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Simulation of Large-Scale Periodic Circuits by a Homogenization Method

, that a homog enization modeling method, previously developed for com posite materials, can be extended to arrays of electronic cir cuits, at least in the linear static case.

When it is applied to a set of periodic network equa tions, the simplified resulting model turns to be a system of few partial differential equations. Its properties are inher ited on the one hand from the periodic cell composition, and on the other hand from electric conditions imposed at the boundaries. Its numerical solution, a vector of few mean voltages, is weakly dependent of the array size. Ac tual voltages, at all nodes of the whole periodic circuit, are computed through a fast post-processing procedure. We present the implementation of the model.

Introduction

A tremendous progress in collective micro-fabrication processes has made possible the massive integration of Mi cro Electro Mechanical Systems (MEMS) on a single sub strate. At present, there is a need to developp an efficient tool in terms of CPU time to simulate a very large array. This paper focuses on the simulation of spatially periodic circuits. The periodic unit cell is limited to linear and static components but its number can be very large. The theory presented here allows one to simulate an array of electronic circuits which are far away from the possibility of a regular circuit simulator like Spice. Our approch is based on the so-called two scale transform [START_REF] Lenczner | Homogenization of linear spatially periodic electronic circuits[END_REF].

This paper presents a method that reformulates the elec trical network equations in terms of partial differential equations (PDE). The numerical resolution of this PDE is straighforward and independent of the number of cells. So ving PDE and postprocessing its solution leads to an ap proximation of all voltages and currents. Theoretically, more the number of cells is large, more the model is ac curate. The method is illustrated on a basic circuit to allow hand calculations, which are mostly matrix multiplications. Nevertheless, ifthe reader really wants to try the example, the authors strongly advise him to use rather a computer algebra software.

Linear Static Periodic Circuits

We consider the class of periodic circuits in d space dimensions. An example of such circuit in two space di mensions is shown in Fig. 1. The circuit cell is detailled on Fig . 2. Voltage or current sources, whose value may be zero, can be placed on the boundary to realize specific boundary conditions. We assume that the number of cells is large in all the d directions. Mathematically, it is easier to formalize the problem by considering that the whole cir cuit occupies a unit square n = (0, l) d and that the period lengths, in all directions, are equal to an identical small pa rameter E (Fig. 1).
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4 Fig. 1: Circuit example.

We limit ourselves to the study of circuits whose cell is linear and static. Precisely, the components of a cell are limited to the Spice elements R, V, I, E, F, G, H. All ports of any multiport components E, F, G, H must belong to a same cell. The expanded cell is arbitrarily defined in a unit cell Y = (-1/2, +1/2) d (see Fig. 2). We map any dis crete node n onto the continuous coordinate (y1, ... , Y d ) • The vector y( n) E JR d is the coordinate vector of a node n.

For example, the coordinates of the nodes in Fig. 2 are y ( 1, ... , 6), In particular, the coordinates of the node

n = 3 is the vector (1/2, of. y (1,. . ., 6) ( -1/2 0 0 0 1/2 0 0 1/2 0 -1/2 1/4 ) -1/4 .
The maps of voltages and currents from the whole cir cuit (global network) to the cell circuit (local network) are defined as follows. First, we denote by • The multi-integerµ= (µ1, . ., µ d ) E {1, . ., m} d enu merates all the cells y: in the circuit n.

• The local index j E {1, .. I E I} enumerates all the branches of the unit cell Y.

Each branch voltage or current can then be referenced by the index I or the couple (µ, j). This is a one-to-one correspondence denoted by I rv (µ,j). Using this cor respondence, for each vector u E ]RIEi one may define a unique tensor Uµj with (µ,j) E {1, . ., m} d x {1, . ., I E I} by Uµj = UI for (µ,j) rv I.

Circuit Equations

The electrical state of a circuit can be charaterized [l] by the vectors ( <p, v, i) where,

<p E ]RI N I v E ]RIEi i E ]RIEi
the nodal voltages (or electric potentials), the branch voltages, the branch currents.

We can formulate the circuit equations under the form [START_REF] Chua | Linear and Nonlinear Circuits[END_REF][START_REF] Lenczner | Homogenization of linear spatially periodic electronic circuits[END_REF][START_REF] Yosida | Functional Analysis[END_REF](4) where Us E JR I E I represents voltage and current sources merged in single vector completed by some zeros.

Eq. (1) is the Kirchhoff's Voltage Law. Eq. (2) represents the constitutive equations and Eqs. (3, 4) correspond to the Tellegen theorem,

v Ri +Mv i T W for all w (1) (2) 
(3)

(4)
Here -W is the set of admissible potentials for the circuit problem, that is to say:

{ 1/J E JR I N I such that 1/JI = 0 for all ground nodes nI} .

(5)

Since the matrices M E ]RIEi x ]RIEi , R E ]RIEi x ]RIEi and the vector Us E JR I E I are exclusively deduced from the branch equations of the circuit, they can be expressed in terms of two reduced matrices M E ]RIEi x ]R IE i and R E JR IEI x JR IEI and a reduced vector Us E JR IEI . The reduced matrices and vector are simply derived from the constitutive equations of the unit cell, which are in the ex ample,

-V1 + ri 1 0, -v 2 + ri 2 0, -V3 + ri3 0, -V4 + ri4 0, i5 is.
The transpose A T E ]RIEi x ]RI N I of the incidence matrix can also be expressed in terms of a reduced matrix noted by AT (with a little abuse of notation). Notice that we cannot find a reduced matrix for the incidence matrix it self. We introduce the local (complete) incidence matrix

A E ]RINI x ]R IE i , { +1 if branchj leaves node i, Aij -1 if branchj enters node i, 0 if branchj does not touch node i.
The solution of the simplified model introduced in this pa per realizes an approximation of the solution of (1-4) for small values of c ( c < < 1). It is derived as a limit of the latter when the cells length c diminishes towards zero.

Direct Two-scale Transform Te

The general idea of the two-scale transform rests on gathering the voltages (or currents) denoted by u of a same branch j of all cells. Indeed, the voltages (or currents) are defined by a function u1(x), which depends on the param eter c and whose limit when c ---+ 0 will be calculated.

Let us first denote by XY • ( x) the characteristic function of the cell Y; equal to 1 �hen x E Y; and 0 otherwise. As an exemple, the characteristic function XY• of the cell µ = (3, 2) is represented in Fig. 3.
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The two-scale transform u of the vector u E ]RIEi belong to the set !P'0(n) IEI of vectors yc:_piecewise con stant of functions defined by (6) where µ Uµj = uI with (µ,j) ,.__,I, 

Inverse Two-scale Transform Ti 1

The calculation of the inverse two-scale transform Ti 1 is done by computing the adjoint Te and then proving two identities properties beetween these transforms.

Let us recall that the norm of a vector in a general vec tor space is a generalization of the idea of the length of a vector. The inner product has been defined in the hope of extending the concept of angles between vectors. The inner product and the norm in JRll' I and L 2 (Q) IEI are denoted in the following table,

u, v E JR ll°I u, v E L 2 (Q) l1'll Inner product [u,v ] (u, v) Norm lvl = [ v, v] 1/2 llull = (u, u) l /2
and defined by A circuit spread out over a large region may have some pathes linking oposite sides. In view of deriving a par tial differential equation for the electric potential, we as sume that voltages are increments of the order c: along such pathes. Flowing currents result of numerous (1 / c:) additive sources coming from crossed cell contributions. Since they may converge when c: vanishes the crossing current must be of magnitude 1, and sources of the order of c:. A branch which does not belongs to any crossing path is necessarily part of a path to the ground, so its voltage magnitude is 1. We choose its magnitude current be of the order c: as it may be a crossing path source. This assump tion is not restrictive since we can choose an appropriate scaling law for its component.

The periodicity of the circuit implies that each node n located on the boundary of the cell has its counterpart n ' on the opposite side. We assume that each such couple is linked by at least a crossing path. We introduce the set E e c E constituted of all the branches of at least one path linking each couple (n, n ' ). Of course, a link between ( n, n ' ) which includes a ground node is not considered as a path. The complementary set E -E e is denoted by E N e (non-crossing pathes). In the case where many crossing pathes are linking n and n ' , the designer is free to decide which are included in E e and which are not, with regard to the above discussion about current and voltage magnitudes.

The subset E e is partitioned in its nc connected com ponents E e = u;� 1 E ew In the following, the main result on the circuit equations will be derived for the connected components of E e and not for E e itself. 
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Here the IEI x IEI matrices l e e and IeNe are the vector sub-spaces JR.l e i generated by non vanishing values on Ee The scaled reduced matrices Mc and R e are assumed to converge towards some limit M0 and R0 when c: ___, 0. If the norms ll ic ll, llvcll, ll <P cll [2] and llli;ll are bounded then (ic' y e ' <P c ' u;) is weakly converging when c ___, 0 towards a limit ( i0, v0, 'P o , u�) in L 2 (n) [START_REF] Yosida | Functional Analysis[END_REF].

andENe• ( fee )J k { <5 J k if eJ E Ee, (18) 0 otherwise 
, ( IeNe )j k { <5 J k if eJ E E N e,
The vector of electric potential 'P o ( x) is a constant 'P� p (x) in each connected component of cell crossing pathes. So, we split it according to 'P o Once the solution ( v0, i 0 ) of the two-scale transform are available, actual voltages and currents may be recovered through the inverse two-scale transform (10) and inverse scaling (15-17),

Conclusion

V T-1 3 -1 0 � E v V ' T-13 -l •O � E i i • (44) (45)
The concept of two-scale transform has been detailed and illustrated in this paper. An homogenization method for periodic linear circuit based on this transform has been explained. We tried to present it in the most suitable way in view of implementation. This method has been coded in its generality in a CAS (C omputer Algebra Software). The program parses the Spice file describing the cell circuit, and generates as its output the partial differential equation of 1.f!�• This equa tion is then solved numerically by a FEM , and the actual voltages and currents are directly deduced.

A lot of work has still to be done: Proving the indepen dance of the coefficients of the partial differential equation with regard to the node coordinates; Simplify the demon stration of theorem 1 (about IO pages long); Continue to validate the method and explore its performance in terms of accuracy and computational cost. 
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 2 Fig. 2: Expanded cell of the circuit.
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  For all u E L 2 (Q) IEI and v E JRll' I , the adjoint Teu is defined through the equality[Teu, v] (u, T E v) .

  The calculation of Te from (9) is given in Appendix and leads to (Teuh = €-d r Uj(x)dx.(IO) jYJ Moreover, Appendix proves that TeT E = le on JRll' I and T E Te = le on !P'0(n) IEI . As TE is one-to-one from JRl£1 to IF°( Q) IEI , these two identities show that Te is its inverse

7.

  Cell Equations (Problem Micro ) model formulation is decomposed in four parts. Theorem 1, formulates the linear relation between mean electric potentials 'P� along crossing pathes and the other fields as branch currents and voltages. This relation is strictly local in each cell. In the next Section, the linear relation is simply rewritten introducing linear operators. They are used in Theorem 2 for coefficients of the boundary value problem on 'P�• Finally, actual voltages and currents are computed thanks to the inverse two-scale transform. The previous assumptions about voltage and current magnitudes is formulated using the scaling matrices Sv, Sc and Ss applied to the two-scale transforms, with the IEI x IEI scaling matrices defined as Sv c-1 l e e+ I e Ne' (15) Sc l e e +c: -1 I e Ne' (16)

  branch equation in (2) is homogeneous to a current or to a voltage, this leads to a partition of E into two subsets. The IEI x IEI matrices Ile and Ilv (for currents and voltages respectively) are defined as the projectors on these two subsets. The reduced matrices M and R of M and R are scaled in a consistent manner, SsMS;; 1 , S8RS; 1 .

=

  J0'P� + 'PfJv e , 1° being defined at (32), and 'PfJv.c(x) being the electric potentials at nodes not in crossing pathes. In the model we refer to the vector 'P� = ( 'P� p )p =l,.., n 0• Electric potential variations within connected components of crossing pathes are recovered thanks to the corrector 'Pb which yields the corrected electric potential field (22) Theorem 1 [2] For given 'P� E W H , W H defined in (43), and u� E L 2 (n)l e l there exist 'Pb E L 2 (n; JR.11:)) such that 'PfJv e E L 2 (n; JR. INI ) , i0 E L 2 (n)1 e 1 and v0 E L 2 (n)1 e 1 are solu tion algebraic cell circuit equations at each x E fl, v . Q T i w for all w fee AT i.pb + fENeAT IP°rvc,(23)u� -M0(T\Ji.p� + hNeAT 1°1.p�),(24) fee AT 'lf;°b + fENeAT W°rvc

  lf;b,w°rvc) E '1!m.The vector v0 is expressed by v0 = v + T'il'P� + I e Ne ATI O 'P�• (27)We assume that the solution is unique. This assumption is generally satisfied once the global circuit equations has a unique solution.The admissible nodal voltage set being w m {( '¢b , '¢fJvc ) E L 2 ( rl ;JR.1,1:)) x L 2 ( rl ;JR. INI )(28) Homogenized Circuit Equations (Problem Macro)In this Section, we state the equation satisfied by1.f!�• Theorem 2 [2]The vector l.f!� E wH is the solution of the nc partial diff erential equations, so-called homogenized equations, with its boundary conditions,AH ( Pi\ll.f! � + Lil.f!�) \7 1.f!� + Lil.f!�)nT 0 on f -f o p• (39) f O pis the part of the boundary f of n where the pth connected component is grounded. The operator AH is de fined by (40) where ()7. i = r*\li with r; k l = Tt kp and the use of no tation (31 ) . The derivative 0 71.f!� and the normal n7 are defined by T\Ji.p�, d L Tt k pn k , k=l (41) (42) \lbeing the gradient (axk) k=l.. d andn = (n k ) k=l.. d being the outward normal vector to the boundary f of n. Remark that the coefficients AH and the derivatives \l 7 depends on node coordinates inherited from the expression (30) of T. Finally, the admissible set of macroscopic potential is WH { 'l/J E L 2 (n) n c such that 871/J E L 2 (n) IEI and 'lfJ k (x) = 0 on f ok} .

  the example (cf. Fig.1) , 1.f!� has only one component ( nc = 1 ), we assume that r = c:r 0 and is = Ei � . 1.f!� is then solution of the partial differential equation0 2 1.f! o 0 2 1.f! o _____Qi + _____Qi axi ax� 0 'Pei \Ji.p � l •nT O onf 0, 1 , O onf-f o,1-10. Computation of Actual Voltages and Currents

AppendicesD

  Basic properties of some integrals on cells f dx' } y e " { XY f (x')dx' } y e " Derivation of the expression of TE:(T E v, u)In (T E v).u(x)dx IEI L 1 (T E v)J(x).uj(x)dx j=l Y , 7 IEI L d f=E-d l e XY , ; (x)uj(x)dxVµjµE{l,..,m} J-1 " IEI Ed L d f= E-d l e uj(x)dxVµj µE{l, .. ,m} J-1 " [TJ;; u, v] Ed(TJ;; uf.v IEI Ed L L (TJ;; u)µJVµJ µE{l, .. ,m}d j=l =} (TJ;; u)µJ E-d f uJ(x)dx } y ,; Proof that TJ;; T E = le on JR I E I Let u E ]RIEi and I'"" (µ, j), (T/;; T E u)I = TE:( L .XE{l,..,m}d E-d 1 L XY;(x)dxU.xJ Y , 7 .XE{l,..,m}d E-dEdU • µ ] Uy D Proof that T E Te =I on !P'0(n) IEI Letu E !P'0(n;JR. IEI ), (T E Teu)J(x) (T E (c:-d { u1(x')dx 1 ))1(x) }y : L c:-d 1 u1(x')dx'xy:(x) µ E{l, .. ,m}d Y: L UµjXY:(x) µ E{l, .. ,m}d u1(x)
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such that 1/Jb = 0 and '¢ °tve = 0 at ground nodes}.

The set JR.11:) is defined as, JR. INI per

for all couple (nj, nj') of opposite nodes}. The IEI x d x nc tensor Tis defined by (30). We recall that y( n) E JR.d is the coordinate vector of a node n.

for e 1 E Eep, T !kp Throughout this paper, we use the tensor product notation,

k p where the summation is on the two last indices of T.

The INI x nc matrix J0 is defined by

(32)

Nep is the set of nodes involved in the branches of Eep•

Reformulation of the Problem Micro

Theorem 2 shows that 'P� is the solution of a partial dif ferential equation, so once 'P� is known, i0 and v0 can be computed too by theorem 1. The equations (23-26) being linear, there exists some matrices Lx, 'H x and a third order tensor P x such that i0, 'PfJv e and v that can be expressed as function of 'P�, its gradient V' 'P� and the vector source u � , i0 Li'P� + PiV' 'P� + 'Hiu� ,

'P °tv e = C'P 'P� + P'P V' 'P� + h.p u�,

V = Lv'P� + Pv V' 'P� + 'Hv u�.