
HAL Id: hal-00957643
https://hal.science/hal-00957643

Preprint submitted on 11 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A local first law for black hole thermodynamics
Ernesto Frodden, Amit Ghosh, Alejandro Perez

To cite this version:
Ernesto Frodden, Amit Ghosh, Alejandro Perez. A local first law for black hole thermodynamics.
2011. �hal-00957643�

https://hal.science/hal-00957643
https://hal.archives-ouvertes.fr


ar
X

iv
:1

11
0.

40
55

v2
  [

gr
-q

c]
  1

6 
D

ec
 2

01
1

A local first law for black hole thermodynamics

Ernesto Frodden1,3, Amit Ghosh2, and Alejandro Perez3
1Departamento de F́ısica, P. Universidad Católica de Chile,
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We first show that stationary black holes satisfy an extremely simple local form of the first law

δE =
κ

8π
δA

where the thermodynamical energy E = A/(8πℓ) and (local) surface gravity κ = 1/ℓ, where A is
the horizon area and ℓ is a proper length characterizing the distance to the horizon of a preferred
family of local observers suitable for thermodynamical considerations. Our construction is extended
to the more general framework of isolated horizons. The local surface gravity is universal. This
has important implications for semiclassical considerations of black hole physics as well as for the
fundamental quantum description arising in the context of loop quantum gravity.

PACS numbers:

Hawking’s semiclassical calculations [1] imply that
large black holes (BH) produced by gravitational collapse
behave like perfect black bodies at Hawking temperature
TH proportional to their surface gravity once they have
reached their stationary equilibrium state. Moreover dif-
ferent neighbouring stationary states are related by the
first law of BH mechanics from which black holes can be
assigned an entropy S = A/4ℓ2p where ℓp = ~

1/2 (in units
G = c = 1) is the Planck length and A is the classical
area of the event horizon.
A complete statistical mechanical account of the ther-

mal properties of BHs from quantum degrees of freedom
remains an important challenge for all candidate theories
of quantum gravity. Statistical entropy has been calcu-
lated in string theory [2] and loop quantum gravity [3],
yet in both cases significant gaps remains to be filled.
An important difficulty in dealing with black holes in

quantum gravity is that, as they evaporate, the usual
definition based on global structure of space-time is ill-
posed. This has been recently clearly illustrated in the
context of two-dimensional models [4]. Nevertheless, one
would expect that the physical notion of a large black
hole radiating very little and, thus, remaining close to
equilibrium for a long time could be characterized in a
suitable way and that such a characterization should help
in studying the appropriate semiclassical regime of the
underlying quantum theory.
Such quasilocal characterization of black holes is pro-

vided by isolated horizons [5]. Isolated horizons (IH) cap-
ture the main local features of BH event horizons while
being of a quasilocal nature itself. In particular, isolated
horizons satisfy a quasilocal version of the first law [7]

δEIH =
κIH

8π
δA+ΩIHδJIH +ΦIHδQIH (1)

where EIH , JIH and QIH are suitable quasilocal en-
ergy, angular momentum, and charge functions, while
κIH ,ΩIH , and ΦIH are local notions of IH surface gravity,
angular velocity and electrostatic potential. The pre-
vious equation comes from the requirement that time
evolution which respects the IH boundary conditions be
Hamiltonian[7]. The first law implies that the IH energy
is EIH must be function E(A, JIH , QIH). The integrabil-
ity conditions for EIH stemming from the previous phase
space identity imposes the usual restrictions on the ‘in-
tensive’ quantities. Beyond these conditions the first law
of IH does not give a preferred notion of energy of the
horizon: this is a limitation for statistical mechanical de-
scriptions of quantum BHs.

In this letter we show that the above indeterminacy
disappears if one fully develops the local perspective from
which IH were defined in the first place. In fact stationary
BHs (and more generally IHs) satisfy the local first law

δE =
κ

8π
δA, (2)

where EIH = E, κ = ℓ−1 with ℓ2 ≪ A a proper length
intrinsic to our analysis. The previous equation can be
integrated, thus providing a notion of horizon energy
E = A

8πℓ which is precisely the one to be used in sta-
tistical mechanical considerations by local observers. We
first show the validity of (2) for stationary black holes
and later extend the proof for IHs. The area as a notion
of energy has been evoked on several occasions in the con-
text of BH models in loop quantum gravity [8, 11]. The
results of this paper put these analysis on firm ground.
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I. A LOCAL FIRST LAW

We first study the thermodynamic properties of Kerr-
Newman BHs as seen by stationary observers O, located
right outside the horizon at a small proper distance ℓ≪
r+. They follow integral curves of the Killing vector field

χ = ξ +Ωψ = ∂t +Ω ∂φ, (3)

where ξ and ψ are the Killing fields associated with the
stationarity and axisymmetry of Kerr-Newman space-
time respectively, while Ω is the horizon angular velocity

Ω =
a

r2+ + a2
. (4)

The four-velocity of O is given by

ua =
χa

‖χ‖
. (5)

These observers are the unique stationary ones that co-
incide with the locally non-rotating observers of [9] or
ZAMOs of [10] as ℓ → 0. As a result, the angular mo-
mentum of these observers is not exactly zero, but o(ℓ).
Thus they are at rest with respect to the horizon which
makes them the preferred observers for studying thermo-
dynamical issues from a local perspective.
Standard arguments lead to the so-called first law of

BH mechanics that relates different nearby stationary BH
spacetimes of Einstein-Maxwell theory

δM =
κ

8π
δA+ΩδJ +ΦδQ, (6)

where M , J and Q are respectively the total mass, an-
gular momentum and charge of the spacetime, A is the
horizon area, Φ = −χaAa is horizon electric potential
with Aa is the Maxwell field produced by the electric
charge Q of the BH and κ is the surface gravity. Note
that many of these quantities are defined for an asymp-
totic observer or have a global meaning—this is clear for
M , J and Q; Φ can be interpreted as the difference in
electrostatic potential between the horizon and infinity,
Ω is the angular velocity of the horizon as seen from in-
finity, and κ (if extrapolated from the non-rotating case)
is the acceleration of the stationary observers as they ap-
proach the horizon as seen from infinity.
The aim of this letter is to construct a local form of

the first law of black hole mechanics. For this it will
be crucial to describe physics from the viewpoint of our
family of observers O.
The first situation that we will consider involves the

process of absorption of a test particle by the BH. More
precisely, one throws a test particle of unit mass and
charge q from infinity to the horizon. The geometry is
stationary and axisymmetric as well as the electromag-
netic field, namely Lξgab = Lψgab = LξAa = LψAa =
0. The particle satisfies the Lorentz force equation

wa∇awb = q Fbcw
c, (7)

with four-velocity wa. The conserved energy of the par-
ticle is E ≡ −waξa − qAaξa while the conserved angular
momentum is L ≡ waψa + qAaψa. As the particle gets
absorbed, the black hole settles down to a new state with
δM = E , δJ = L and δQ = q. Equation (6) then implies

κ

8π
δA = E − ΩL− Φq. (8)

For our observers having four-velocity ua the local energy
of the particle is

Eℓoc = −waua. (9)

Using (5), the definitions of E , L and Φ ≡ −χaAa we find

Eℓoc = −
waξa +Ωwaψa

‖χ‖
=

E − ΩL− qΦ

‖χ‖
. (10)

Finally from (8)

Eloc =
κ

8π
δA, where κ ≡

κ

‖χ‖
. (11)

From the point of view of our local observers, the horizon
has absorbed a particle of energy Eℓoc. The change in
energy of the system E as seen by O must be δE = Eℓoc.
All this imply a local version of the first law

δE =
κ

8π
δA. (12)

Direct calculations show that 1

κ ≡
κ

||χ||
=

1

ℓ
+ o(ℓ). (13)

In other words the local surface gravity measured by the
locally non-rotating stationary observers is universal, i.e.,
independent of the mass M , angular momentum J and
charge Q of the Kerr-Newman black hole (for a different
local definition of surface gravity see [12]). Integrating
(12) we get the local notion of energy

E =
A

8πℓ
+ o(ℓ). (14)

The idea is to associate the above energy and first law
to the horizon itself by taking our ℓ as small as possible
without being zero. An effective quantum gravity formu-
lation where thermodynamics makes sense suggest that

1 This result follows from the fact that κ = 1

2
(r+ − r−)/(r2+ + a2),

χ · χ = −∆Σ+/(r2+ + a2)2 + o(∆3/2), and the proper length to
the horizon is

ℓ = 2

√

Σ+(r − r+)

r+ − r−
+ o(∆3/2),

where ∆ = (r − r+)(r − r−) and Σ+ = r2+ + a2 cos2(θ).
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ℓ should be of the order of the Planck scale [11] but this
is not really essential for the analysis presented here.
A stronger (and local) field theoretic version of the pre-

vious arguments goes as follows: Let the matter falling
into the BH be described by a small perturbation of the
energy-momentum tensor δTab whose back-reaction to
the geometry will be accounted for in the linearized ap-
proximation of Einstein’s equations around the station-
ary black hole background. The current Ja = δT abχ

b

is conserved, ∇aJ
a = 0. Applying Gauss’s law to the

spacetime region bounded by the BH horizon H and the
timelike world-sheet of the observers O (WO) we get

∫

H

dV dS δTabχ
akb =

∫

WO

JbN
b (15)

where Na is the inward normal of WO and k = ∂V a
null normal on H , with V an affine parameter along
the generators of the horizon. We have also assumed
that δTab vanishes in the far past and far future of the
considered region. Using the fact that χa = κV ka on H ,
the previous identity takes the form

κ

∫

H

dV dS V δTabk
akb =

∫

WO

‖χ ‖ δTabu
aN b, (16)

Notice that the integral on the right is closely related
to the energy-flux associated to the observers, which is
equals to δE. Now, the Raychaudhuri equation in the
linear approximation is

dθ

dV
= −8πδTabk

akb, (17)

where θ is the expansion of the null generators ka. Fi-
nally, using the fact that ‖χ‖ is constant up to first order
on the r.h.s. of (16) we obtain

∫

H

dV dS V
dθ

dV
= −

8π‖χ ‖

κ
δE, (18)

where we have neglected terms of the form o(ℓ)δ which
are higher order in our treatment. By an integration by
parts the integral on the left is equal to −δA. Finally,
using κ ≡ κ/‖χ ‖ we get the desired result

δE =
κ

8π
δA. (19)

The previous local field theoretical argument will be gen-
eralized to include IHs at the end of this letter.

A. On the local temperature at the horizon

In the usual global framework the surface gravity κ is in
direct correspondence with the temperature of the Hawk-
ing radiation at infinity emitted when quantum effects
are taken into account. Does the local surface gravity κ
have a thermodynamic interpretation if quantum effects

are included? As we argue now, κ is in direct correspon-
dence with the temperature of the radiation detected by
our family of local observers.
Suppose that our observers receive a particle with wave

four-vector ka. The local frequency ω they measure is

ω = kau
a =

kaξ
a +Ω kaψ

a

‖χ ‖
. (20)

The geometric optics approximation of the field equa-
tions of a charged test field (namely ka∇akb = qFbck

c),
and the Killing equation and the symmetries of Aa, im-
ply that kaξ

a + qAaξ
a and kaψ

a + qAaψ
a are conserved

quantities along the particle trajectory. Thus the previ-
ous expression can be written as

ω = kau
a =

ω∞ − Ωm∞ − qΦ

‖χ ‖
, (21)

where ω∞ and m∞ are the frequency and angular mo-
mentum of the particles as measured at infinity.
As it is well known Kerr-Newman BHs do not exactly

radiate with a Planckian law. According to the usual
results [1] the number of radiated particles behaves as

〈N∞〉 =
Γ∞

exp
(

2π
κ [ω∞ − Ωm∞ − qΦ]

)

− 1
, (22)

where Γ∞ is the a grey body coefficient 2. The previous
expression becomes a standard Planckian spectrum when
expressed in terms of the local frequency measured next
to the horizon, namely

〈N∞〉 =
Γ∞

e
2π‖χ ‖

κ
ω − 1

, (23)

where we have replaced (21). This transmission coeffi-
cient is assumed to behave properly (slowly varying in
the suitable ranges) and does not interfere with the ther-
mal nature of the outgoing radiation. The previous equa-
tion and usual arguments that can be made by looking

2 Notice that according to the analysis of [11] one has a definite
prediction from LQG concerning the effect of quantum geom-
etry on the spectrum of BH radiation at infinity. It is shown
that the first law gets and additional term (a quantum geom-
etry correction) of the form µδN—where N is the number of
punctures contributing to the macroscopic geometry of the hori-
zon, and µ = −κσ(γ)/(2π) with σ(γ) is a certain function of
the Immirzi parameter γ [11]. Consequently, the BH radiation
spectrum would be

〈N∞〉 =
Γ∞

exp
(

2π
κ
(ω∞ − ΩHm∞ − qΦ) + σ(γ)n

)

− 1
,

where n is the number of punctures created (distroyed) on the
horizon when an excitation of the field of interest is absorbed
(emitted) by the BH. The latter quantity would require a more
detailed understanding of matter couplings in LQG. A naive in-
terpretation of fermion coupling might suggest that n = 1 for
fermions while n could vanish for photons and gravitons.
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at the details of Hawking’s calculation imply that local
observers at the horizon detect the following spectrum

〈N〉 =
Γ

e
2π
κ
ω − 1

, (24)

where we have used the definition of the local surface
gravity (11). In other words local observers detect a gen-
uine Planckian spectrum at temperature κ/(2π)!

B. Isolated horizons

Here we prove the validity of the local form of the first
law (12) in the more general framework of IHs. Moreover,
the first law so derived is dynamical in character, i.e.,
changes in the area and energy of the system can really
be seen as the consequence of the absortion of matter
fields by the horizon along its history.
Isolated horizons are equipped with an equivalence

class of null normal [χ] where equivalence is defined up
to constant scalings. The generators χa are geodesic and
define a notion of isolated horizon surface gravity κIH

through the equation ∇χχa = κIHχa. It is clear that
κIH is not defined in [χ] because it gets rescaled when χ
is rescaled. The near horizon geometry is described (in
terms of Bondi like coordinates) by the metric [6]

ds2 = 2dv(adrb) − 2(r − r0)[2dv(aωb) − κIHdvadvb]

+ qab + o[(r − r0)
2], (25)

where χ = ∂v is the extension to the vicinity of H of the
null generators of the IH through the flow of a natural
null vector na = ∂ar (i.e. Ln(χ) = 0), qabn

a = qabχ
a = 0,

and ωa is a one form intrinsic to IHs with the important
property that ω(χ)|H = κIH . Also one has [13]

Lχgab|H = 0. (26)

Thus χ can be used to define the observers O as in (5).
The proper distance ℓ to the horizon from a point with
coordinate r along a curve normal both to χ and qab—
with tangent vector Na = ∂ar + (2κIH(r − r0))

−1∂av—is

given by ℓ =
√

2(r − r0)/κIH , while χ ·χ = 2κIH(r− r0).
Therefore,

κ =
κIH

||χ||
=

1

ℓ
. (27)

Notice that κ is well defined in [χ] in contrast with κIH .
As the form of the perturbed Raychaudhuri equation (17)
is the same for the generators of IH (as their expansion,
shear, and twist vanish by definition), the same argu-
ments given below eq. (14) yield the local first law

δE =
κ

8π
δA, (28)

where the energy notion E = A
8πℓ , and we have used

that ℓ2 << A, provide the right local framework for the
statistical mechanics study of quantum IHs.
Summarising: even though we have first justified the

local first law (28) starting from the analysis of the first
law for stationary spacetimes and its translation in terms
of the local observers O, the final analysis for IHs implies
that the result can be recovered entirely from local con-
siderations that know nothing about the global structure.
In this letter we are proposing to use this remarkable fact
in order to reverse perspective, and thus take the local
definition of IHs with its null normals [χ], the local first
law (28), and its associated energy as the fundamental
structure behind BH thermodynamics.

Notice also that the local first law and the univer-
sality of κ implies the Gibbs relation E = TS where
T = ℓ2pκ/(2π), and S = A/4ℓ2p. This simple property
of usual thermodynamic systems is not realized by the
quantities taking part in the standard first law (6). This
is an extra bonus of our local description.
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