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Abstract : We define several notions of rank-width for countable
graphs. We compare, for each of them the width of a countable
graph with the least upper-bound of the widths of its finite induced
subgraphs. A width has the compactness property if these two values
are equal. Our notion of rank-width that uses quasi-trees (trees
where paths may have the order type of rational numbers) has this
property. So has linear rank-width, based on arbitrary linear orders.
A more natural notion of rank-width based on countable cubic trees
(we call it discrete rank-width) has a weaker type of compactness:
the corresponding width is at most twice the least upper bound of
the widths of the finite induced subgraphs. The notion of discrete
linear rank-width, based on discrete linear orders has no compactness
property.

Keywords : Rank-width; linear rank-width; compactness; Koenig’s
Lemma.

1 Introduction

We consider the class G of finite or countable, loop-free, undirected graphs
without parallel edges. A width measure is a mapping wd : G → N ∪ {ω} such
that wd(G) ∈ N if G is finite and wd(H) ≤ wd(G) if H is isomorphic to an
induced subgraph H′ of G, which we denote by H ′ ⊆i G. We say that wd has
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the compactness property if for every G ∈ G, wd(G) is equal to wd(G) defined
as Sup{wd(H) | H ⊆i G and H is finite}. We say that it has the compactness
property for a gap function f : N→ N if, for every G ∈ G, wd(G) is finite if and
only if wd(G) is finite and in that case, wd(G) ≤ f(wd(G)).
Tree-width, path-width and clique-width (their definitions for finite graphs

are in [CouEng]) are width measures. The natural extension of tree-width to
countable graphs has the compactness property [KriTho]. That of clique-width
has the compactness property for some gap function ([Cou1], Section 7 of [Blu]).
Path-width has not for any gap function (see the remark after Theorem 2).

Rank-width is a width measure on finite graphs investigated first in [Oum]
and [OumSey]. Its variant called linear rank-width (similar to path-width and
linear clique-width, see [CouEng, Heg+]) has been investigated in particular
in [AdlKan], [Gan] and [JKO]. For countable graphs, we define two notions of
linear rank-width (both equal to linear rank-width for finite graphs) and two
notions of rank-width (both equal to rank-width for finite graphs). Roughly
speaking, discrete linear rank-width is based on a linear order of the vertices
isomorphic to (N,≤) whereas linear rank-width is based on an arbitrary linear
order. Discrete rank-width is based on a ternary tree with vertices at leaves,
whereas rank-width is based on a generalized tree such that the unique "path"
between two nodes is isomorphic to a suborder of (Q,≤). We compare these
four notions and examine whether they satisfy some compactness property. Our
results are summarized in the following table.

measure compactness

rank-width yes, by Theorem 22
discrete rank-width yes with gap, by Theorem 8
linear rank-width yes by Theorem 2
discrete linear rank-width no by Theorem 2

This investigation is based on ideas used in [Cou1] for studying the clique-
width of countable graphs and in [CouDel] for defining the modular decompo-
sition of such graphs.

2 Definitions, notation and basic facts.

All ordered sets, graphs and trees are finite or countable, and "countable" means
"countably infinite". We denote by ω the first infinite ordinal and also the linear
order (N,≤). The finite or infinite cardinality of a set X is |X|.
Isomorphisms of graphs, trees and partial orders are denoted by ∼= .
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2.1 Ordered sets

If (V,≤) is a partial order, < denotes the corresponding strict partial order, and
for X,Y ⊆ V , X < Y means that each element of X is strictly smaller than
each element of Y . The least upper bound of x and y is denoted by x ⊔ y if it
exists.
We compare partial orders by inclusion as follows: (V,≤) ⊑ (W,≤′) if V ⊆

W and ≤ is ≤′ ∩(W ×W ); we say that (V,≤) is a suborder of (W,≤′).
The next definitions concern linear orders (V,≤). (The canonical reference is

the book [Ros].) An interval is a subset Y that satisfies the following convexity
property :

if x ≤ y ≤ z and x, z ∈ Y , then y ∈ Y .

Particular notations for intervals are [x, y] denoting {z | x ≤ z ≤ y}, ]x, y]
denoting {z | x < z ≤ y}, ] −∞, x] denoting {y | y ≤ x} (even if V is finite),
]x,+∞] denoting {y | x < y} etc. A linear order is discrete if [x, y] is finite for
every x and y.
A Dedekind cut is a pair of nonempty intervals (X,Xc) such that X ⊆ V

and X < Xc (Xc, the complement of X, is V −X : the reference set is clearly
V ).
A set X ⊆ V is dense on an interval [u, v] such that v > u, if X ∩ [u′, v′] �= ∅

for every u′, v′ such that u ≤ u′ < v′ ≤ v. It is dense if it is dense on all
intervals.

2.2 Matrices

Amatrix (intended to be an adjacency matrix) is a mappingM : X×Y → {0, 1}
where X and Y are finite or countable sets and 0, 1 are the two elements of the
fieldGF (2). If U ⊆ X andW ⊆ Y , we denote byM [U,W ] the matrix that is the
restriction ofM to U×W . We call it a submatrix ofM . A submatrixM [{x}, Y ]
is a row of M , and M [X, {y}] is a column. The transposed of M , denoted by
tM , is the matrix tM : Y ×X → {0, 1} such that tM(y, x) := M(x, y). The
rank of M , defined as the maximum cardinality of an independent set of rows
(equivalently, of columns) is denoted by rk(M); it belongs to N ∪ {ω}. The
relevant field is GF (2). It is convenient to take rk(M [∅,W ]) = rk(M [U, ∅]) = 0.

We will only use the following classical facts about ranks, whereM : X×Y →
{0, 1}:

(1) rk(tM) = rk(M),

(2) rk(M [U,W ]) ≤ rk(M),

(3) rk(M [U ∪ U ′,W ]) ≤ rk(M [U,W ]) + rk(M [U ′,W ]),

(4) and, if X ∪ Y is infinite:

rk(M) = sup{rk(M [U,W ]) | U ⊆ X,W ⊆ Y,U and W are finite}.

(5) If X or Y is finite, then rk(M) ≤ min{|X| , |Y |}.

3



From (1)-(3), we get :

(6) If M is a matrix : X ×X → {0, 1} and (A,B,C) is a partition
of X into three sets, we have:

rk(M [B,A ∪C]) ≤ rk(M [A,B ∪C]) + rk(M [A ∪B,C]).

Here is another convenient way to express this fact :

(6’) If A ⊂ D ⊆ X then :

rk(M [D−A,X− (D−A)]) ≤ rk(M [A,X−A])+rk(M [D,X−D]).

2.3 Graphs and trees

Graphs.

They will be undirected, without loops and parallel edges. The adjacency
matrix of a graph G with vertex set VG is MG : VG × VG → {0, 1} such that
MG[u, v] = 1 if and only if u and v are adjacent, which we denote by u−G v.
The notations G ⊆ H (resp. G ⊆i H) indicate that G is a subgraph (resp.

an induced subgraph) of H. The induced subgraph of G with vertex set X is
denoted by G[X]. Its adjacency matrix is a submatrix of MG. We let G−X :=
G[VG −X].

A width measure on a class C of graphs closed under taking induced sub-
graphs is a mapping wd : C → N ∪ {ω} that has same value on two isomor-
phic graphs and is such that wd(G) ∈ N if G is finite and wd(H) ≤ wd(G) if
H ⊆i G. Two width measures on C, wd and wd

′, are equivalent if, for every
G ∈ C, wd(G) and wd′(G) are both infinite or both finite, and in the latter case,
we have wd(G) ≤ f(wd′(G)) and wd′(G) ≤ g(wd′(G)) for some functions f and
g : N→ N.

Trees

We will use undirected trees (without root). They are graphs, but we will call
nodes their vertices for clarity because we will consider simultaneously graphs
and trees representing them. The set of nodes of T is NT . A leaf is a node of
degree 1: LT denotes the set of leaves of a tree T . Any two nodes x, y are linked
by a unique finite path PT,x,y whose set of nodes is denoted by [x, y]T .
Let x and y be adjacent nodes. Then NT,x,y is the set of nodes of the

connected component of T − {x} that contains y, and LT,x,y := NT,x,y ∩ LT .
(We write Nx,y and Lx,y if T is clear from the context). A tree is leafy if each
set LT,x,y is not empty. L(T ) denotes the set of sets LT,x,y. A cut in T is an
(unordered) pair {NT,x,y, NT,y,x} or {∅, NT}.

Let T and T ′ be two trees. We say that T ′ is included in T , which we denote
by T ′ ⊑ T , if NT ′ ⊆ NT and, for every two edges x − y and u − v of T

′, if w
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is a node of T common to PT,x,y and PT,u,v, then w ∈ {x, y} ∩ {u, v}. In other
words, T ′ is a topological minor of T (see [Die]) hence is obtained, for some X,
from T −X by smoothing all its degree 2 nodes. Smoothing a degree 2 node x
means contracting one of its two incident edges so that x disappears.
A tree is cubic (resp. subcubic) if its nodes have degree 1 or 3 (resp. degree

at most 3).
From a finite subcubic tree T , we obtain a finite cubic tree Red(T ) such that

L(Red(T )) = L(T ) by smoothing its degree 2 nodes: this means that we replace
by an edge between x and y an induced path linking two nodes x and y that do
not have degree 2.
From a countable subcubic tree T , we obtain a leafy cubic tree Red(T ) such

that L(Red(T )) = L(T ) as follows:

(1) we delete the nodes of NT,x,y whenever LT,x,y = ∅ which pro-
duces a leafy subcubic tree T ′ such that L(T ′) = L(T )− {∅};

(2) then, we smooth the degree 2 nodes as for finite trees, and we
obtain the desired leafy cubic tree Red(T ).

Note that Red(T ) is finite if T is countable but has finitely many leaves. It
can be empty (e.g., if T is a biinfinite path).

Rooted trees.

We will also use rooted trees, directed in such a way that every node is
accessible from the root by a directed path. If T is such a tree, ≤T is the partial
order on NT such that x ≤T y if and only if y is on the path from the root to x.
Let A be a finite alphabet of the form {0, ..., d} for some nonnegative integer

d. A language L ⊆ A∗ is prefix-free if there are no two words u and uv in L
with v �= ε (ε is the empty word). Then Pref(L) denotes the set of all prefixes
of L (we have L ⊆ Pref(L)). The directed graph T (L) := (Pref(L),→) such
that u → ua if u ∈ A∗, a ∈ A and ua ∈ Pref(L) is a directed tree with root
ε. Its set of leaves is L. We call degree of T (L) the maximal outdegree of a
node; it is at most d + 1. Furthermore, Pref(L) is linearly ordered by ≤lex.
The partial order ≤T (L) on Pref(L) is the reverse of ≤pref , the prefix order.
The linearly ordered set (L,≤lex) is called the frontier of T (L). If w ∈ A∗ the
set wA∗ ∩ L is an interval of (L,≤lex). Every nonempty linear order (V,≤) is
isomorphic to (L,≤lex) for some maximal prefix-free language on {0, 1}. Note
that L is maximal (for inclusion) if and only if, for all words u, v, u0v ∈ L
implies u1w ∈ L for some w, and vice-versa; in this case, every node of T (L)
that is not a leaf has two sons.

2.4 Rank-width

In this section, we only consider finite graphs. We first define linear rank-width.
Let G be a finite graph and ≤ a linear order on VG. Its cuts are of the form
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(] −∞, x], [y,+∞[) where y is the successor of x in ≤. For every cut (X,Xc)
of ≤, we define rwd(G,≤,X) := rk(MG[X,X

c]). We define rwd(G,≤) as the
least upper bound of the values rwd(G,≤,X) over all cuts (X,Xc). The linear
rank-width of G, denoted by lrwd(G) is the smallest value of rwd(G,≤) over
all linear orders ≤ on VG.

We now define rank-width. A layout of a finite graph G is a finite subcubic
tree T such that LT = VG. For adjacent nodes x, y of T , we have Ly,x = VG−Lx,y
We define the rank-width of G relative to T as:

rwd(G,T ) := max{rk(MG[Lx,y, Ly,x]) | x, y are adjacent nodes}.

The rank-width of G is rwd(G) := min{rwd(G,T ) | T is a layout of G}.
As rwd(G,Red(T )) = rwd(G,T ), the same value is obtained if we take the
minimum over cubic layouts. Its linear rank-width could be defined equivalently
as the smallest relative rank-width rwd(G,T ) such that T is a layout of G that
is a comb, i.e., the syntactic tree of a term of the form x1∗(x2∗(x3∗(...∗xn)...))
where ∗ is a binary function symbol and x1, x2, x3, ..., xn is an enumeration of
VG.

Cographs and trees have rank-with 1 and unbounded linear rank-width
[AdlKan].

3 Linear rank-width of countable graphs

Definition 1: Three notions of linear rank-width.

Let G be a graph and ≤ a linear order on VG. For every cut (X,X
c) of ≤,

we define lrwd(G,≤,X) as rk(MG[X,X
c]). We define lrwd(G,≤) as the least

upper bound of the ranks lrwd(G,≤,X) over all cuts (X,Xc).
As we defined rk(M [∅, Y ]) = 0, we can allow cuts (X,Xc) with one empty

component. This does not change the notion of linear rank-width but simplifies
writings. Note that if (VG,≤) is isomorphic to ω, then lrwd(G,≤,X) is finite
for each X, and so, if lrwd(G,≤) = ω, the least upperbound of the numbers
lrwd(G,≤,X) is not reached for any cut X.

We define lrwd(G), the linear rank-width of G, as the smallest value of
lrwd(G,≤) over all linear orders ≤ on VG, and dlrwd(G), the discrete linear

rank-width of G as the smallest value of lrwd(G,≤) over all linear orders ≤ on
VG that are finite or isomorphic to ω. A third notion is dlrwdZ(G), the smallest
value of lrwd(G,≤) for all discrete linear orders ≤ on VG, i.e., those that are
isomorphic to a suborder of (Z,≤). It is clear that

lrwd(G) ≤ dlrwdZ(G) ≤ dlrwd(G).
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The verification that these three values are width measures is routine. They
are equal on finite graphs. We will prove belwo (Proposition 3) that dlrwd and
dlrwdZ are equivalent and we will not consider dlrwdZ any more.

Theorem 2 : (1) Linear rank-width has the compactness property.
(2) There is a graph G such that dlrwd(G) = ω and lrwd(G) = 1. Hence,

discrete linear rank-width has not the compactness property, even with respect
to a gap function.

Proof: (1) Let G be countable. Clearly, lrwd(G) ≤ lrwd(G) since lrwd is a
width measure.
For proving the other inequality, we assume that lrwd(G) = k < ω. Let

G1 ⊆i G2 ⊆i ... ⊆i Gn ⊆i ... be an increasing sequence of finite induced
subgraphs of G whose union is G. For each i, the finite set Li of linear orders
on VGi

witnessing that lrwd(Gi) ≤ k is not empty. Furthermore, the restriction
to VGi

of an order in Li+1 is in Li. By Koenig’s Lemma, there is an increasing
sequence (≤i)i≥1 of orders in Li whose union is a linear order ≤ on VG. (This
order need not be discrete.)
Assume for getting a contradiction that lrwd(G,≤) > k. There exists a

cut (X,Xc) such that rk(MG[X,Xc]) ≥ k + 1 hence (cf. Section 2.2) finite
subsets Y ⊆ X,Z ⊆ Xc such that rk(MG[Y,Z]) ≥ k + 1. There exists i
such that VGi

contains Y ∪ Z. Hence, the cut (X ′, VGi
−X ′) of Gi such that

X′ := {x ∈ VGi
| x ≤i y for some y ∈ Y } shows that lrwd(Gi,≤i) ≥ k + 1.

Hence, ≤i does not witness that lrwd(Gi) ≤ k. Contradiction. It follows that
lrwd(G,≤) ≤ k, hence lrwd(G) ≤ k = lrwd(G).

(2) We let P be a countable path with one vertex of degree 1 and all others
of degree 2. It is isomorphic to (N, suc) where suc is the successor function. Let
G be the union of ω pairwise disjoint copies of P , each denoted by Pn, for n ∈ N,
i.e., G = P0 ⊕ P1 ⊕ ...⊕ Pn ⊕ ...
We have lrwd(Pn) = 1 for each n, with corresponding linear orders isomor-

phic to ω. It follows easily that G has linear rank-width 1 with linear order
ω + ω + ...+ ω + ... We now prove that if ≤ is a linear order of VG isomorphic
to ω, then lrwd(G,≤) = ω. Let ≤ be such an order. The vertices of Pn are vn,i
for i ≥ 0, with vn,i adjacent to vn,i+1. Let rn,i be the rank of vn,i with respect
to ≤ (ranks start at 1, not at 0). We have rn,i �= rn′,i′ if (n, i) �= (n′, i′).
Let k be any positive integer and p := max{r0,0, ..., rk,0}. For each i = 0, ..., k,

let mi be such that ri,mi
≥ p+ 1. We let (X,Xc) be the cut of ≤ such that X

is the set of vertices of rank at most p. Hence, X contains v0,0, ..., vk,0 and X
c

contains v0,m0
, ..., vk,mk

. As there are in G paths between vi,0 and vi,mi
for each

i = 0, ..., k that are vertex disjoint, there are k+1 pairwise disjoint edges between
X and its complement. Hence, lrwd(G,≤,X) ≥ k and so, lrwd(G,≤) ≥ ω. It
follows that dlrwd(G) = ω. �

Remark : For defining the path-width of a countable graph one can take as
path of a path-decomposition either N or Z with successor relation as adjacency.
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(The other conditions are naturally as in the case of finite graphs). The same
graphs have finite path-width, as for rank-width (cf. the next proposition). The
previous proof can be adapted to show that P0 ⊕ P1 ⊕ ...⊕ Pn ⊕ ... has infinite
path-width whereas its finite subgraphs have path-width 1. Hence, path-width
has not the compactness property for any gap function.

Proposition 3 : For every countable graph G such that dlrwdZ(G) or
dlrwd(G) is finite, we have:

dlrwdZ(G) ≤ dlrwd(G) ≤ 2.dlrwdZ(G).

Proof : The first inequality is clear. For proving the other, we assume
that dlrwdZ(G) = k, with linear order ≤ showing that dlrwdZ(G) ≤ k. If
(VG,≤) is isomorphic to ω or ω−1, then this order shows that dlrwd(G) = k.
Assume now that (VG,≤) is isomorphic to Z, so that the vertices of G can be
denoted by vi for i ∈ Z. Let us now consider the linear order ≤′ such that
v0 <

′ v−1 <
′ v1 <

′ v−2 <
′ v2 <

′ ... <′ v−n <
′ vn <

′ ... so that (VG,≤′) is
isomorphic to ω. We claim that lrwd(G,≤′) ≤ 2k.
Consider a cut (X,Xc) of≤′ such thatX := {v0, v−1, v1, v−2, v2, ..., v−n, vn}.

Let Y := {vn+1, vn+2, ...} and Z := {v−(n+1), v−(n+2), ...} = Xc − Y. We have

MG[X,X
c] =MG[X,Y ∪ Z]

and rk(MG[X,Y ∪Z]) ≤ rk(MG[X,Y ]) + rk(MG[X,Z]) (cf. Section 2.2).
The pair (X ∪Z, Y ) is a cut for ≤. Hence, rk(MG[X ∪Z, Y ]) ≤ k. We have

rk(MG[X,Y ]) ≤ rk(MG[X ∪Z, Y ]) ≤ k and similarly, (Z,X ∪ Y ) is a cut for ≤
and rk(MG[Z,X]) = rk(MG[X,Z]) ≤ k. Hence rk(MG[X,Xc]) ≤ 2k. The proof
is similar if X = {v0, v−1, v1, v−2, v2, ..., vn−1, v−n}. Hence, dlrwd(G) ≤ 2k. �

Definition 4 : Sufficient set of cuts.

Let (V,≤) be a linear order. A set of cuts C of this order is sufficient if for
every two finite subsets Y,Z of V such that Y < Z (this notation means that
y < z for every y in Y and z in Z) there is in C a cut (X,Xc) such that Y ⊆ X
and Z ⊆ Xc.
If x has successor y (i.e., if [x, y] = {x, y}), then every sufficient set of cuts

must contain (] −∞, x], [y,+∞[). Hence, if ≤ is discrete, the set of all cuts is
the only sufficient set.
If V is countable, then the set of all cuts may be uncountable but the count-

able set {(] − ∞, x], ]x,+∞[) | x ∈ V } is sufficient. There may exist other
sufficient sets. As a second example, consider (Q,≤) and a dense subset D of

Q, e.g., the set of numbers of the form ±m/10p
2

for m, p ∈ N. Then, the set
{(]−∞, x], ]x,+∞[) | x ∈ D} is sufficient and countable.
Finally, consider (L,≤lex) where L is a prefix-free language on {0, 1}. The

set of pairs (X,Y ) such that, for some proper prefix u of a word of L we take
X = L ∩ u0{0, 1}∗ and Y = L ∩ u1{0, 1}∗ is a countable and sufficient set of
cuts.
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Proposition 5: Let G be a graph, ≤ a linear order on VG and C a sufficient
set of cuts. We have

lrwd(G,≤) = max{rk(MG[X,X
c]) | (X,Xc) ∈ C}.

The proof is straightforward by inspection of the proof of the first part of
Theorem 2. This proposition shows that the linear rank-width of a graph can
be defined from countable sufficient sets of cuts.

4 Rank-width of countable graphs

Discrete rank-width is the natural generalization of rank-width to countable
graphs.

4.1 Discrete rank-width

Definition 6 : Discrete rank-width
A discrete layout of a countable graph G is a subcubic tree T whose set of

leaves contains VG. The sets LT,x,y are defined as for finite graphs, but they can
be empty. The discrete rank-width of G is defined as for finite graphs: if T is a
discrete layout, we define :

rwd(G,T ) := max{rk(MG[LT,x,y, LT,y,x]) | x, y are adjacent nodes}.

The discrete rank-width of G is drwd(G) := min{rwd(G,T ) | T is a discrete
layout of G}.

As technical variant, we can define a discrete layout of G as a pair (T,ϕ)
where ϕ is an injection : VG → LT and T is sucubic. The associated width
is then defined by replacing LT,u,v by ϕ

−1(LT,u,v) for all u, v. The associated
notion of discrete rank-width is clearly the same. This variant will make some
proofs easier to write.

Proposition 7 : In the definition of discrete rank-width, the minimum can
be taken over all leafy cubic layouts such that VG = LT .

Proof sketch : Let T be a discrete layout such that VG ⊆ LT . Similarly as
in Section 2.3, we remove the nodes of the sets NT,x,y such that NT,x,y ∩VG = ∅
that we call the useless nodes. We obtain a leafy subcubic tree T ′ such that
VG = LT ′ . By smoothing its degree 2 nodes, we get a leafy cubic tree T” that
is a layout of G such that rwd(G,T”) = rwd(G,T ), which proves the result. �
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Theorem 8 : Discrete rank-width does not have the compactness property.
It has this property with gap function λn.2n.

Proof: We let {A,Ac} be a partition of Q into two dense subsets. We define
G to have vertex set Q and an edge between p and q > p if and only if q ∈ A.
Each finite induced subgraph ofG is a threshold graph and has linear rank-width
1 (witnessed by the usual order on Q).
Let T be a discrete and cubic layout of G such that VG = LT . We claim that

rwd(G,T ) ≥ 2.
To prove the claim we need only find two adjacent nodes x, y of T and

vertices a, b, c, d of G such that there is a path a− b − c − d, a is not adjacent
to d, {a, c} ⊆ LT,x,y and {b, d} ⊆ LT,y,x because then, rk(MG[LT,x,y, LT,y,x]) ≥
rk(MG[{a, c}, {b, d}]) = 2.

Claim : If X1, ...,Xp are pairwise disjoint sets such that X1 ∪ ... ∪ Xp is
dense on [u, v], then some set Xi is dense on [u

′, v′] for some u′, v′ such that
u ≤ u′ < v′ ≤ v.
Proof sketch: We consider the case p = 2. If X1 is not dense on [u, v],(cf.

Section 2.1) then X1 ∩ [u′, v′] = ∅ for some u′, v′ such that u ≤ u′ < v′ ≤ v.
Then X1∪X2 is dense on [u

′, v′], hence X2 is dense on this interval. The general
case follows by induction on p.�

We now look for a path a−b−c−d showing that rwd(G,T ) ≥ 2.We choose
a leaf c of T belonging to A and another leaf a such that a < c. There is a
path a − x1 − ... − xp − c in T . Let y1, ..., yp be the neighbours of x1, ..., xp
respectively that are not on this path.

Case 1 : For some i, A∩Lxi,yi and A
c∩Lxi,yi are dense on [a, c]. There exist

b ∈ A∩Lxi,yi and d ∈ A
c∩Lxi,yi such that a < b < d < c. Between a, b, c, d, we

have the edges a− b, b− c, d− c and a− c. Hence, we have a path a− b− c− d
with no edge between a and d, {a, c} ⊆ Lyi,xi and {b, d} ⊆ Lxi,yi . We are done.

Case 2 : Case 1 does not hold. The set (A ∩ Lx1,y1) ∪ ... ∪ (A ∩ Lxp,yp) is
dense on [a, c]. Hence, by the claim, A ∩ Lxi,yi is dense on [a

′, c′] ⊆ [a, c] for
some i. Now, (Ac ∩Lx1,y1)∪ ...∪ (A

c ∩Lxp,yp) is dense on [a
′, c′]. Hence, again

by the claim, Ac ∩ Lxj ,yj is dense on [a”, c”] ⊆ [a′, c′] for some j. If i = j
we argue as in Case 1. Otherwise, assume i < j and then Lxj ,yj ⊂ Lyi,xi .
Hence A ∩ Lxi,yi and A

c ∩ Lyi,xi are dense on [a”, c”]. Hence, we can find u
and w in A ∩ Lxi,yi ∩ [a”, c”] and v and z in A

c ∩ Lyi,xi ∩ [a”, c”] such that
a” < v < u < z < w < c”. This gives a path u − v − w − z showing that
rk(MG[Lxi,yi , Lyi,xi ]) ≥ rk(MG[{u,w}, {v, z}]) = 2.
The discrete rank-width of G is thus at least 2.
Its linear rank-width is 1 and its discrete rank-width is 2, as a consequence

of the second assertion that will be proved in Theorem 26, Section 4.3.�

As for discrete orders, a countable layout has countably many cuts, and all
of them are necessary. The notion of a sufficient set of cuts is pointless.
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4.2 Quasi-trees

The good notion of rank-width, where "good" means that it has the compactness
property will be based on certain generalized trees, called quasi-trees. Roughly
speaking, a quasi-tree is to a tree what a countable linear order is to a discrete
one (a linear order isomorphic to a suborder of (Z,≤)).

Definition 9 : We associate with each tree T its ternary betweenness rela-
tion, BT ⊆ NT ×NT ×NT defined as follows:

BT (x, y, z) holds if and only if x, y, z are pairwise different and y ∈
[x, z]T (where [x, z]T is the set of nodes of the unique path in T
between x and z, cf. Section 2.3)

We let Q(T ) := (NT , BT ).

Proposition 10: The betweenness relation B = BT of a finite or countable
tree T satisfies the following properties for all u, x, y, z in NT :
A1 : B(x, y, z)⇒ x �= y �= z �= x.
A2 : B(x, y, z)⇒ B(z, y, x).
A3 : B(x, y, z)⇒ ¬B(x, z, y).
A4 : B(x, y, z) ∧B(y, z, u)⇒ B(x, y, u) ∧B(x, z, u).
A5 : B(x, y, z) ∧B(x, u, y)⇒ B(x, u, z) ∧B(u, y, z).
A6 : B(x, y, z) ∧B(x, u, z)⇒
y = u ∨ (B(x, u, y) ∧B(u, y, z)) ∨ (B(x, y, u) ∧B(y, u, z)).
A7 : x �= y �= z �= x⇒
B(x, y, z) ∨B(x, z, y) ∨B(y, x, z) ∨ (∃u.B(x, u, y) ∧B(y, u, z) ∧B(x, u, z)).

Proof : Straightforward verification from definitions.�

Definitions 11 : Quasi-trees and related notions

(a) A quasi-tree is a structure T = (NT , BT ) such that NT , called the set
of nodes, has at least 3 elements, and BT is a ternary relation that satisfies
conditions A1-A7.
In A1, one could replace x �= y �= z �= x by x �= z because A2 and A3 imply

x �= y �= z.
A quasi-tree satisfies the following properties :

(1) The four cases of the conclusion of A7 are exclusive. This is
clear for the first three by A3. Let us now assume that we have
B(x, y, z)∧ [B(x, u, y)∧B(y, u, z)∧B(x, u, z)]. Then B(u, y, z) holds
by A5 and we get a contradiction by A3 and A21 . Two other similar
verifications yield the result.

1 In order to simplify the writing of similar proofs, we will not mention the use of A2.
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(2) In the fourth case of the conclusion of A7, there is at most one
u satisfying B(x, u, y)∧B(y, u, z)∧B(x, u, z). To prove this, we as-
sume that we also have B(x, v, y)∧B(y, v, z)∧B(x, v, z) with v �= u.
By A6, we have B(x, v, u) ∧B(v, u, y) or B(x, u, v) ∧B(u, v, y). As-
sume the first. AsB(x, u, y) holds, A5 yieldsB(v, u, y) and, similarly,
B(v, u, z). We have B(y, u, z) and B(y, v, z), hence, by A6, we have
B(y, u, v) ∧B(u, v, z) or B(y, v, u) ∧B(v, u, z). A3 excludes each of
these two cases because of B(v, u, y) and B(v, u, z). Hence, we must
have u = v.

The following definitions concern a quasi-tree T = (N,B).

(b) If x, y, z are pairwise distinct, we denote by M(x, y, z) (M stands for
"middle"; we write MT if we need to specify T ), the node x (resp. y, z) if
B(y, x, z) (resp. B(x, y, z), B(x, z, y) ) holds, and, otherwise, the unique node u
satisfying B(x, u, y) ∧B(y, u, z) ∧B(x, u, z).

(c) A quasi-tree T ′ = (N ′, B′) is a sub-quasi-tree of T , which we denote by
T ′ ⊑ T , if N ′ ⊆ N and B′ = B ∩ (N ′ ×N ′ ×N ′). Then, MT ′ is the restriction
of MT to NT ′ .
Let X ⊆ N. Then (X,B ∩ (X ×X×X)) is a sub-quasi-tree of T if and only

if X is closed underMT . In all cases, there is a least set �X that contains X and
is such that ( �X,B ∩ ( �X × �X × �X)) is a sub-quasi-tree of T : it is the least set Y
such that Y ⊇ X ∪MT (Y, Y, Y ).
If X is a line, i.e. a set X ⊆ N satisfying the following property that is

stronger than A7:

A7’ : If x, y, z are three elements of X, then we have :

B(x, y, z) ∨B(x, z, y) ∨B(y, x, z),

then �X = X.

(d) A leaf of T is a node z such that B(x, z, y) holds for no x, y. A quasi-
tree is leafy if every node z is a leaf or is between two leaves, i.e., satisfies
B(x, z, y) for some leaves x and y. If x is a leaf of T , then T − {x} defined as
(N ′, B ∩ (N ′ ×N ′ ×N ′)) where N ′ := N − {x} is a quasi-tree.

(e) If S1, ..., Sn, ... are quasi-trees forming an increasing sequence for inclu-
sion, i.e., such that S1 ⊑ ... ⊑ Sn ⊑ ... then, their union is the quasi-tree
T = (N,B) such that N :=

�
n≥1

NSn and B :=
�
n≥1

BSn . We have Sn ⊑ T for

each n. We denote T by
�
n≥1

Sn.

(f) We let G(T ) be the graph with vertex set N and an undirected edge
between x and y if B(x, y, z) holds. If T is a quasi-tree, this graph is connected
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(with diameter 1 or 2) by A7. Any two leaves are at distance 2 but a quasi-tree
may have no leaf.�

Definitions 12 : Convexity and intervals.

Let T = (N,B) be a quasi-tree.
(a) A subset X of N is convex (with respect to T ) if:

B(x, y, z) ∧ x ∈ X ∧ z ∈ X =⇒ y ∈ X.

(b) If x, y ∈ N , we denote by ]x, y[B the convex set {z ∈ N | B(x, z, y)
holds} and by [x, y]B, ]x, y]B and [x, y[B the sets, respectively, ]x, y[B ∪{x, y},
]x, y[B ∪{y} and ]x, y[B ∪{x}. We call them intervals, which will be justified
by Lemma 13(1) below.

(c) We say that T is discrete if each interval [x, y]B is finite. If T = Q(T ′)
for some tree T ′, then the intervals [x, y]B of T are the sets [x, y]T ′ , and so, T
is a discrete quasi-tree.

(d) The convex hull of a set X ⊆ N , denoted by X, is the union of the
intervals [x, y]B for x, y ∈ X. We will prove that it is actually convex and is
thus the least convex set containing X. �

Lemma 13 : Let T = (N,B) be a quasi-tree and r one of its nodes.
(1) The following binary relation is a partial order:

x ≤ y :⇔ x = y ∨ y = r ∨B(x, y, r).

Its minimal elements are the leaves of T except r if it is a leaf, and r is its
maximal element. Each interval [x, r]B is linearly ordered.
(2) Every two nodes x and y have a least upperbound denoted by x⊔y. It is

equal to M(x, y, r) if x, y, r are pairwise distinct. If x and y are incomparable,
then B(x, x ⊔ y, y) holds. Hence, a convex set is closed under ⊔.
(3) For any three distinct nodes x, y, w, we have:

B(x,w, y)⇐⇒ (x < w ≤ x ⊔ y) ∨ (y < w ≤ x ⊔ y),

which is equivalent to [x, y]B = [x, x ⊔ y]B ∪ [x ⊔ y, y]B.

(4) If T is discrete, then [x, r]B is of the form {z0, ..., zn} with x = z0 < z1 <
... < zn = r. If i < j and 1 ≤ k ≤ n − 1, we have B(zi, zk, zj) if and only if
i < k < j.

Proof: The verification is easy for (1). That of (2) is not hard either, but
we give it. Let x, y be incomparable.

Case 1 : B(x, r, y) holds. We have x < r and y < r. Let u be such that x ≤ u
and y ≤ u. We want to prove that u = r. We can have neither x = u nor y = u
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because x, y are incomparable. Consider the case where B(x, u, r) ∧ B(y, u, r)
holds. By A5, we haveB(u, r, y) , henceB(u, r, y)∧B(y, u, r) and a contradiction
with A3. Hence, u = r.

Case 2 : B(x, r, y) does not hold and z = M(x, y, r) is the unique node
(cf. A7 and the unicity property of Definition 11(a)) such that B(x, z, r) ∧
B(y, z, r) ∧ B(x, z, y). If x ≤ u and y ≤ u, we want to prove that z ≤ u.
We have neither x = u nor y = u. If u = r, then z ≤ u. Otherwise, we have
B(x, u, r)∧B(y, u, r). If z = u or B(z, u, r), we are done. Otherwise, by A6, we
have B(u, z, r) ∧ B(x, u, z) ∧ B(y, u, z). But with B(x, z, y) and by A5, we get
B(u, z, y) and a contradiction with A3. This case cannot hold and so, we get
z ≤ u. Hence, z is the least upper bound of x and y.
(3) ⇐=: Assume x < w ≤ x ⊔ y. If w = x ⊔ y, then B(x,w, y) holds by (2).

Otherwise, x < w < x⊔y. Hence, we have B(x,w, r) and B(w, x⊔y, r). We have
thus B(x,w, x⊔ y) by A5. Since we also have B(x, x⊔ y, y), we have B(x,w, y)
again by A5. If y < w ≤ x ⊔ y the proof is similar.
=⇒: Assume we have B(x,w, y). Since we also have B(x, x ⊔ y, y), then, by

A6, we have w = x ⊔ y or B(x,w, x ⊔ y) or B(x ⊔ y,w, y). Consider the case
B(x,w, x ⊔ y). We also have B(x, x ⊔ y, r), hence, B(x,w, r) and B(w, x ⊔ y, r)
by A5 and so, x < w < x ⊔ y. If B(x ⊔ y,w, y) holds, the proof is similar and
the case w = x ⊔ y also gives the desired result.
(4) We prove the property for all pairs (x, r) by induction on the cardinality

c(x, r) of [x, r]B that is finite since T is discrete. Assuming x �= r, we have
c(x, r) ≥ 2. If c(x, r) = 2 then the result holds with n = 1.
Otherwise, there is u such that B(x, u, r) holds. By A1 and A5, we have

[x, u]B ⊂ [x, r]B and [u, r]B ⊂ [x, r]B. Hence, by the induction hypothesis we
have : x = z0 < z1 < ... < zm = u , [x, u]B = {z0, ..., zm}, u = zm < zm+1 <
... < zn = r and [u, r]B = {zm, ..., zn} which gives the result. �

It follows from Assertions (1) and (2) that (NT ,≤) is a join-tree in the sense
of [CouDel] with maximal element r (the least upper bound of x and y is also
called their join), and that for all x, y, z, the least upper bound (x ⊔ y) ⊔ z
belongs to {x ⊔ y, x ⊔ z, y ⊔ z} and this set consists of at most 2 elements that
are comparable.

Corollary 14 : Let T = (N,B) be a quasi-tree and X ⊆ N. Let r ∈ X,
from which we get ≤ and ⊔.
(1) The set X is convex.
(2) The set X is closed under ⊔ if and only if it is closed under M .

(3) If X is finite, the set �X is finite.

The mapping M in defined in Definition 11(a) and the sets �X and X are in
Definitions 11(d) and 12(d).

Proof: (1) Let us choose a node r ∈ X. Let Y be the union of the intervals
[x, r]B for all x ∈ X. By (3) of Lemma 13, we have:
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[x, y]B = [x, x ⊔ y]B ∪ [x ⊔ y, y]B ⊆ [x, r]B ∪ [y, r]B.

Hence, [x, y]B ⊆ Y if x, y ∈ X, and so, Y = X. We get also, by the same
observation, that Y is convex. As every convex set containing X must contain
X, the latter set is the least one containing X and can be called its convex hull,
as we anticipated in Definition 12.

(2) If X is closed under M , then, it is closed under ⊔ by Lemma 13(2).
Assume conversely thatX is closed under ⊔. Let x, y, z ∈ X be pairwise distinct.
The only case to consider is when u :=M(x, y, z) satisfies B(x, u, y)∧B(y, u, z)∧
B(x, u, z), and we aim to prove that u ∈ A := {x ⊔ y, x ⊔ z, y ⊔ z}. The set A
consists of at most two comparable elements. Assume that x ⊔ y ≤ x ⊔ z. By
the first three assertions of Lemma 13, we get u = x ⊔ y. We omit the routine
proof. The proofs for the two other cases are similar.

(3) For every set Y ⊆ N , we let m(Y ) := {x ⊔ y | x, y ∈ Y }. This set
contains Y as we can have x = y. We have observed that for all x, y, z, we have
(x⊔ y) ⊔ z ∈ A := {x⊔ y, x ⊔ z, y ⊔ z}, hence m(m(Y )) = m(Y ). It follows that

m(X) is the least set containing X that is closed under ⊔. By (2), �X =m(X).
If y /∈ m(X), then m(m(X) ∪ {y}) consists of m(X) ∪ {y} and at most one
additional element (a consequence of Lemma 13(1)). Hence, if X is finite with
at least 3 nodes, |m(X)| ≤ 2. |X| − 2. �

Lemma 15 : Let S = (N,B) be a quasi-tree. For pairwise distinct x, y, z,
we have :

[x, y]B ∩ [y, z]B = {y} if and only if [x, z]B = [x, y]B ∪ [y, z]B .

Proof : Let x, y, z be distinct and ≤ be the partial order of Lemma 13 with
maximal element y. Hence x ⊔ z ≤ y. Then by this lemma we have:

[x, z]B = [x, x ⊔ z]B ∪ [x ⊔ z, z]B,

[x, y]B = [x, x ⊔ z]B ∪ [x ⊔ z, y]B,

[z, y]B = [z, x ⊔ z]B ∪ [x ⊔ z, y]B and

{x ⊔ z} = [x, x ⊔ z]B ∩ [x ⊔ z, z]B =

= [x, x ⊔ z]B ∩ [x ⊔ z, y]B = [z, x ⊔ z]B ∩ [x ⊔ z, y]B.

It follows that

[x, y]B ∩ [y, z]B = {y} if and only if y = x ⊔ z

if and only if [x, z]B = [x, y]B ∪ [y, z]B.�
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Proposition 16 : (1) Every discrete quasi-tree S = (N,B) is Q(T ) for the
tree T with set of nodes N and adjacency relation x−T y defined by [x, y]B =
{x, y}. The leaves of T are those of S.
(2) Let T be a tree and S = (N,B) a quasi-tree such that NT ⊆ N . Then

Q(T ) ⊑ S if and only if for every edge of T with ends x and y, then [x, y]B ∩
NT = {x, y}. It follows that for trees T and T ′we have T ⊑ T ′ if and only if
Q(T ) ⊑ Q(T ′).

Proof: (1) Let S be a discrete quasi-tree. By Lemma 13(4), each interval
[x, y]B is of the form {x, z1, ..., zn−1, y} with x = z0 < z1 < ...zn−1 < y = zn
(< is as in Lemma 13(1) with maximal element y) and [zi, zi+1]B = {zi, zi+1}
for each i, so that we have x −T z1 −T ... −T zn−1 −T y. Hence, the graph T
with vertex set N and adjacency relation −T as defined in the statement is
connected.
Consider two adjacent edges : x−T y−T z, z �= x. We have [x, y]B∩ [y, z]B =

{y}. By Lemma 15, we have [x, z]B = {x, y, z} hence B(x, y, z) holds.
Consider now a path z1 −T z2 −T ... −T zn with n ≥ 3. By the previ-

ous remark, we have B(z1, z2, z3), B(z2, z3, z4), hence B(z1, z3, z4) holds. Then
we have B(z3, z4, z5) and B(z1, z4, z5), and finally, by repeating the argument,
B(z1, zn−1, zn). Hence, T has no edge between z1 and zn. It has no cycle, hence
it is a tree.
From this proof, one obtains that the leaves of T are those of S.
(2) It is clear that if Q(T ) ⊑ S, then [x, y]B ∩NT = {x, y} for every edge of

T with ends x and y. If T ⊑ T ′ for trees T and T ′ then Q(T ) ⊑ Q(T ′).
The other proofs are routine. �

Definition 17 : Directions
Let S = (N,B) be a quasi-tree and x a node of S.
(a) We say that y, z ∈ N −{x} are the same direction relative to x if, either

y = z or B(y, z, x) or B(z, y, x) or B(y, u, x) ∧ B(z, u, x) holds for some node
u. Equivalently, y ⊔ z < x where < is the strict partial order with maximal
element x (cf. Lemma 13(1)). Hence, if B(y, x, z) holds, y and z are not in the
same direction relative to x (by Fact (1) of Definition 11). This relation is an
equivalence, denoted by y ∼x z, and its classes are the directions relative to x.
(b) The degree of x is the number of classes of ∼x. A node has degree 1 if

and only if it is a leaf. We say that S is cubic (resp. subcubic) if its nodes have
degree 1 or 3 (resp. degree at most 3). If S = Q(T ) for a tree T , then a direction
around x is associated with a neighbour y of x and is Nx,y, the set of nodes of
the connected component of T − {x} that contains y.
If S′ ⊑ S, then the degree of a node of S′ is at most its degree in S. If

S1, ..., Sn, ... is an increasing sequence of quasi-trees and S =
�
n≥1

Sn, then the

degree of a node of S is the least upperbound of its degrees in the quasi-trees
Sn to which it belongs.

Definition 18 : Cuts in quasi-trees.
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A cut of a quasi-tree S = (N,B) is a partition {X,Xc} of N into two convex
sets. We consider an empty set as convex and so {∅, N} is a cut (cf. Definition
1 for a similar fact). The following facts are clear:

(1) If S = Q(T ) for a tree T , the cuts of S are those of T .

(2) If {X,Xc} is a cut of S :=
�
n≥1

Sn, then each pair {X∩NSn , NSn−

X} is a cut of Sn.

(3) If S1, ..., Sn, ... is an increasing sequence of quasi-trees and for
each n, {Xn, Yn} is a cut of Sn, Xn = Xn+1 ∩ NSn and Yn =
Yn+1 ∩NSn , then {

�
n≥1

Xn,
�
n≥1

Yn} is a cut of
�
n≥1

Sn.

Lemma 19 : Let S and S′ be quasi-trees such that S ⊑ S′. The cuts of S
are the pairs {X ′ ∩NS, Y

′ ∩NS} such that {X
′, Y ′} is a cut of S′.

Proof : It is clear that {X′ ∩NS, Y
′ ∩NS} is a cut of S if {X

′, Y ′} is one
of S′. Let conversely {X,Y } be a cut of S. Choose an element r of Y (if Y is
empty, we take {X′, Y ′} = {∅, NS′}). We will use the associated partial order
≤ on NS′ with maximal element r. We first prove that X is closed under ⊔
(this least upperbound function is relative to ≤ on NS′). Let x, y ∈ X; then
x⊔ y =MS′(x, y, r) by Lemma 13(2), hence is equal to MS(x, y, r) and belongs
to X as X is convex in S and B(x, x ⊔ y, y) holds.
We define X ′ := {u ∈ NS′ | u ≤ x for some x ∈ X} and Y ′ := NS′ −X ′.

We prove that X = X ′ ∩NS so that Y = Y ′ ∩NS.
Clearly, X ⊆ X′ ∩NS. For the other inclusion, let y ∈ X

′ ∩NS. Then y ≤ x
for some x ∈ X. If y /∈ X, then y ∈ Y , we have B(y, x, r) and Y is not convex.
We now prove that X′ is convex. Let x′, y′ ∈ X′. Then, x′ ≤ x ∈ X, y′ ≤ y ∈ X,
hence x′⊔y′ ≤ x⊔y, but x⊔y ∈ X as observed above, hence, by Lemma 13(3),
every element of NS′ between x

′ and y′ is below x⊔ y or equal to it, hence is in
X′. To prove that Y = Y ′ ∩NS is convex, we consider x, y ∈ Y

′ ∩NS. If some
z ∈ X ′ is between them, then we have x ≤ z ≤ x ⊔ y or y ≤ z ≤ x ⊔ y and we
have respectively x or y in X ′, contradicting the initial choice. Hence, {X′, Y ′}
is a cut of S′.�

4.3 Rank-width of countable graphs

We now define "the good notion" of rank-width for countable graphs.

Definition 20: Rank-width.
A layout of a graph G is a subcubic quasi-tree S whose set of leaves LS

contains VG, or contains ϕ(VG) for some injective mapping ϕ : VG → LS. In the
latter case, the layout is (S,ϕ). Its width rwd(G,S) is the least upperbound of
the ranks of the matrices
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MG[X ∩ VG,Xc ∩ VG] (or MG[ϕ
−1(X), ϕ−1(Xc)]) over all cuts {X,Xc} of

S. The rank-width of G, denoted by rwd(G), is the minimal width of all its
layouts. It is a width measure because if H ⊆i G, every layout of G is one of H
(with useless nodes) and, by Fact (2) of Section 2.2, the associated rank-width
is no larger. It is clear that:

rwd(G) = drwd(G) ≤ rwd(G) ≤ drwd(G).

The following proposition shows that the rank-width of a finite graph G
defined as above is the same as the classical one recalled in Section 2.4.

Proposition 21: Rank-width can be defined with respect to cubic and leafy
layouts whose leaves are the vertices of the considered graph.

Proof: Let S = (N,B) be a layout of a graph G such that VG ⊆ LS. We
first delete some useless nodes of S as follows.
We choose a vertex r of G. It is a leaf of S. We let N ′ be the union of the

intervals [x, r]B for all vertices x of G. It follows from Lemma 13 and Corollary
14 that N ′ is closed under ⊔ and thus also underM . Hence S′ := (N ′, B′) where
B′ := B∩(N ′×N ′×N ′) is a quasi-tree that, furthermore, is leafy and subcubic.
It is a layout of G whose leaves are the vertices of G.
Next we remove from N ′ the nodes of degree 2 in S′ and we get N” ⊆ N ′.

Then S” := (N”, B”) where B” := B ∩ (N”×N”×N”) is a quasi-tree because
the deleted nodes cannot be the nodes u that are necessary to satisfy A7. Hence,
S” is a leafy quasi-tree and a cubic layout of G as desired. We have S” ⊑ S. By
Lemma 19, every cut {X,Y } of S” is {U ∩N”,W ∩N”} for some cut {U,W}
of S′. Hence,

rk(MG[X ∩ VG, Y ∩ VG]) ≤ rk(MG[U ∩ VG,W ∩ VG]) ≤ k.

It follows that rank-width defined with respect to cubic and leafy layouts
whose leaves are the vertices of the considered graph G is no larger than rwd(G).
�

Theorem 22 : Rank-width has the compactness property.

Proof : It is similar to that of Theorem 2(1) with layouts instead of linear
orders.

We first make some easy observations. If T is a finite cubic tree with leaves
1, ..., n, n ≥ 3, then its internal nodes (those that are not leaves) can be denoted
in a unique way by the integers {−n, ...,−3}, in such a way that i is adjacent
to −i for each i = 3, ..., n. We call such a tree a standard tree. If we delete the
"last leaf" n and we smooth the degree 2 node −n, we get the standard tree
Red(T − n).
Let G be a countable graph such that rwd(G) = k < ω. Without loss of

generality, we can assume that VG = N−{0}. We let G3 ⊆i G4 ⊆i ... ⊆i
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Gn ⊆i ... be the increasing sequence of finite induced subgraphs of G such that
VGn

= [n]. Their union is G. For each n ≥ 3, we let Ln be the set of layouts of
VGn

that witness that lrwd(Gn) ≤ k and that are standard trees.
Clearly, Red(T −n) ∈ Ln−1 if T ∈ Ln. The sets Ln are finite and not empty.

By Koenig’s Lemma, there is an increasing sequence (Tn)n≥3 of layouts in Ln
such that Red(Tn − n) = Tn−1 (for n > 3). It is increasing with respect to the
notion of inclusion defined in Section 2.3, hence Q(Tn) ⊑ Q(Tn+1) for all n. The
union of the finite quasi-trees Q(Tn) is a quasi-tree S with set of leaves equal to
VG. It is cubic by the final remark in Definition 17(b), hence is a layout of G.
We now prove that rwd(G,S) ≤ k. Assume for getting a contradiction that

rwd(G,S) > k. By Fact (4) of Section 2.2, there exists a cut {X,Xc} of S and
finite subsets Y ⊆ X ∩ VG, Z ⊆ Xc ∩ VG such that the rk(MG[Y,Z]) ≥ k + 1.
There exists i such that VGi

⊇ Y ∪ Z. Hence, the cut {X ∩NTi , NTi −X} of
Q(Ti) yields rk(MG[X ∩ VGi

, VGi
−X]) ≥ k + 1 and Ti does not witness that

rwd(Gi) ≤ k. Contradiction. It follows that rwd(G,≤) ≤ k, hence rwd(G) ≤
k = rwd(G). �

Definition 23 : Let S be a quasi-tree. A set of cuts C of S is sufficient

if, for every two finite sets of leaves Y,Z such that Y ∩ Z = ∅, there is a cut
{X,Xc} in C such that Y ⊆ X and Z ⊆ Xc.

Example 24 : Let S be a quasi-tree with countably many leaves. Let C be
the set of cuts of the form {D, Dc} such that D is a direction relative to some
node x. Let us prove that it is sufficient. Let Y and Z be nonempty and satisfy
the condition of Definition 23. Let r ∈ Z and let ≤ be the associated partial
order with maximal element r. Let y be the least upper bound of Y . It belongs
to Y by Lemma 13 and y < r (otherwise, r ∈ Y ). Let E := {u | u ≤ y}. This
set contains Y and is convex, hence it contains Y . Its complement Ec contains
Z and is convex. To prove this last point, assume that w,w′ ∈ Ec. Any node v
between w and w′ satisfies w ≤ v or w′ ≤ v (by Lemma 13(3)). If v ∈ E, then
w or w′ belongs also to E, contradicting the assumption. It remains to prove
that Ec is D, the direction of r relative to y. Consider any node w ∈ Ec. Then
y < y ⊔w. If y ⊔w = r, then B(y, r, w) holds. If y ⊔w < r, then B(y, y ⊔w, r)
and B(y, y⊔w,w) hold. In both cases, w and r are in the same direction relative
to y and so w ∈ D. If w ∈ E − {y} then B(w, y, r) holds and w /∈ D. Hence,
D = Ec is the direction of r relative to y. The countable set C is sufficient.�

The following proposition shows that rank-width can be defined with respect
to sufficient sets of cuts.

Proposition 25 : Let G be a graph with layout S, and C be a sufficient set
of cuts of S. Then rwd(G,S) is the least upper bound of the ranks rk(MG[X ∩
VG,X

c ∩ VG]) for {X,X
c} ∈ C.

Proof: Let rwd′(G,S) be the least upper bound of the ranks rk(MG[X ∩
VG,X

c ∩ VG]) for {X,X
c} ∈ C. Clearly, rwd′(G,S) ≤ rwd(G,S). Assume that

rwd′(G,S) = k, and for getting a contradiction, that rwd(G,S) ≥ k+1. There
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is a cut {X,Xc} of S and finite sets of vertices of G (hence sets of leaves) Y,Z
such that Y ⊆ X, Z ⊆ Xc and rk(MG[Y,Z]) = k+1. As X and Xc are convex,
we have Y ⊆ X and Z ⊆ Xc, hence Y ∩Z = ∅. There is a cut {U,Uc} ∈ C such
that Y ⊆ U , Z ⊆ Uc and so rk(MG[U∩VG, Uc∩VG]) ≥ k+1, which contradicts
the hypothesis that rwd′(G,S) = k. Hence, rwd(G,S) = k. �

Theorem 26 : For every graph G, we have drwd(G) ≤ 2rwd(G).

Proof: We will show how to transform a layout of a countable graph G of
width k into a discrete one of width at most 2k. We will use definitions and
facts from Section 2.3 without recalling them. To make the proof more clear,
we first consider a special case. We show how to transform a linear order of VG
of width k into a discrete layout (not a linear order) of width at most 2k.
Let ≤ be such a linear order. There is a maximal prefix-free language L ⊆

{0, 1}∗ and a bijection ϕ : VG → L such that (VG,≤) is isomorphic to (L,≤lex).
Then T := T (L) is a rooted and directed binary tree, and we let T ′ := Und(T )
be obtained from T by omitting edge directions. It is a subcubic layout of G.
We will prove that rk(G,T ′) ≤ 2k.
Consider adjacent nodes x, y such that y is a son of x in T . Then Lx,y is an

interval of (L,≤lex). Clearly, Ly,x = Y ∪ Z where Y and Z are two (possibly
empty) intervals such that Y < Lx,y < Z. Since (Y ∪Lx,y, Z) and (Y,Lx,y ∪Z)
are cuts we have:

rk(MG[ϕ−1(Lx,y ∪ Y ), ϕ−1(Z)]) ≤ k and

rk(MG[ϕ−1(Y ), ϕ−1(Lx,y ∪ Z)]) ≤ k.

By Fact (6) of Section 2.4, we get:

rk(MG[ϕ−1(Lx,y), ϕ−1(Ly,x)]) =

rk(MG[ϕ−1(Lx,y), ϕ−1(Y ) ∪ ϕ−1(Z)]) ≤ 2k.

We now consider a cubic and leafy layout S = (N,B) of G (assumed count-
able) of width k such that VG = LS. Its nodes are enumerated into an infinite
sequence. We define an infinite sequence of lines (cf. Definition 11(c)) whose
union is S :

(1) we choose a leaf r, from which we get a partial order ≤ on N (cf.
Lemma 13(1); the notation does not indicate the dependence on r),

(2) we let N0 be a maximal line containing r (maximality is for
inclusion);

(3) we let Ni+1 be a maximal line that contains r and the first
element of N − (N0 ∪ ...∪Ni) (according to the chosen enumeration
of N).
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Figure 1: A structured quasi-tree.

As each line Ni contains r and at most one other leaf, the sets N − (N0 ∪
... ∪Ni) are not empty and the sequence (Ni)i≥0 is infinite. By Lemma 13(1),
each line Ni is linearly ordered by ≤. We do not have Ni ⊆ Nj if i �= j. We
define:

U0 := N0 and Ui+1 := Ni+1 − (N0 ∪ ... ∪Ni).

Hence Ui+1 �= ∅ and there is a node xi+1 ∈ N0 ∪ ... ∪Ni such that

]−∞, xi+1[= Ui+1 and [xi+1, r] = Ni+1 ∩ (N0 ∪ ... ∪Ni).

Clearly, N is the union of the pairwise disjoint lines Ui. We call (Ui)i≥0 a
structuring of S (this notion is also used in [CouDel]).
The nodes xi are pairwise distinct because if xi = xj and i < j, then xi

would have degree at least 4, whereas S is cubic.

We illustrate this definition with the example of Figure 1. Lines U0, U2, U5
have minimal elements respectively w0,w2,w5 that are leaves of S. This figure
shows lines U0, ..., U5 but other lines, U6, ... etc. may branch from the lower parts
of U1, U3, U4. Hence, the represented graph has other vertices than r, w0, w2, w5.

Claim 1: Let (X,Y ) be a cut of Ui and �X := {x | x ≤ x′ for some x′ ∈ X}.

Then { �X,N − �X} is a cut of S.
Proof : It is clear that if x, y ∈ �X, then x⊔ y ∈ �X because X is convex and

by Lemma 13(2), hence �X is convex by Lemma 13(3). The set N − �X is convex
because if B(x, y, z) holds we have x < y∨z < y by Lemma 13(3), so we cannot

have x /∈ �X ∧ y ∈ �X ∧ z /∈ �X. �
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Our next objective is to build an injective mapping ϕ : N → {0, 1, 2}∗ that
encodes the nodes of S by words, hence, by the nodes of a rooted directed tree
T. Section 2.3 contains the relevant definitions and basic facts.
For each i, we let ψi be an isomorphism : (Ui,≤) → (Li,≤lex) where Li ⊆

{0, 1}∗ is maximal prefix-free. We define a mapping ϕi : Ui → {0, 1, 2}
∗2 as

follows:

ϕ0(u) := ψ0(u)2 for u ∈ U0 = N0.

ϕi+1(u) := ϕj(xi+1)ψi+1(u)2 if u ∈ Ui+1 and xi+1 ∈ Uj , j ≤ i.

and finally:

ϕ(u) := ϕi(u) if u ∈ Ui.

Claim 2 : The mapping ϕ is injective.
Proof: Assume for a contradiction that ϕi(u) = ϕi′(u

′), u �= u′ with i+ i′

minimal. We cannot have i = i′ = 0.
Case 1 : i = i′ > 1, then :

ϕi(u) = ϕj(xi)ψi(u)2 and ϕi(u
′) = ϕj(xi)ψi(u

′)2.

But ψi(u), ψi(u′) ∈ {0, 1}∗ and since the word ϕj(xi) finishes with 2, we
must have ψi(u) = ψi(u

′) hence, u = u′, contradicting the initial assumption.
Case 2 : i < i′. We cannot have i = 0. Hence, we have:
ϕi(u) = ϕj(xi)ψi(u)2 and ϕi′(u

′) = ϕj′(xi′)ψi′(u
′)2.

But ψi(u), ψi′(u
′) ∈ {0, 1}∗ and since the words ϕj(xi) and ϕj′(xi′) finish

with letter 2, we must have ϕj(xi) = ϕj′(xi′) and ψi(u) = ψi′(u′). As j + j′ <
i+ i′, we have j = j′ and thus xi = xi′ by minimality of i+ i

′. Hence i = i′ and
u = u′ since ψi is a bijection. We get again a contradiction.
Hence, ϕ is injective. �

A similar proof yields:
Claim 3 : If ϕ(u) is a proper prefix of ϕ(u′) then u is not a leaf of S.

We define W := ϕ(N) ⊆ {0, 1, 2}∗. Then Pref(W ) is the set of nodes of a
rooted and directed tree T , furthermore ordered by ≤lex. Although T is defined
with 3 letters, it is binary because if w ∈ {0, 1, 2}∗ and w2 ∈ Pref(W ) then
w0, w1 /∈ Pref(W ).

Claim 4 : The maximal elements of W for the prefix order correspond by
ϕ to the leaves of S hence, to the vertices of G except r.
Proof: Every vertex of G except r is a leaf of S, hence the minimal element

wi of some line Ui. Hence, wi is not xj for any j and ϕ(wi) is a maximal word
in W by the definition of ϕ.
Conversely, let u ∈ Ui be not the minimal. Its degree is 3 as S is cubic.

Two directions relative to u are those of r and any element of Ui below u (Ui
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Figure 2: A tree A.

is contained in the union of these two directions). There is a third direction. It
must contain a leaf. Hence u = xj for some j > i, and thus ϕ(u) is not maximal
in W .�

For an example, Figure 2 shows a finite tree A with nodes a, b, ..., k,m. We
let S := Q(A). The construction of T is better illustrated with finite trees and
quasi-trees. We choose a as root r. The lines, their orders and their associated
nodes xi are:

N0 : f < e < d < c < a,
N1 : b < c < a, x1 = c,
N2 : h < g < e < d < c < a, x2 = e,
N3 : i < g < e < d < c < a, x3 = g,
N4 : k < j < d < c < a, x4 = d,
N5 : m < j < d < c < a, x5 = j.

An associated graph has vertices a, b, f, h, i, k,m.

The tree T that encodes S is shown on Figure 3. With each node labelled
by 2, we indicate the corresponding node of S. The nodes f, e, d, c, a forming
U0 are encoded by the words, respectively, 0002, 0012, 012, 102, 112a. The nodes
h, g forming U2 are encoded by 001202 and 001212. The node i forming U3 is
encoded by 0012122.

We now continue the proof. By adding nodes to S, we made it into a discrete
quasi-tree, hence, a tree. The vertices of G are the leaves of S, and these leaves
correspond by ϕ to the leaves of T and its root.
The tree T ′ := Und(T ) is subcubic and leafy. Its leaves (r is a leaf of T )

correspond by ϕ to the vertices of G. Hence, (T ′, ϕ′) is a discrete layout of G,
where ϕ′ is the restriction of ϕ to VG. We prove that rwd(G,T

′) ≤ 2k.
Consider an edge of T between x and one of its sons y. We must prove that:
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Figure 3: A directed tree that encodes S.

rk(MG[ϕ
−1(Nx,y) ∩ VG, ϕ

−1(NT ′,y,x) ∩ VG] ≤ 2k.

There are three cases: y = x0, y = x1 and y = x2.
Case y = x0.
We have x0 = ϕj(xi)2v for some i, j ∈ N and v ∈ {0, 1}∗. Hence x0 is one of

the nodes not in W , introduced for the linear order of Ui. Hence, ϕ
−1
i (NT ′,x,y)

is an interval of (Ui,≤), say Y . There are two (possibly empty) intervals X and
Z such that X < Y < Z. The pairs (X,Y ∪ Z) and (X ∪ Y,Z) are cuts of
(Ui,≤).

By Claim 1, { �X,NS − �X} and {�X ∪ Y ,NS − �X ∪ Y } are cuts of S, hence:

rk(MG[ �X ∩ VG, (NS − �X) ∩ VG]) ≤ k, and
rk(MG[�X ∪ Y ∩ VG, (NS − �X ∪ Y ) ∩ VG]) ≤ k.

Now observe that :

ϕ−1(NT ′,x,y) = �X ∪ Y − �X, hence:
ϕ−1(NT ′,x,y) ∩ VG = (�X ∪ Y ∩ VG)− ( �X ∩ VG)).

The result follows then from fact (6’) of Section 2.4.
Case y = x1. Same proof.
Case y = x2.
Here, x cannot be the root (otherwise, by the construction, N0 would consist

of a unique vertex). Consider its father z.
Since S is cubic (and not just subcubic) we cannot have x = z2. It is easy

to see that :
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rk(MG[ϕ
−1(NT ′,x,y) ∩ VG, ϕ−1(NT ′,y,x) ∩ VG] =

rk(MG[ϕ
−1(NT ′,x,y) ∩ VG, ϕ

−1(NT ′,x,z) ∩ VG],

because x has degree 2 in T ′ and so, does not encode a vertex, as it is not
a leaf of T ′. Hence, the upperbounds used in the previous two cases apply and
yield the desired conclusion.
This concludes the proof.�

End of the proof of Theorem 8: Discrete rank-width has the compactness
property with gap function λn.2n: let G be countable. We have drwd(G) =
rwd(G). Assume this value is k < ω. Then rwd(G) = k and drwd(G) ≤ 2k by
Theorem 26.�

5 Conclusion

We have defined several notions of rank-width for countable undirected graphs
and studied their compactness properties. For finite directed graphs, several
notions of rank-width have been defined in [KanRao]. We think that the defi-
nitions and results of this article can be extended to countable directed graphs
in a straightforward manner.
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