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Abstract

We consider min set covering when the subsets are constrained to have maximum
cardinality three. We propose an exact algorithm whose worst case complexity is bounded
above by O∗(1.3957n). This is an improvement, based on a refined analysis, of a former
result (O∗(1.4492n)) by F. Della Croce and V. Th. Paschos, Computing optimal solutions

for the min 3-set covering problem, Proc. ISAAC’05, LNCS 3827, pp. 685–692.
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In min set covering, we are given a universe U of elements and a collection S of (non-
empty) subsets of U . The aim is to determine a minimum cardinality sub-collection S ′ ⊆ S

which covers U , i.e., ∪S∈S′S = U (we assume that S covers U). The frequency fi of ui ∈ U

is the number of subsets Sj ∈ S in which ui is contained. The cardinality dj of Sj ∈ S is the
number of elements ui ∈ U that Sj contains. We say that Sj hits Sk if both Sj and Sk contain
an element ui and that Sj double-hits Sk if both Sj and Sk contain at least two elements ui, ul.
Finally, we denote by n the size (cardinality) of S and by m the size of U . In what follows, we
restrict ourselves to min set covering-instances such that:

1. no element ui ∈ U has frequency fi = 1;

2. no set Si ∈ S is a subset of another set Sj ∈ S.

3. no pair of elements ui, uj exists such that every subset Si ∈ S containing ui contains also uj .

Indeed, if item 1 is not verified, then the set containing ui belongs to any feasible cover of U .
On the other hand, if item 2 is not verified, then Si can be replaced by Sj in any solution
containing Si and the resulting cover will not be worse than the one containing Si. Finally, if
item 3 is not verified, then element uj can be ignored as any sub-collection S ′ covering ui will
necessarily cover also uj . So, for any instance of min set covering, a preprocessing of data,
obviously performed in polynomial time, leads to instances where all items 1, 2 and 3 are verified.

Let T (·) be a super-polynomial and p(·) be a polynomial, both on integers. In what follows,
using notations in [9], for an integer n, we express running-time bounds of the form p(n).T (n)
as O∗(T (n)), the asterisk meaning that we ignore polynomial factors. We denote by T (n) the
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worst case time required to exactly solve the min set covering problem with n subsets. We
recall (see, for instance, [5]) that, if it is possible to bound above T (n) by a recurrence expression
of the type T (n) 6

∑
T (n−ri)+O(p(n)), we have T (n) = O∗(α(r1, r2, . . .)

n) where α(r1, r2, . . .)
is the largest zero of the function f(x) = 1 −

∑
x−ri .

There exist to our knowledge few results on worst-case complexity of exact algorithms for
min set covering or for cardinality-constrained versions of it. Let us note that an exhaustive
algorithm computes any solution for min set covering in O(2n). For min set covering the
most recent non-trivial result is the one of [6] (that has improved the result of [8]) deriving a
bound (requiring exponential space) of O∗(1.2301(m+n)). We consider here, the most notorious
cardinality-constrained version of min set covering, the min 3-set covering, namely, min

set covering where dj 6 3 for all Sj ∈ S (notice that the bound of [6], for the case where
fi = 2, ui ∈ U , and dj = 3, for any Sj ∈ S corresponds to O∗(1.2301(5n/2)) ≈ O∗(1.6782n)). It
is well known that min 3-set covering is NP-hard, while min 2-set covering (where any
set has cardinality at most 2) is polynomially solvable by matching techniques ([2, 7]).

Our purpose is to devise an exact (optimal) algorithm with provably improved worst-case
complexity for min 3-set covering. We propose a search tree-based algorithm with running
time O∗(1.3957n). This result, largely inspired by the one of [4], further improves it by reducing
the complexity of the tree-based algorithm from O∗(1.4492n) down to O∗(1.3957n). This outcome
is due to a different complexity analysis of the algorithm by the introduction of a kind of weights
on the fixed sets. This technique seems to be quite close to the one very recently introduced
in [6].

The following straightforward lemma holds, inducing some useful domination conditions for
the solutions of min set covering.

Lemma 1. There exists at least one optimal solution of min set covering where:

1. for any subset Sj with dj = 2 containing elements ui, up, if Sj is included in S ′, then all

subsets Sk hitting Sj are excluded from S ′;

2. for any subset Sj with dj = 3 containing elements ui, up, uq, where Sj double-hits another

subset Sk with dk = 3 on ui and up, if Sj is included in S ′ then Sk must be excluded from S ′

and viceversa;

3. for any subset Sj with dj = 3 containing elements ui, up, uq, if Sj is included in S ′, then ei-

ther all subsets Sk hitting Sj on element ui are excluded from S ′, or all subsets Sk hitting Sj

on elements up and uq are excluded from S ′.

Proof. We only prove item 1, items 2 and 3 being proved by the same kind of analysis. Assume,
without loss of generality, that Sj hits Sk on ui and Sl on up. Suppose by contradiction that the
optimal solution S ′ includes Sj and Sk. Then, it cannot include no more Sl, or else, it would not
be optimal as a better cover would be obtained by excluding Sj from S′. On the other hand,
suppose that S ′ includes Sj , Sk but does not include Sl. Then, an equivalent optimal solution
can be derived by swapping Sj with Sl.

In what follows, we consider the following counting. When we fix the status of a set of
size 3, then our benefit is 1. When we do not fix a set of size 3 but cover one element of this
set (hence this set will have size 2 is the remaining instance), we consider that our benefit is
α 6 1. Obviously, when a set of size 2 is fixed, we can only consider that (in the worst case) our
benefit is 1 − α. Hence, in some cases, the benefit is increasing with α while, in other cases, it
is decreasing. An optimal value for α, following our analysis, is α = 0.297.

The rest of the paper is devoted to the proof of the following result.

Theorem 1. min 3-set covering can be optimally solved within time O∗(1.396n).
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The algorithm either reduces the min 3-set covering instance according to assumptions 1, 2
and 3 on the form of the instance (by detecting a subset Sj to be immediately included in
(excluded from) S ′ or an element ui to be ignored (correspondingly reducing the size of several
subsets)), or applies a branching on subset Sj , where the following exhaustive relevant branching
cases may occur.

1. dj = 2: then no double-hitting occurs to Sj or else, due to the preprocessing step of the
algorithm, Sj can be excluded from S ′ without branching. The following subcases occur.

(a) Sj contains elements ui, uk with fi = fk = 2 where Sj hits Sl on ui and Sm on uk.
Due to Lemma 1, if Sj is included in S ′, then both Sl and Sm must be excluded
from S ′; alternatively, Sj is excluded from S ′ and, correspondingly, both Sl and Sm

must be included in S ′ to cover elements ui, uk. For the analysis, consider the two
following cases.

i. dl = 3, or dm = 3, say dl = 3. Then, in both cases (including or excluding Sj) we
fix 3 − 2α (1 for Sl, (at least) 1 − α for Sj and Sm).

ii. dl = dm = 2, Sl contains ui and ul and Sm contains uk and um, (with ul 6= um,
otherwise no need to branch). By including Sj we fix 3(1 − α). Otherwise, ul is
contained in Sp and um in Sq. If Sp 6= Sq, then we fix at least 3(1−α)+2α = 3−α.
Indeed, we fix 1−α for any of the sets Sj , Sl, Sm; by covering um, we fix α (resp.,
1 − α > α) if dp = 3 (resp., if dp = 2, since we can exclude Sp), and the same
holds for covering uk. Note that this is still valid if Sp = Sq, since in this case we
can exclude this set, which gives at least 1 − α > 2α.

In case 1(a)i, we have T (n) 6 2T (n − 3 + 2α) + O(p(n)). This results in a time-
complexity of O∗(1.334n). In case 1(a)ii, we have T (n) 6 T (n − 3 + 3α) + T (n − 3 +
α) + O(p(n)). This results in a time-complexity of O∗(1.336n).

(b) Sj contains elements ui, uk with fi = 2 and fk > 3, where Sj hits Sl on ui and
Sm, Sp on uk. Due to Lemma 1, if Sj is included in S ′, then Sl, Sm, Sp must be
excluded from S ′; alternatively, Sj is excluded from S ′ and, correspondingly, Sl must
be included in S ′ to cover element ui. For the analysis, consider the two following
cases.

i. dl = 2, i.e., Sl contains ui, ul; then, fl > 3 (or else we are in case 1a). Then,
by including Sj , we fix 4(1 − α) ((1 − α) for any of the sets Sj , Sl, Sm, Sp); by
excluding Sj , we fix 2(1− α) + 2α = 2 ((1− α) for any of the sets Sj , Sl, and (at
least) α for each set containing ul).

ii. If dl > 3, i.e., Sl contains at least ui, ul, um, then by including Sj , we fix 3(1−α)+1
(since now fixing Sl gives benefit 1); by excluding Sj , we fix (1 − α) + 1 + 2α =
2 + α (α from covering ul, and α from covering um, with the same reasoning as
in case 1(a)ii).

The worst case is 1(b)i where we get T (n) 6 T (n − 2) + T (n − 4 + 4α) + O(p(n)),
resulting in a time-complexity of O∗(1.338n).

(c) Sj contains elements ui, uk with fi = 3 and fk > 3 where Sj hits Sl, Sm on ui and (at
least) Sp, Sq on uk. Note that we can suppose that Sj hits at least one set of size 3.
Due to Lemma 1, if Sj is included in S ′, then Sl, Sm, Sp, Sq must be excluded from S ′;
alternatively, Sj is excluded from S ′. For the analysis, consider the three following
cases.

i. If dl = dm = dp = dq = 3, then we fix either 5 − α, or 1 − α.
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ii. If dl = 2 or dm = 2, say dl = 2, then we fix either 5−4α, or 1−α. But in the case
where we exclude Sj from S ′, then Sl has size 2 and contains ui, whose frequency
is now 2. Hence, we are either in case 1a or in case 1b. In the worst case, the
branching gives (with case 1(b)i) 5 − 4α, 5(1 − α) and 3 − α.

iii. Finally, if dl = dm = 3, then we can suppose that fk > 4 (otherwise we are either
in case 1(c)i or in case 1(c)ii). In this case, by including Sj we fix 2 + 4(1 − α)
and by excluding Sj we fix 1 − α.

In case 1(c)i, we get T (n) 6 T (n − 1 + α) + T (n − 5 + α) + O(p(n)), i.e., a time-
complexity of O∗(1.3953n). In case 1(c)ii, we get T (n) 6 T (n − 3 + α) + T (n − 5 +
5α) + T (n− 5 + 4α) + O(p(n)). This results in a time-complexity of O∗(1.3942n). In
case 1(c)iii, we get T (n) 6 T (n−6+4α)+T (n−1+α)+O(p(n)), i.e., a time-complexity
of O∗(1.389n).

(d) Sj contains elements ui, uk with fi > 4 and fk > 4 where Sj hits Sl, Sm, Sp on ui

and Sq, Sr, Ss on uk. Note that we can suppose that Sj hits at least one set of size 3.
Due to Lemma 1, if Sj is included in S ′, then Sl, Sm, Sp, Sq, Sr, Ss must be excluded
from S ′; alternatively, Sj is excluded from S ′. Then, we fix either 7 − 6α or 1 − α

getting T (n) 6 T (n−1+α)+T (n−7+6α)+O(p(n)), resulting so in a time-complexity
of O∗(1.366n).

2. dj = 3 (that is, there does not exist Sk ∈ S such that dk = 2) and there is at least one
element ui with fi = 2. Then, Sj contains ui, uj , uk, and Sk contains ui, ul, um (notice
that no double crossing can occur between Sj and Sk due to the preprocessing step of the
algorithm). Then, either we include Sj , and we fix 1 + 3α new sets, or we exclude Sj , and
we have to include Sk fixing so 2 + 2α new sets. In this case, we get T (n) 6 T (n − 1 −

3α) + T (n − 2 − 2α) + O(p(n)). This results in a time-complexity of O∗(1.366n).

3. dj = 3, all elements have a frequency at least 3, with Sj double-hitting one or more subsets.
The following exhaustive subcases may occur.

(a) Sj double-hits at least three subsets Sk, Sl, Sm. Due to Lemma 1, if Sj is included
in S ′ then Sk, Sl, Sm must be excluded from S ′; alternatively, Sj is excluded from S ′.
This can be seen as a binary branching where either one subset (Sj) is fixed, or four
subsets (Sj , Sk, Sl, Sm) are fixed and hence, T (n) 6 T (n − 1) + T (n − 4) + O(p(n)).
This results in a time-complexity of O∗(1.3803n).

(b) Sj double-hits two subsets Sk, Sl. Note that the double-hit elements must be contained
by another set. Note also that (at least) one element, say ui, is in Sj , Sk and Sl.
Consider the two following cases.

i. If fi > 4, then either we include Sj and then, by Lemma 1, we can exclude Sk

and Sl, or we exclude Sj . Then, either we fix 3+3α (3 for Sj , Sk, Sl, and 3α since
ui, uj and uk belong to at least one other set) or 1.

ii. If fi = 3, then we must include at least one set among Sj , Sk, Sl, but we can
suppose that we do not include two such sets. In other words, we have a branching
on the three following choices:

• taking Sj (and not Sk, Sl),

• taking Sk (and not Sj , Sl),

• taking Sl (and not Sj , Sk).

In any case, we fix 3 + 2α (2α since each element has a frequency at least 3)
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In the first case, T (n) 6 T (n − 1) + T (n − 3 − 3α) + O(p(n)). This results in a
time-complexity of O∗(1.388n). In the second case, T (n) 6 3T (n−3−2α)+O(p(n)),
and this results in a time-complexity of O∗(1.358n).

(c) Sj contains elements ui, uk, ul and double-hits one subset Sk on elements ui, uk. The
following exhaustive subcases must be considered.

i. fi = 3, fk > 3, fl > 3, with ui contained by Sj , Sk, Sm, uk contained at least by
Sj , Sk, Sp and ul contained at least by Sj , Sq, Sr. A composite branching can be
devised.

• Suppose that Sj is included in S ′ and then Sk is excluded from S ′. In this
case, we fix 2 + 4α (α from reduction of the sizes of Sm, Sp, Sq, Sr).

• Suppose that Sj is excluded from S ′ and Sk is included in S ′. In this case,
we fix 2 + 4α (since no other double hit occurs on Sk).

• Suppose finally that Sj and Sk are excluded from S ′. In this case, we have to
include Sm in S ′. Since dm = 3, all elements have frequency at least 3, and
at most one double crossing occurs on Sm; we can see that Sm hits at least
three new sets. Hence, we fix 3 + 3α.

ii. fi > 4, fk > 4, fl > 3, with ui contained at least by Sj , Sk, Sm, Sp, uk contained at
least by Sj , Sk, Sq, Sr and ul contained at least by Sj , Su, Sv. Either we include Sj

in S ′, and then we can exclude Sk from S ′ and fix 2 + 6α, or we exclude Sj and
fix 1.

In case 3(c)i, we get T (n) 6 2T (n− 2− 4α) + T (n − 3− 3α) + O(p(n)). This results
in a time-complexity of O∗(1.381n). In case 3(c)ii, we get T (n) 6 T (n − 1) + T (n −

2 − 6α) + O(p(n)). This results in a time-complexity of O∗(1.3957n).

4. dj = 3 and no double-hitting occurs to Sj (nor to any other subset) that contains elements
ui, uk, ul. The following subcases occur.

(a) fi = 3, fk > 3, fl > 3 with ui contained by Sj , Sk, Sl, uk contained by Sj , Sm, Sp

and ul contained at least by Sj , Sq, Sr. A composite branching can be devised:

• if Sj is included in S ′, then we fix 1 + 6α new sets;

• if Sj is excluded from S ′ and Sk is included in S ′, then there exist at least five
other subsets hitting Sk and hence we fix 2 + 5α;

• finally, if Sj , Sk are excluded from S ′, then we have to include Sl in S ′ (in order
to cover ui); there exist at least four other subsets hitting Sl and hence we fix
3 + 4α.

Thus, T (n) 6 T (n− 1− 6α) + T (n− 2− 5α) + T (n− 3− 4α) + O(p(n)), resulting in
a time-complexity of O∗(1.378n).

(b) fi > 4, fk > 4, fl > 4, ui is contained by Sj , Sk, Sl, Sm, uk is contained by Sj , Sp, Sq, Sr

and ul is contained at least by Sj , St, Su, Sv. A composite branching on Sj can be
devised:

• if Sj is excluded from S ′, then we fix 1;

• if Sj is included in S ′, then Sk, Sl, Sm are excluded from S ′; in this case we fix
4 + 6α;

• finally, if Sj is included in S ′, then Sp, Sq, Sr, St, Su, Sw are excluded from S ′; in
this case we fix 7 + 3α.

Hence, T (n) 6 T (n − 1) + T (n − 4 − 6α) + T (n − 7 − 3α) + O(p(n)). This results in
a time-complexity of O∗(1.355n).
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Putting things together, the global worst case complexity is O∗(1.3957n) and the proof of the
theorem is complete.

As a last word, let us note that a straightforward (improvable) analysis along the lines of
Theorem 1, leads to an O∗(1.1679n) time bound for minimum vertex covering in graphs of
maximum size 3. Such a bound is the best-known dealing with search tree-based algorithms and
is only dominated by the bounds in [1, 3], (O∗(1.1252n) and O∗(1.152n), respectively) that are
not based upon such algorithms. Note also, dealing with minimum dominating set in graphs
of maximum size 3, analysis along the same lines reaches O∗(1.344n), which is always the best-
known search-tree complexity.
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