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Abstract—In this paper, we present a two-scale
model including an optimal active control for a one-
dimensional cantilever array with regularly spaced
actuators and sensors. With the purpose of imple-
menting the control in real time, we propose an
approximation that may be realized by an analog dis-
tributed electronic circuit. More precisely, our analog
processor is made by Periodic Network of Resistances
(PNR). The control approximation method is based on
two general concepts, namely functions of operators
and on the Dunford-Schwartz representation formula.
We conducted careful validations of the control ap-
proximation method as well as of its effect in the
complete control loop.
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I. INTRODUCTION

In the past decade, a number of papers have been

focused on semi-decentralized distributed optimal

control for systems with distributed actuators and

sensors. Most of them are dealing with infinite

length systems, see [1] and [10] for systems gov-

erned by partial differential equations, and [3] for

discrete systems. In the papers [4] and [5] the

authors have introduced an approximation of an op-

timal control to a finite length beam endowed with

a periodic distribution of piezoelectric sensors and

actuators. Even if it was giving satisfactory results,

it was suffering from some limitations. In [9] and

[12], it has been extended so that to cover a larger

range of systems and to increase its precision and

robustness. Indeed, the new method does not require

that each operator of the state equation and of the

cost functional be functions of a same operator but

they must be only functions of a same operator up to

some change of variable operators. Regarding pre-

cision, the Taylor series approximating a function

of an operator has been replaced by the use of the

Dunford-Schwartz representation formula followed

by a quadrature rule for the contour integral.

Here we apply our new method to a recently

developed and validated two-scale model of can-

tilever arrays, submitted in the paper [8]. It is

rigorously justified thanks to an adaptation of the

two-scale approximation method introduced in [6]

and detailed in [7]. Its main advantage is that in the

same time it requires little computing effort and it

is reasonably precise.

This paper presents results from a full imple-

mentation of the new semi-decentralized optimal

control strategy on the two-scale model of cantilever

arrays. The calculations have been carried out using
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a simple optimal control strategy, namely a Linear

Quadratic Regulator (LQR), with purpose vibrations

cancellation. We are focused on studying the quality

of our approximation method, studying its precision

and cost but not on practical applications and their

results. As in [5], we also provide a realization of

the semi-decentralized control scheme through a Pe-

riodic Network of Resistances (PNR), implementing

a finite difference scheme for the partial differential

operator in the Dunford-Schwartz formula. Finally,

we quote that the entire approach can be extended to

other linear optimal control problems, i.e. LQG or

H∞ controls as well as to more physical actuating

and sensing principles.

II. A TWO-SCALE MODEL OF CANTILEVER

ARRAYS

We consider a one-dimensional cantilever array

comprised of an elastic base, and a number of

clamped elastic cantilevers with free end, see Fig-

ure 1. Assuming that the number of cantilevers

is sufficiently large, a homogenized model was

derived using a two-scale approximation method.

This is reported in the detailed paper [7] devoted to

static regime. The corresponding model extended to

dynamic regime is introduced in the letter [6]. The

modelling papers were written in view of Atomic

Force Microscopy application.

After a number of simplifications, the approx-

imate homogenized model expressed in the two-

scale referential, which is a rectangle Ω = (0, LB)×
(0, L∗

C). The parameters LB and L∗
C represent

respectively the base length in the macroscale

x−direction and the scaled cantilever length in the

microscale y−direction. The base is modelled by

the line Γ = {(x, y) | x ∈ (0, LB) and y = 0}, and

the rectangle Ω is filled by an infinite number of

cantilevers. We describe the system motion by its

Fig. 1. Array of Cantilevers

bending displacement only. So, the base is governed

by an Euler-Bernoulli beam equation with two kinds

of distributed forces, one exerted by the attached

cantilevers and the other, denoted by u(t, x, 0), orig-

inating from an actuator distribution. The bending

displacement, the mass per unit length, the bending

coefficient of base and of cantilevers, and the scaled

cantilever width being denoted by w(t, x, 0), ρB ,
RB, RC and ℓ∗C , the base governing equation states

in Γ

ρB∂2
ttw + RB∂4

x···xw + ℓ∗CRC∂3
yyyw = u. (1)

The base is assumed to be clamped, so the boundary

conditions are

w = ∂xw = 0, (2)

at its ends. Each cantilever is oriented in the y-

direction, and its motion is governed by the Euler-

Bernoulli equation distributed along the y-direction.

It is subjected to a control force u(t, x, y) taken as

distributed along each whole cantilever. It can be

replaced by any other realistic force distribution.

Denoting by w(t, x, y) and ρC bending displace-

ments and the mass per unit length, the governing

equation in (x, y) ∈ Ω is

ρC∂2
ttw + RC∂4

y···yw = u, (3)

endowed with the boundary conditions
{

∂yw = 0 at y = 0,
∂2

yyw = ∂3
yyyw = 0 at y = L∗

C ,
(4)

representing an end clamped in the base, and a free

end. The weak formulation associated to (1-4) states

as
∫ LB

0
(ρB∂2

ttw v + RB∂2
xxw∂2

xxv)|Γ dx
+ℓ∗C

∫
Ω

ρC∂2
ttw v + RC∂2

yyw∂2
yyv dydx

=
∫ LB

0
(u v)|Γ dx + ℓ∗C

∫
Ω

u v dydx,

(5)

for any regular function v, satisfying in particular

the conditions: v = ∂xv = 0 at both end of the base

and ∂yv = 0 at y = 0 at the junction.

III. MODEL REFORMULATION

To simplify the model, but keeping its distributed

feature, we discretize in the y-direction projecting

on a basis Kn(y) =
∫ y

0
yT ′

n(y)dy, where Tn(y)
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is the basis of Chebyshev polynomial. We define

the approximations of the displacement and of the

control by w(t, x, y) ≈
N∑

n=1
wn(t, x)Kn(y) and

u(t, x, y) ≈
N∑

n=1
un(t, x)Kn(y), where wn(t, x)

and un(t, x) are the polynomial coefficients in the

approximation of w and u respectively. We also

choose v ≈
N∑

m=1
vm(t, x)Km(y), so we find that

(wn(t, x))n=1,2,··· ,N are the solutions to a set of

equations posed on Γ,

N∑
n,m=1

Mm,n∂2
ttwn + KB

m,n∂4
x···xwn+

KC
m,nwn =

N∑
n,m=1

B̃m,nun in [0,∞) × Γ.

(6)

The boundary conditions are w(t, 0, 0) =
∂xw(t, 0, 0) = 0, and w(t, LB , 0) =
∂xw(t, LB , 0) = 0. In (6), we use the notations for

the matrices M, KB , KC and B̃,

Mm,n = ρB(KmKn)|Γ + ℓ∗CρC
∫ L∗

C

0
KmKn dy,

KB
m,n = RB(KmKn)|Γ,

KC
m,n = ℓ∗CRC

∫ L∗

C

0
∂2

yyKm∂2
yyKn dy,

B̃m,n = (KmKn)|Γ + ℓ∗C
∫ L∗

C

0
KmKn dy.

The LQR problem is set for control variables

(un)n=1,2,··· ,N ∈ L2(Γ)N and for the cost func-

tional

J =
∫ +∞

0

N∑
n=1

∥∥∂2
xxwn(t, x)

∥∥2

L2(Γ)

+ ‖un(t, x)‖
2
L2(Γ) dt.

(7)

The choice of the functional is related to vibration

stabilization of the microcantilever array.

IV. CLASSICAL FORMULATION OF THE LQR

PROBLEM

Now, we write the above LQR problem in

a classical abstract setting, see [2], even if we

do not detail the functional framework. We set

zT =
(
wn ∂twn

)
n=1,2,··· ,N

the state vari-

able, uT = (un)n=1,2,··· ,N the control variable,

A =

(
0N×N IN×N

−(M−1(KB∂4
x···x + KC))N×N 0N×N

)

the state operator, B =

(
0N×N

(M−1B̃)N×N

)
the

control operator, C =

(
∂2

xxIN×N 0N×N

0N×N 0N×N

)
the

observation operator, and S = IN×N the weight op-

erator. Consequently, the LQR problem, consisting

in minimizing the functional under the constraint

(6), may be written under its usual form as

∂tz (t, x) = Az (t) + Bu (t)
for t > 0 and z (0) = z0,

(8)

with the minimized cost functional (7). We know

that (A,B) is stabilizable and that (A,C) is de-

tectable, in the sense that the system is controllable

and observable. It follows that for each z0, the LQR

problem (8) admits a unique solution

u∗ = −Kz, (9)

where K = S−1B∗P, and P is the unique self-

adjoint nonnegative solution to the operational Ric-

cati equation

A∗P + PA − PBS−1B∗P + C∗C = 0. (10)

V. SEMI-DECENTRALIZED APPROXIMATION

This Section is devoted to formulate the approx-

imation method. The mathematical derivation has

been introduced in a paper [9]. We denote by Λ,

the mapping: Λ : f −→ w, where w is the unique

solution of ∂4
x···xw = f in Γ with the boundary

conditions w = ∂xw = 0 for x = {0, LB}. The

spectrum σ (Λ) is discrete and made up of real

eigenvalues λk. They are solutions to the eigenvalue

problem Λφk = λkφk with ||φk||L2(Γ) = 1. In the

sequel, Iσ = (σmin, σmax) refers to an open interval

that includes the complete spectrum. For a given

real valued function g, continuous on Iσ, g(Λ) is the

linear self-adjoint operator on space L2(Γ) defined

by g(Λ)z =
∞∑

k=1

g(λk)zkφk, where zk =
∫
Γ

zφk

dx.

A. Factorization of K by a Matrix of Functions of

Λ

In this part, we introduce the factorization of

the controller K under the form of a product of

a matrix of functions of Λ. To do so, we introduce
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the change of variable operators ΦZ =

(
Λ

1
2 0

0 I

)
,

ΦU = I and ΦY =

(
∂2

xΛ
1
2 0

0 I

)
, from which we

introduce the matrices of functions of Λ, a (Λ) =
Φ−1

Z AΦZ , b (Λ) = Φ−1
Z BΦU , c (Λ) = Φ−1

Y CΦZ

and s (Λ) = Φ−1
U SΦU , simple to implement on

a semi-decentralized architecture. A straightforward

calculation yield

a (λ) =

(
0 I

M̃ 0

)
, b (λ) =

(
0

M−1B̃

)
,

c (λ) =

(
I 0
0 0

)
, and s (λ) = I,

where M̃ = −M−1(KBλ−1/2 + KCλ1/2). From

(9), the optimal controller K admits the factoriza-

tion

K = k(Λ) = ΦUq(Λ)Φ−1
Z , (11)

where q (λ) = s−1 (λ) bT (λ) p (λ) , and where

for all λ ∈ σ, p(λ) is the unique self-adjoint

nonnegative matrix solving the algebraic Riccati

equation

aT (λ) p + pa (λ) − pb (λ) s−1 (λ) bT (λ) p
+cT (λ) c (λ) = 0.

B. Approximation of the Functions of Λ

We build the approximation in two steps. Firstly,

we use a rational approximation kR(Λ) of k(Λ),
then it is approximated by another function kR,M

which is simple to discretize, and yields an accurate

approximation. To do so, we use the Dunford-

Schwartz formula, see [13], representing a func-

tion of an operator, because it involves only the

operator (ζI − Λ)
−1

which may be simply and

accurately approximated. Since the function k(Λ)
is not known, the spectrum σ (Λ) cannot be easily

determined, so we approximate k(λ) by a highly

accurate rational approximation kR(Λ), then the

Dunford-Schwartz formula is applied to kR(Λ) with

a path tracing out ellipses including Iσ but no poles.

Since the interval Iσ is bounded, for each function

kij(λ) have a rational approximation over Iσ , we

write under a global formulation,

kR (λ) =

∑RN

m=0 dmλm

∑RD

m′=0 d′m′λ
m′

, (12)

where dm, d′m′ are matrices of coefficients and

R =
(
RN , RD

)
is the couple comprised of the ma-

trices RN of numerator polynomial degrees and the

matrices RD of denominator polynomial degrees.

The path C, in the Dunford-Schwartz formula,

kR (Λ) =
1

2iπ

∫

C

kR (ζ) (ζI − Λ)
−1

dζ,

is chosen to be an ellipse parameterized by ζ(θ) =
ζ1(θ) + iζ2(θ), with θ ∈ [0, 2π]. The parametriza-

tion is used as a change of variable, so the inte-

gral can be approximated by a quadrature formula

involving M nodes (θl)l=1,..,M ∈ [0, 2π], and M

weights (ωl)l=1,..,M , IM (g) =
M∑
l=1

g (θl) ωl.

In the following equations, we state that the

matrices kR (ζ) associated to the rational approx-

imation of the couple
(
RN , RD

)
. So, for each

z ∈ L2(Γ)2N and ζ ∈ C, we introduce the 2N -

dimensional vector field

vζ = −iζ ′kR (ζ) (ζI − Λ)
−1

z.

Decomposing vζ into its real part vζ
1 and its imag-

inary part vζ
2 , the couple (vζ

1 , vζ
2) is solution of the

system ⎧
⎪⎪⎨
⎪⎪⎩

ζ1v
ζ
1 − ζ2v

ζ
2 − Λvζ

1

= Re
(
−iζ ′kR (ζ)

)
z,

ζ2v
ζ
1 + ζ1v

ζ
2 − Λvζ

2

= Im
(
−iζ ′kR (ζ)

)
z.

(13)

Thus, combining the rational approximation kR

and the quadrature formula yields an approximate

realization kR,M (Λ) of k (Λ) ,

kR,M (Λ) z =
1

2π

M∑

l=1

v
ζ(θl)
1 ωl. (14)

This formula is central in the method, so it is the

center of our attention in the simulations. A fun-

damental remark is that, a ”real-time” realization,

kR,M (Λ) z, requires solving M systems like (13)

corresponding to the M quadrature nodes ζ(θl).
The matrices kR (ζ(θl)) could be computed ”off-

line” once and for all, and stored in memory, so

their determination would not penalize a rapid real-

time computation. In total, the ultimate parameter

responsible of accuracy in a real-time computation,
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apart from spatial discretization discussed in next

Section, is M the number of quadrature points.

VI. SPATIAL DISCRETIZATION

The final step in the approximation consists in

a spatial discretization and synthesis of Equation

(13). The interval Γ is meshed with regularly spaced

nodes separated by a distance h, we introduce

Λ−1
h the finite difference discretization of Λ−1,

associated with the clamping boundary condition.

In practice, the discretization length h is chosen

small compared to the distance between cantilevers.

Then, zh denoting the vector of nodal values of

z, for each ζ we introduce (vζ
1,h, vζ

2,h), a discrete

approximation of (vζ
1 , vζ

2), solution of the discrete

set of equations,

ζ1v
ζ
1,h − ζ2v

ζ
2,h − Λhvζ

1,h

= Re
(
−iζ ′kR (ζ)

)
zh,

(15)

ζ2v
ζ
1,h + ζ1v

ζ
2,h − Λhvζ

2,h

= Im
(
−iζ ′kR (ζ)

)
zh.

(16)

Finally, an approximate optimal control, intended

to be implemented in a set of spatially distributed

actuators, could be estimated from the nodal values,

kR,M,hzh =
1

2π

M∑

l=1

v
ζl

1,hωl,

estimated at mesh nodes in the following. We shall

propose a synthesization of (15–16) by a distributed

electronic circuit that could be integrated in the

mechanical structure. For this purpose, the system

is rewritten under the manageable form (17–18).

For the sake of simplification, we use the notations

α = Re
(
−iζ ′kR (ζ)

)
zh, β = Im

(
−iζ ′kR (ζ)

)
zh,

v1 = vζ
1,h, and v2 = vζ

2,h.

v1 = ζ1

ζ2
1+ζ2

2
(α + Λhv1)

+ ζ2

ζ2
1+ζ2

2
(β + Λhv2) ,

(17)

v2 = ζ1

ζ2
1+ζ2

2
(β + Λhv2)

− ζ2

ζ2
1+ζ2

2
(α + Λhv1) .

(18)

A. Analog computation of Λhv1 and Λhv2

The analog computation of Λhv1 and Λhv2 are

made by Periodic Network of Resistances (PNR)

circuits [11]. These electronic circuits have been

developed to solve a large class of PDEs by analog

computation. More exactly, PNR circuits compute

the finite difference solution of a PDE. PNR circuits

are gathering of cells (Figure 2), the interior cells

are indexed by k = 1, . . . , N − 1, while the

boundary cells correspond to k = −1, 0, N and

N + 1. We will show that the circuits solve the

equations Au1 = i1. If the current sources i1
are replaced by voltage controlled current sources

defined by i1 = gv1 (with g is a real number), the

voltage outputs of the circuits u1 solve g(Λhv1)
and so Λhv1. The computation of Λhv2 is done in

the same way. The interior cell k which computes

(Λhv1)k is represented on Figure 3 with its two

adjacent cells on each side. We call ρ1 the resistance

value between the potentials u
(k)
1 and u

(k±2)
1 , and

ρ2 the resistance value between the potentials u
(k)
1

and u
(k±1)
1 . By applying the Kirchhoff Current Law

(KCL) at node u
(k)
1 , rearranging some terms and

dividing by h4, the equation of the cell k can be

written under the form:

1
h4

[
− 1

ρ1
u

(k−2)
1 − 1

ρ2
u

(k−1)
1 + 2u

(k)
1

(
1
ρ1

+ 1
ρ2

)

− 1
ρ2

u
(k+1)
1 − 1

ρ1
u

(k+2)
1

]
= 1

h4 i
(k)
1 .

If one choose the negative potential ρ1 = −h4ρ0

and the positive potential ρ2 = h4ρ0/4, then the

potential at node u
(k)
1 is expressed as a function of

its neighbor voltages as

1
h4

[
u

(k−2)
1 − 4u

(k−1)
1 + 6u

(k)
1 − 4u

(k+1)
1

+u
(k+2)
1

]
= ρ0i

(k)
1 ,

which is the stencil of the differential operation

Λ−1. Consequently, the whole electronic circuit

composed of N −1 cells computes the finite differ-

ences approximation u1 = Λhi1 = g (Λhv1). The

numerical value of ρ0 only changes the magnitude

of the voltages u
(k)
1 . The values of the resistances

inside a cell depend only on the circuit topology

and are easily expressed as a function of ρ1 or ρ2.
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i
(k−1)
1 i

(k)
1

����

k − 2 k − 1
����

k
����

k + 1
����

k + 2
����

1
����

0
����

−1
����

N − 1
����

N
����

N + 1
����

i
(N−1)
1i

(k+2)
1i

(k+1)
1i

(k−2)
1i

(1)
1

= vB= 0= vA = 0

· · · · · ·

u
(1)
1 u

(k−2)
1 u

(k−1)
1 u

(k)
1 u

(k+1)
1 u

(k+2)
1 u

(N−1)
1

(Λhi1)1 (Λhi1)k−2 (Λhi1)k−1 (Λhi1)k (Λhi1)k+1 (Λhi1)k+2 (Λhi1)N−1

Fig. 2. Analog computation of Λhv1.

1

22

1

r1

r2

r3

r4

r5

r6

i
(k)
1i

(k−2)
1 i

(k−1)
1 i

(k+1)
1 i

(k+2)
1

i
(k−2)
1 = gv

(k−2)
1 i

(k−1)
1 = gv

(k−1)
1 i

(k)
1 = gv

(k)
1 i

(k+1)
1 = gv

(k+1)
1 i

(k+2)
1 = gv

(k+2)
1

k − 2 k − 1 k k + 1 k + 2

g(Λhv1)k−2 g(Λhv1)k−1 g(Λhv1)k g(Λhv1)k+1 g(Λhv1)k+2

u
(k−2)
1 u

(k−1)
1 u

(k)
1 u

(k+1)
1 u

(k+2)
1

Fig. 3. Five adjacent interior cells.

Here the resistances of the cells can be taken as

r1 = r3 = r4 = r6 = ρ1/4 and r2 = r5 = ρ2/2.

The VCCS (Voltage Controlled Current Source)

i
(k)
1 of Figure 3 is controlled by the voltage v

(k)
1

through the equation i
(k)
1 = gv

(k)
1 . The four bound-

ary cells are represented on Figure 4. The imposed

values of the voltages correspond to the clamping

boundary condition. Remark that the terminals de-

noted by a cross are not connected, so the resis-

tances which are linked by one side at them can

be removed without changing the behavior of the

circuits. They are saved to show clearly the real

difference between interior cells and boundary cells.

B. Analog computation of equation (17)

The analog computation of Equation (17) can

be made by an array of classical non inverting

summing amplifiers of Figure 5. Notice that there

is no current exchange between these circuits and

PNR inputs and outputs, see buffers in Figure 3.

Analysis of the circuit of Figure 5 leads to (19).

Ra

Rb

R2

Rc

Rd

R1

v
(k)
1

g(Λhv2)k

g(Λhv1)k

α

β

Fig. 5. Analog computation of the k-th equation (17).

With a proper choice of resistances, Figure 5 solves

(17),

v
(k)
1 = R1+R2

R1

[
Ru

Ra
α + Ru

Rb
g (Λhv1)k

+Ru

Rc
β + Ru

Rd
g (Λhv2)k

]
,

(19)

where 1
Ru

= 1
Ra

+ 1
Rb

+ 1
Rc

+ 1
Rd

.

C. Analog computation of equation (18)

In a very similar way, the analog computation

of Equation 18 can made by an array of classical

6



vB
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vA

g(Λhv1)0 = 0 g(Λhv1)N = 0

vB = g(Λhv1)N−1vA = g(Λhv1)1

g(Λhv1)N+1 = vBg(Λhv1)−1 = vA

Fig. 4. Four boundary cells.

difference summing amplifiers of Figure 6.

R′

a

R′

b

R′

c

R′

d

R′

1

R′

2

v
(k)
2

g(Λhv1)k

g(Λhv2)k

β

α

Fig. 6. Analog computation of the k-th equation (18).

Analysis of the circuit of Figure 6 leads to (20).

With a proper choice of resistances, Figure 6 solves

(18),

v
(k)
2 = Rv

Rw

R′

2

R′

a
β + Rv

Rw

R′

2

R′

b

g (Λhv2)k

−
R′

2

R′

c
α −

R′

2

R′

d

g (Λhv1)k ,
(20)

where 1
Rv

= 1
R′

a
+ 1

R′

b

+ 1
R′

1
and 1

Rw
= 1

R′

c
+ 1

R′

d

+ 1
R′

2
.

VII. NUMERICAL SIMULATION

In this Section, we validate the approximation

method, established in Section V, by a numerical

simulation. We consider a silicon array comprised

of an elastic base clamped of 10 elastic cantilevers,

with base dimensions LB × lB × hB = 500µm ×
16.7µm × 10µm, and one cantilever dimensions

LC × lC × hC = 41.7µm × 12.5µm × 1.25µm.

The model parameters of base and cantilever: the

bending coefficient RB = 1.09×10−5N/m, RC =
2.13 × 10−4N/m the mass per unit length ρB =
0.0233kg/m, ρC = 0.00291kg/m. In the rational

approximation, the numerator polynomial degrees

RN and the denominator polynomial degrees RD

can be chosen sufficiently large (namely RN =
RD = 20) so that the relative errors between the

exact solution k and its rational approximation kR,

e =
||kR−k||

L2(Iσ)

||k||
L2(Iσ)

, can be in the order of 10−8.

This choice has no effect on real-time computation

time.

Numerical integrations have been performed with

a standard trapezoidal quadrature rule. The relative

errors, E =
||kN,M−k||

L2(Iσ)

||k||
L2(Iσ)

, between the exact

functions and final approximations are shown in

Figure 7, for the number of nodes M varying from

5 to 20. It may be easily tuned without changing

spatial complexity associated with the finite differ-

ence discretization of Λ−1.

We present Figure 8 to illustrate the displacement

5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Relative error E

Number of Quadrature nodes (M)

R
e
la

ti
v
e
 E

rr
o
r

Fig. 7. The relative error between the exact solution and the
final approximation
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Fig. 8. Displacement evolution of first cantilever mode with
approximation of optimal control

evolution w(t, x, y) of the first cantilever mode

at the coordinate (x, y) = (LB/2, LC/2) with

different number of nodes M . We choose the dis-

placement evolution for M = 20 as a reference.

We also present the ratio of the computation time

of solving the whole system for varying number

of nodes M to the reference computation time of

solving the whole system for M = 20, see Figure

9.

2 4 6 8 10 12 14 16 18 20
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Computation time ratio

Number of nodes (M)

T
im

e
 r

a
ti
o
 (

t/
t M

=
2
0
)

Fig. 9. The ration of computation time

VIII. CONCLUSION

In this paper, we have presented a semi-

decentralized approximation of a linear optimal

control operator applied to a two-scale model of

microcantilever arrays. This model is discretized in

y-direction projecting on the transformed basis of

Chebyshev polynomials. A semi-decentralized opti-

mal controller is implemented by a set of distributed

electronic circuits. From numerical simulations we

have shown that the computation time for control

operator realization is almost linearly increasing

with respect to the number of quadrature nodes.

A simulation of the displacement evolution has

confirmed that the approached optimal control is

effective on this model. Furthermore, this method

can be extended to other optimal control theories.
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