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1 Introduction

In recent years, the significant increase in number of connections to photo-
voltaic installations in the public networks has caused greater risks. Meth-
ods involving in detecting situations such as islanding, damage on the trans-
port network, and normal situations without special event arise have been
exploited, however, each method has its disavantages. In this work, by
using the statistical and signal processing tools, we can consider and appre-
ciate the change of data of the simulated model. Then we apply the CART
algorithm to classify the above phenomena.

What is islanding ?

When an incident occurs in the distribution network, a part of this network
can be (willingly or not) isolated. If it also contains devices to generate
energy such as solar panels, then this area is still independently supplied in
electricity. This situation is called islanding. The distribution network is
no longer able to regulate the current through the island. Such a situation
may be dangerous, and it is best to stop the independent power generators
to prevent unregulated production of electricity. The detection of islanding
condition is based on a sudden change in the network load. However, in
real situations, it is often very difficult to distinguish between a false alarm
triggered by a disturbance on the transmission (line break, neighboring
engine, noise, etc. ..), which is called a false positive, and islanding.
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There are three type of detection methods that could allow us to recog-
nise islanding from false positives :

e Passive methods detect transient changes on parameters such as volt-
age, frequency or harmonic distortion. These modifications on the
grid are usually extremely brief and they can also be caused by a false
positive such as the start of a neighboring engine. Consequently, the
most difficult here is to find proper differenciation criterions.

e Active methods consist in injecting deliberately a signal into the line
and detect modifications in order to determinate if the local circuit is
still connected to the main grid.

e Communication methods require specific devices to allow the solar
panels to exchange informations with the main grid or between each
other.

Our method belongs to the passive methods category.

2 Procedure to define a passive detection
method

We propose a statistical approach to define an islanding detection criterion.
In essence, we reformulate the question as a classification problem of a set of



indicator functions (that we will be detailed in the following) into two classes
characterized by whether there is presence or not of an islanding condition.
Here, the term indicator is used to denote a set of functions transforming
a continuous voltage (or current) signal into real values. Evidently the
criterion definition is given in terms of these indicator functions, and hence
its final implementability is directly associated to the used indicators.

Let us first introduce the notation we use in the following:

T: Time window of observation.

e N : Number of distinct observations.

e S;,i=1,..., M: continuous signals of time duration 7". Without loss
of generality, we consider S; : [0,7] — R.

e N: Number of distinct indicators.
e f/,j=1,...,N: indicators functions with f; : [0,7] - R — R.

) Xz.j, k =1,...,M - N: shorthand for the indicators applied to the
available signals, i.e. X! := fI(V;). They constitute a set of M
observations of N explanation variables.

e Y;: binary variable denoting the presence (1) or absence (0) of the

islanding condition in the ¢-th observation.

The procedure we propose is composed of the following basic steps

e Database construction
e Definition of indicator functions

e Classification

2.1 Database construction

The main input behind any statistical or learning method is information.
In general, the quality of the final classification is limited by the quality of
the initial database.

Unfortunately, there is no database registering islanding instances, mostly
because, historically, it has been a very rare phenomenon. As the number
of distributed generators in the distribution networks increase, so will the



probability of arrival of islanding. For now, we have to look elsewhere to
obtain reliable information for statistical estimation.

The best practical answer seems to create a database of “simulated
events”. The role of simulation is to approach via a model the effects on
the signal of the occurrence of different events including islanding. The
simulation input is a vector of parameters (in this case mostly referring to
the topology of the distribution and/or transport networks), and its output
is basically the voltage and current response measured by a probe at some
previously chosen nodes.

We assume the simulation model is accurate, so that the results are very
close to those that a given event would create in the actual network. In this
case, the quality of the database is determined by the set of parameters
used.

As there is a large number of possible configurations and of possible
events in a distribution network, the question of how to appropriately choose
a set of parameters is not an easy one and will not be addressed in this
report.

Here, we will work with an expert constructed database, designed to en-
hance the possible difficulties to correctly identify an islanding condition.
We were provided a data basis of 42 simulations each accounting for 10 sec-
onds of voltage and current signals, sampled at a rate of 10 kHz. Islanding
is simulated to occur in 4 of the 42 different signals at time ¢ = 1s. The
remaining 38 signals correspond to other perturbations on the electrical
network, different from islanding, strong enough as to induce changes in
the quality of the signal.

2.2 Definition of indicators

A first visual representation of the current in both cases with and without
islanding, shows that it is quite difficult to distinguish both cases from a
visual inspection of the form of the signal.

This suggest that the definition of the indicators should transform the
signal as to enhance possible differences when islanding occurs. On the
other hand, as explained before, we need to define the indicator functions
in such a way as to render them implementable in practice.

After several testing, we have focused on the spectral representation of
the signal. Figure 0.1 compares a detail of the spectrogram of two signals:
one that is not under islanding condition but is perturbed at time ¢t = 1.0s
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Indicator | Frequency range (Hz)

oo [37.5,62.5)

s 62.5,87.5)

Fio0 [87.5,112.5)
Fros [112.5,137.5)
Fis0 [137.5,162.5)
Frrs [162.5,187.5)
Jf200 [187.5,212.5)
Faos [212.5,237.5)
foso [237.5,262.5)

Table 0.1: Indicators and corresponding frequency range

and the other one for which an islanding starts at time ¢ = 1.0s. Note for
example that the signal after the islanding event seems to have a stronger
contribution from frequencies around 150 Hz and weaker contribution below
25 Hz than either the signal before the event or the signal that has suffered
a different perturbation.

Of course, this qualitative observation is not conclusive, but it helps us
define our indicator functions. Let us present our proposed definition.

Each total signal is divided in signals of time length 7" = 0.1024ms
(i.e. 21° samples), with an overlapping of half the window size between two
consecutive windows. The data are then weighted using a Hahn function in
order to focus most of the information in the central time. We recall that
the Hahn function over a window of size N is given by

wm):%(l—am(;ﬁz)>.

Then, the frequency components at each window are calculated with
an FFT. Finally, frequencies are aggregated in time intervals of size 25 Hz
around the harmonics and main subharmonics to form the indicators as
shown in Table 0.1 . We limit our analysis to frequencies up to 250Hz. The
whole process is performed in R using the signal package.

In addition to the previous indicators, we use the result of the traditional
islanding indicators (change in frequency fourreq and change in voltage peak
foraw). Hence, we will use 11 explaining variables. In addition we have the
binary variable denoting the presence or absence of islanding.



Note that the whole process to calculate the indicators may be performed
on-line (up to a time shift) and, the FFT being the most difficult task, can
be implemented by known hardware.

2.3 Classification using the CART algorithm

Our goal is to solve a classification problem. We have chosen to work with
the CART algorithm of Breiman et al. [1] (see also [3]). The algorithm
is a recursive greedy algorithm that, at each iteration, looks for a binary
question on one of the explanation variables that best divides the considered
set into two sets that are better classified. To decide on how to split a given
set, the CART algorithm uses the Gini impurity criterion: the idea is to
minimize the probability of miss-classifying an element in the set given that
we assign it to belong to one of the classes. Hence, the splitting is made as to
lower in an important quantity the aggregated impurity after the splitting.
The recursion stops either when there is no improvement (for example when
all elements already belong to a group) or if the improvement is below a
given threshold.

After the construction of the initial classification tree, a "pruning" stage
is frequently used. The main objective of pruning is to avoid over-fitting of
the classification tree with respect to the construction sample. In general,
one expects a parsimonious classification tree to apply to a higher range of
examples. Hence, pruning allows to change the balance between parsimony
and classification error.

To end with this brief review on the CART method, we recall that
it is also important to fix the relative importance of each kind of miss-
classification. In our particular example, it accounts to fixing the relative
importance of not detecting an existing islanding versus detecting a false
islanding. If no weights are given, the relative importance is given by the
data themselves. Otherwise, they are given by the relative size of each
group in the sample.

The CART algorithm has several characteristics that make it well adapted
to find a solution to our kind of problem. First of all the final decision tree
is easily interpretable, allowing for an expert review and giving elements
to understand the explained phenomenon. For example in our setup, the
CART procedure suggest that islanding generates a quite strong distortion
of some subharmonics. Second, using the classification tree for predictions is
straightforward and quick, which is very convenient when aiming to obtain



an on-line criteria: the total cost in implementation and time calculation
of the islanding detector is basically that of calculating the indicators.

2.4 Numerical results

For the tree construction algorithm we apply the procedure explained for
the indicator phase to the signal segment corresponding to [0.25,2.5] sec-
onds. The interval [0,0.25] seconds is neglected to avoid the influence of
simulation transient effects. The rest of the time interval is saved for pos-
terior validation. We obtain, then, a database with 11 explaining variables,
one classification variable and 6972 observations.

Let us start by considering the weighting function. Clearly, we do not
have any a priori knowledge of how to weight both classes of errors. As
we believe that islanding is a very rare effect that is over-represented in the
available database ( with the a proportion of about 6.4% of the available
data ), we conclude that we are giving already a higher importance to
correctly identify islanding over giving false detections. Hence, do not add
any additional weighting to the loss function of the algorithm.

We use the implementation of the CART algorithm available in the rpart
package in R.

The application of the algorithm over the described database, proposes
a tree taking into account only four indicators: fia5, fi50, f50 and the tradi-
tional frequency indicator fogfreq-

In order to evaluate if some pruning is convenient, we look at the rel-
ative and cross-validation errors at each splitting step in the CART algo-
rithm construction. Table 0.2 shows the evaluation of the method for each
splitting step. We are particularly interested in the cross-validation error,
meaning the error in classification when at each construction step part of
the observations are saved to evaluate the estimation made on the remain-
ing part. We also evaluate the relative error, that is the ratio between the
classification error using the tree on the whole tree over the initial rate of
islanding observations.

Note that the maximal improvement in the cross-validation error is ob-
tained at level 3. Adding additional classification levels does not reduce in
a sensible way the total cross-validation error, so that we consider a good
tradeoff between parsimony and precision is to use the tree at level 3.

The final tree is presented in Figure 0.2. The final classification algo-
rithm is quite simple, and takes into account only two criteria: there will



Splits  Complexity Rel. Error C.V. error C.V. SD

0 0.675000 1.000000  1.000000 0.046144
0.243182 0.325000  0.325000  0.026898
0.015909 0.081818  0.081818 0.013601
0.013636 0.065909  0.081818 0.013601
0.010000 0.038636  0.072727  0.012827

Tt W N~

Table 0.2: Evaluation table of the CART algorithm for different depth levels

Initial database | Validation database
Original | New | Original New
False detections 7 1 0 0
Missed islandings 2 0 2 0

Table 0.3: Comparison of number of false detections and missed is landings
from the 42 tested situations

be islanding if the fi50 indicator is above a threshold 2.4dB.

Let us test the performance of the algorithm. We perform two tests.
One, with less statistical value, in which we use the same sample used
for classification, and a second one, using a similar database from the ob-
servations in the interval 7' = [3s, 5s| that were not used during the tree
construction.

We define a false detection as the indicator signaling at least once in
the analyzed time interval the presence of islanding. Likewise, we say that
there is a missed islanding if the detector does not emit a detection signal
for at least 10 consecutive time frames.

Finally, let us look at a graph showing each point, their group and the
value of both indicators chosen for the final classification (fi50vs. fia5),
as shown in Figure 0.3. Note how the classification algorithm chooses the
quadrant containing most of the islanding data. On the other hand, the
signals where there is no islanding is seem to be placed forming a straight
line. It would be interesting to study if this apparent linear relation might be
of use to develop alternative detection methods based on outlier detection.
Unfortunately we did not have enough time to test this idea, so that we
propose it as a possible perspective.



2.5 Conclusion

From this section we conclude that the procedure to propose a new passive
islanding detection method seems promising. From the physical point of
view, the classification tree obtained, based on the observation of the power
in two frequency groups, seems reasonable as the signal delivered by dis-
tributed generators is of lower quality. The proposed criterion seems to be
more efficient than the current existing one, as shown by the cross-validation
test and is easily implementable. Automatic generation of simulated signals
would be recommended in order to assure a better starting database and
to perform further tests on the quality of the opposed criterion.

We believe further studies are possible. For example, it is interesting
to study an alternative approach of outlier detection, profiting from some
linear relation between power at two frequency groups when islanding is
not present.

3 Appendix:

The lack of information on islanding (causes, places and time) at ERDF,
remains a major inconvenience and a big obstacle to develop methods for
identifying false or true islanding .

In this section, we will introduce a naive method to treat our problem.
The main goal of this approach is rather to develop a code to perform a
record for the different types of islanding (true or false).

We talked about a naive method because we made assumptions that are
not real. Indeed, we consider that we already have a database where there
is a real islanding with all its causes.

For each case, we adopted a specific sensor. the characteristic of sensor
that will send us a logical symbol (0orl) ; 1 if the cause appear and 0 if not
(Figure 0.4).

In the ERDF control center, we will install a machine that will receive
all the signals sent by the sensors. once that’s done, we use our developed
Matlab code, the purpose of this Code is to gather all the values obtained
in the form of a vector V' which we will calculate the norm ||V||. According
to this calculation, we will decide the nature of islanding (Figure 0.5).

e if [|V]|| = 0, then no type of causes appear and in this case the island-
ing detected is real (true islanding) .

9



o if ||V]|| # 0, then some types of causes appear and in this case the
islanding detected is not real(false islanding).

Every time we use the code, it will make a record in a text file with the
details of islanding.

10
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Figure 0.1: Spectrogram of two signals: up, signal without islanding; down,
signal with islanding.
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Figure 0.2: Final classification tree
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Figure 0.4: The sensor characteristic.
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Figure 0.5: Type of islanding

" False islanding .t - Bloc-notes ooz ] True islanding.txt - Bloc-notes \E’ E
Fichier Edi;“’" Fomat_Affichage ? T Fichier Edition Format Affichage 7

Fausse alerte! Cause catégorie 1 le 5/11/2013 a 15:52 : C—

Fausse alerte! Cause catégorie 3 e 5/11/2013 a 15:58 ﬂ]ﬂtage le 5/11/2013 a 15:51 "
Fausse a}erte! Cause catégorie 5 19 5;1152013 2 16:00 ilotage le 5/11/2013 a 15:57

Fausse alerte! Cause catégorie 4 le 5/11/2013 a 16:01 i10tage Te 5/11/2013 4 16:01

Fausse alerte! Cause catégorie 1 le 5/11/2013 a 16:03 . . .

Fausse alerte! Cause catégorie 1 le 5/11/2013 a 16:05 110tage Te 5/11/2013 a 16:02

Fausse alerte! Cause catégorie 2 le 5/11/2013 a 16:16 ilotage e 6/11/2013 2 9:51

Fausse a}erte! Cause catégorie 6 19 5;1152013 a 16:18 ilotage Te 6/11/2013 a 15:17

Fausse alerte! Cause catégorie 1 le 5/11/2013 a 18:04 : Y oqc.

Fausse alerte! Cause catégorie 1 le 6/11/2013 a 9:37 1]0tage 1e 6/11/2013 ? 15:51

Fausse alertel Cause catégorie 1  le 6/11/2013 a 11:05 110tage le 6/11/2013 a 16:31

Fausse alerte! Cause catégorie 1 le 6/11/2013 a 11:14 ilotage le 7/11/2013 a 1:14

Fausse alerte!l Cause catégorje 2 le 6/11/2013 a 15:46 i10tage Te 2/12/2013 3 14:46

Fausse alerte! Cause catégorie 2 le 6/11/2013 a 16:19
Fausse alerte! Cause catégorie 5 le 6/11/2013 a 16:30
Fausse alerte! Cause catégorie 1 le 6/11/2013 a 17:08
Fausse alerte! Cause catégorie 1 le 6/11/2013 a 17:37
Fausse alerte! Cause catégorie 3 le 7/11/2013 a 1:15
Fausse alerte! Cause catégorie 1 le 7/11/2013 a 9:42
Fausse alerte! Cause catégorie 2 le 9/11/2013 a 23:14
Fausse alerte! Cause catégorie 1 le 2/12/2013 a 14:45

(a) False islanding (b) True islanding
Figure 0.6: Type of islanding - Matlab recording -
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