 – 437, �10.1016/j.endm.2013.05.122�. �hal-00957644�

https://hal.science/hal-00957644v1
https://hal.archives-ouvertes.fr


Efficient algorithms for the 2-Way Multi Modal
Shortest Path Problem

Marie-José Huguet1,2, Dominik Kirchler3,4,5

Pierre Parent5, Roberto Wolfler Calvo5

1 CNRS, LAAS; Toulouse, France
2 Université Toulouse; LAAS; France

3 LIX; Ecole Polytechnique
4 Mediamobile; Ivry-sur-Seine
5 LIPN; Université Paris 13

Abstract

We consider the 2-Way Multi Modal Shortest Path Problem (2WMMSPP). Its goal
is to find two multi modal paths with total minimal cost, an outgoing path and a
return path. The main difficulty lies in the fact that if a private car or bicycle is
used during the outgoing path, it has to be picked up during the return path. The
shortest return path is typically not equal to the shortest outgoing path as traffic
conditions and timetables of public transportation vary throughout the day. In this
paper we propose an efficient algorithm based on bi-directional search and provide
experimental results on a realistic multi modal transportation network.

Keywords: 2-Way Shortest Path, time-dependency, multi modal transportation
network, label constrained shortest path

1 Email: kirchler@lix.polytechnique.fr, parent@lipn.fr
2 Email: huguet@laas.fr, wolfler@lipn.fr



1 Introduction

Multi modal transportation networks include roads, public transportation,
bicycle, etc. A multi modal path on such a network may consist of several
transportation modes. The goal of the 2-Way Multi Modal Shortest Path
problem (2WMMSPP) is to find two multi modal paths with total minimal
cost, an outgoing path from, e.g., home to work in the morning, and a return
path from work to home in the evening. The main difficulty lies in the fact
that if a private car or bicycle is used during the outgoing path, it has to
be picked up during the return path. As noticed in [2], on a multi modal
transportation network the shortest return path is typically not equal to the
shortest outgoing path as traffic conditions and timetables of public trans-
portation vary throughout the day and one-way roads prevent the same path
from being be taken in the opposite direction. See Figure 1 for an example.

To the best of our knowledge, the 2WMMSPP has been previously studied
only in [3]. The authors of [3] adopt a brute force algorithm by calculating all
paths between the start and final location and a predetermined set of possible
parking places.

Our Contribution. In this paper, we propose a new bi-directional multi
modal shortest path algorithm for optimally solving the 2WMMSPP. We run
experiments on a realistic multi modal transportation network. Our algorithm
is much more efficient than the algorithm described in [3].

Fig. 1. Example of a 2-way path: h represents the home, p the parking place, and
w the working location. For the paths between h and p only a private vehicle may
be used (car or bike, orange line), and between p and w only public transportation
(p.t., green line) or walking (blue line). In this example arrival time at work in the
morning is set to 9am and departure time at work in the evening is set to 5pm.



2 Algorithm to solve the 2WMMSPP

Given a starting and arrival node as well as starting times and a set of trans-
portation modes, our algorithm determines the optimal parking location and
the corresponding multi modal paths. First, we discuss how to calculate multi
modal shortest paths and we introduce the graph we are using. Next we discuss
the basic version of our algorithm and some techniques which substantially
improve its efficiency.

2.1 Multi Modal Shortest Path

Multi modal shortest paths are subject to particular constraints: passengers
may want to exclude some transportation modes (e.g., the bike when it is
raining) or limit the number of changes. The regular language constrained
shortest path problem (RegLCSP) introduced by [1] deals with these kind of
issues and it uses an appropriately labeled graph and a regular language to
model constraints. A generalization of the well-known Dijkstra’s algorithm to
solve RegLCSP has been proposed (called hereafter DRegLC ).

Similar to [1] we use a labeled directed graph G = (V,A,Σ) to model the
multi modal transportation network. It consists of a set of nodes V , a set of
labels Σ, and a set of labeled arcs (i, j, l) ∈ A which are triplets in V ×V ×Σ.
They represent an arc from node i to node j having label l. The labels are
used to mark arcs as, e.g., foot paths, bike lanes, etc. Arc costs represent
travel time. They are positive and may be time-dependent as we consider
exact timetable information and changing traffic conditions: cijl(τ) gives the
cost of an arc (i, j, l) when arriving at i at time τ .

2.2 Basic Algorithm

The basic version of our algorithm works as follows. We alternate the execution
of four DRegLC algorithms on G: algorithms D1 and D2 for the outgoing path,
and D3 and D4 for the return path (see Figure 1). D1 and D4 calculate the
shortest path from h to all other nodes by using only personal vehicle, and
D2 and D3 from w to all other nodes by using only public transportation
and foot. Algorithms D1 and D3 use forward search, and algorithms D2 and
D4 use backward search. At each iteration, we choose the algorithm Di which
node x to be settled next has the lowest key among the nodes yet to be settled
by the four DRegLC algorithms. Node x is settled by Di following the Dijkstra
principle. Now we check if node x has been settled by all four algorithms. If
this is the case a new 2-way path has been found, for which x is the parking



place. To evaluate the cost of the 2-way path it suffices to sum the costs of
the 4 shortest paths to x as calculated by the 4 DRegLC algorithms. If the
total cost is better than the cost µ of the current best 2-way path, then µ is
updated and x is memorized. The algorithm may stop as soon as the key δ of
the next node to be settled is greater or equal to µ.

Time dependency. In scenarios involving time dependent transportation
modes (car, public transportation) starting times of some algorithms have to
be specified in order to be able to correctly evaluate time dependent arc costs.
Some starting times will be known, but some others will not. For example
(with reference to Figure 1), if arrival and starting time at the destination are
given, then only the starting time for algorithms D1 and D4 are not known.
Therefore if personal vehicle arcs do not depend on time we can use the basic
algorithm without modifications. On the contrary if personal vehicle arcs
depend on time we have to adapt the algorithm the following way. Whenever
D1 and D4 examine time-dependent arc costs we use the minimum weight cost
function cmin

ij = minτ∈H cij(τ), where H is the time horizon we are considering.
Then, when evaluating a newly found 2-way shortest path with parking node
x, we first calculate its costs as described above. We call this cost temporary
cost. If the temporary cost is lower than µ then we re-evaluate the cost of
the paths produced by D1 and D4. To do this we use two DRegLC algorithms
starting in x. Starting times are given by the key of x in D2 and D3. In this
way, we obtain the real cost of the 2-way shortest path.

Complexity. Let n be the number of nodes in the graph, and m the
number of arcs. Run time of the algorithm is O(4(n×log(n)+m)) in scenarios
which do not require re-evaluation of shortest paths. Otherwise the complexity
is O(2n× (n× log(n) +m)).

2.3 Improved Stopping Condition

The algorithm may stop earlier by using a lower bound λ.

Proposition 2.1 Let mci be the minimum total cost of a parking place settled
by i of the 4 algorithms. λ = mini∈1..3(mci + (4− i)δ) (where δ is the cost of
the next node to be settled) is a valid lower bound and the algorithm may stop
when λ ≥ µ.

Proof 1 Any parking node which has not been settled yet by all four algorithms
must have been settled either 0, 1, 2, or 3 times and its cost is at least 4δ,
mc1 + 3 ∗ δ, mc2 + 2 ∗ δ, or mc3 + δ, respectively. Note that 4δ ≥ mc1 + 3 ∗ δ.



Thus, as soon as λ > µ, the optimal solution must have been found.

2.4 Further Improvements

We introduce three improvements for scenarios where re-evaluation of parking
nodes is necessary.

1) Prior to starting the algorithm, we produce an upper-bound µ0 (e.g., by
choosing arbitrarily a parking node p and then calculating the four shortest
paths between p, h, and w.) The better the upper-bound the sooner the
algorithm will stop and the less parking nodes will have to be re-evaluated.

2) Instead of calculating the minimum weight of an arc over the entire time
horizon H we may use the minimum weight of a more restricted time
interval. In the example in Figure 1, arrival time t0 and departure time t1
at w are given. In this case we may use cmin

ij = minτ∈[t0−µ0+δ,t0] cij(τ) for
D1 and cmin

ij = minτ∈[t1,t1+µ0−δ] cij(τ) for D4.

3) For the re-evaluation, the SDALT algorithm [6] instead of DRegLC may be
used. SDALT applies A∗ [5] and landmarks [4] to speed up DRegLC . It uses
an estimated lower bound of the distance to the destination to guide the
search more directly toward the destination.

3 Experiments and Discussion

The algorithm was implemented in C++ and compiled with GCC 4.1. Exper-
iments are run on an AMD Opteron, clocked at 2.2 Ghz. We use a realistic
multi-modal transportation network based on road and public transportation
data of the French region Ile-de-France which includes the city of Paris and
its suburbs. It consists of four layers: bike, foot, car, and public transporta-
tion. The four layers are connected by transfer arcs. See [7] for more infor-
mation about graph models of a multi-modal network and time-dependency.
Data of the public transportation network have been provided by STIF 3 .
They include geographical information, as well as timetable data on bus lines,
tramway’s, subways and regional trains. Data for the car layer is based on
road and traffic information provided by Mediamobile 4 . Circa 15% of the
road arcs have a time-dependent cost function to represent changing traffic
conditions throughout the day. The foot as well as the bike layer are based

3 Syndicat des Transports IdF, www.stif.info, data for scientific use (01/12/2010)
4 www.v-trafic.fr, www.mediamobile.fr



Scenario Basic Stop cond. Imp 1 Imp 1+2 Imp 1+2+3

1) h ↔ p: bike, p ↔ w: foot 1.050 0.889 na na na

2) h ↔ p: bike, p ↔ w: foot, pt 2.143 1.050 na na na

3) h ↔ p: car, p ↔ w: foot, pt 199.5 194.6 60.4 4.7 3.7

pt: public transportation, na: not applicable, Imp: Improvement

Table 1
Average run times in seconds over 100 instances.

on road data (foot paths, bike paths, etc.) extracted from geographical data
freely available from OpenStreetMap 5 . The graph consists of circa 3.7mil arcs
and 1.1mil nodes. There are 270 000 possible parking places.

To evaluate run times of our algorithm, we build three realistic scenarios
(see Table 1). For each scenario, we specify the allowed transportation modes
for the paths between home and parking (h ↔ p) and between parking and
work (p ↔ w). In all scenarios, arrival time at work for the outgoing path is
9am and departure time at work for the return path is 5pm.

In Table 1, we present the average CPU run time over 100 instances where
h and w have been determined randomly. We compare the results of 5 variants
of our algorithm. First we run the basic version as described in Section 2.2, to
this version we added incrementally the improved stopping condition (Section
2.3) and the three improvements discussed in Section 2.4. Note that a re-
evaluation of parking nodes because of time-dependent arc costs is necessary
only in scenario 3, thus the three improvements apply only to that scenario.

We are able to report faster run times than those reported by the authors of
[3]. Run times of their brute force algorithm are quite high even when limiting
the number of possible parking nodes. They report average run times of 1min
when considering 20 parking nodes and of 30min for 80 parking nodes. Note
also that we work on a considerably larger graph. The average run time of our
algorithm for scenarios 1 and 2 is 1sec. The improved stopping condition has
an important impact on run time for these scenarios. On the other hand, it
has no impact on scenario 3 as the re-evaluation of parking nodes dominates
run times. Improvements 1 and 2 succeed in decreasing the number of parking
nodes which have to be re-evaluated and considerably accelerate the algorithm.
Improvement 3 provides a further small speed-up.

5 See www.openstreetmap.org



4 Conclusions

We presented a new algorithm to solve the 2WMMSPP. We were able to report
better run times than those reported in the literature. Future research direc-
tions include the investigation of stronger stopping conditions, of techniques to
further decrease the number of parking nodes which have to be re-evaluated,
and of the use of parallization.

References

[1] Christoper L. Barrett, Riko Jacob, and Madhav Marathe. Formal-Language-
Constrained Path Problems. SIAM Journal on Computing, 30(3):809–837, 2000.

[2] Daniel Baumann, Alexandre Torday, and Andre-Gilles Dumont. The importance
of computing intermodal roundtrips in multimodal guidance systems. In
Proceedings of the 4th Swiss Transport Research Conference, March 25-26 2004.

[3] Aurelie Bousquet, Sophie Constans, and El Faouzi Nour-Eddin. On the
adaptation of a label-setting shortest path algorithm for one-way and two-way
routing in multimodal urban transport networks. In International Network
Optimisation Conference, pages 1–8, 2009.

[4] Andrew V. Goldberg and C. Harrelson. Computing the shortest path: A* search
meets graph theory. In Proceedings of the Symposium on Discrete Algorithms
(SODA), pages 156–165. SIAM, Philadelphia, 2005.

[5] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[6] Dominik Kirchler, Leo Liberti, and Roberto Wolfler Calvo. A label correcting
algorithm for the shortest path problem on a multi-modal route network. In
Symposium on Experimental Algorithms (SEA), volume 7276 of LNCS, pages
236–247, 2012.

[7] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis.
Efficient models for timetable information in public transportation systems.
ACM Journal of Experimental Algorithmics, 12(2.4), June 2008.


	Introduction
	Algorithm to solve the 2WMMSPP
	Multi Modal Shortest Path
	Basic Algorithm
	Improved Stopping Condition
	Further Improvements

	Experiments and Discussion
	Conclusions
	References

