
HAL Id: hal-00957571
https://hal.science/hal-00957571

Preprint submitted on 10 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Algorithms are Good for Streaming
Camil Demetrescu, Bruno Escoffier, Gabriel Moruz, Andrea Ribichini

To cite this version:
Camil Demetrescu, Bruno Escoffier, Gabriel Moruz, Andrea Ribichini. Parallel Algorithms are Good
for Streaming. 2006. �hal-00957571�

https://hal.science/hal-00957571
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour

l'Aide à la Décision

CNRS UMR 7024

CAHIER DU LAMSADE

234

Mars 2006

Parallel Algorithms are Good for Streaming

Camil Demetrescu, Bruno Escoffier,
Gabriel Moruz, Andrea Ribichini

Parallel Algorithms are Good for Streaming1

Camil Demetrescu†, Bruno Escoffier‡, Gabriel Moruz§, Andrea Ribichini†

Abstract

In this paper we show how PRAM algorithms can be turned into efficient stream-
ing algorithms for several classical combinatorial problems in theW-Stream model.
In this model, at each pass one input stream is read and one output stream is writ-
ten; streams are pipelined in such a way that the output stream produced at passi is
given as input stream at passi + 1. Our techniques yield near-optimal algorithms
(up to polylog factors) for several classical problems in this model including sort-
ing, connectivity, minimum spanning tree, biconnected components, and maximal
independent set.

1 Introduction

Data stream processing has gained increasing popularity in the last few years as an effec-
tive paradigm for processing massive data sets. Huge data streams arise in several modern
applications, including database systems, IP traffic analysis, sensor networks, and trans-
action logs [13, 14, 24]. Streaming can be an effective paradigm also in scenarios where
the input data is not necessarily represented in the form of a data stream. Due to the high
sequential access rates of modern disks, streaming algorithms can be effectively deployed

1Work supported in part the by the Danish National Research Foundation (BRICS, Basic Research in
Computer Science, www.brics.dk), by the Sixth Framework Programme of the EU under contract number
001907 (“DELIS: Dynamically Evolving, Large Scale Information Systems”), and by the Italian MIUR
Project ALGO-NEXT “Algorithms for the Next Generation Internet and Web: Methodologies, Design and
Experiments”.

†Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Roma, Italy.
{demetres,ribichini}@dis.uniroma1.it

‡LAMSADE, CNRS and Université Paris-Dauphine, Paris, France.
escoffier@lamsade.dauphine.fr
§BRICS, Department of Computer Science, University of Aarhus, Denmark.gabi@daimi.au.dk

Cahiers du LAMSADE 1

for processing massive files on secondary storage [15], providing new insights into the so-
lution of several computational problems in external memory. In the classical read-only
streaming model, algorithms are constrained to access the input data sequentially in one
(or few) passes, using only a small amount of working memory, typically much smaller
than the size of the input [15, 20, 21]. Usual parameters of the model are the working
memory sizes and the number of passesp that are performed over the data, which are
usually functions of the input size. Among the problems that have been studied in this
model under the restriction thatp = O(1), we recall statistics and data sketching prob-
lems (see, e.g., [2, 11, 12]), which can be typically approximated using polylogarithmic
working space, and graph problems (see, e.g., [5, 9, 10, 19]), most of which require a
working space linear in the vertex set size.

Motivated by practical factors, such as the availability of large amounts of temporary
storage at low cost, some authors have recently proposed less restrictive streaming mod-
els where algorithms can both read and write data streams. Among them, we mention the
W-Stream model and theStrSort model [1, 23]. In theW-Stream model, at each pass
one input stream is read and one output stream is written; streams are pipelined in such a
way that the output stream produced at passi is given as input stream at passi+1. Despite
the use of intermediate streams, which allows it to achieve effective space-passes tradeoffs
for fundamental graph problems, most classical lower bounds in read-only streaming hold
also in this model [8]. TheStrSort model is justW-Stream augmented with a sorting
primitive that can be used to reorder each intermediate stream for free. The use of sorting
provides a lot of power, making it possible to solve several graph problems with poly-
logarithmic space and passes [1]. For a comprehensive survey of algorithmic techniques
for processing data streams, we refer the interested reader to the extensive bibliographies
in [4, 21].

It is well known that algorithmic ideas developed in the context of parallel compu-
tational models have inspired the design of efficient algorithms in other models. For
instance, Chianget al. [7] showed that efficient external memory algorithms for several
problems can be derived from PRAM algorithms using a general simulation. Recently,
Aggarwalet al. [1] discussed how uniform linear width, poly-logarithmic depth circuits
can be simulated efficiently in theStrSort model, providing a systematic way of con-
structing algorithms in this model for problems in NC that use a linear number of pro-
cessors. Examples of problems in this class include undirected connectivity and maximal
independent set.

Parallel techniques seem to play a crucial role in the design of efficient algorithms in
the W-Stream model as well. For instance, the single-source shortest paths algorithm
described in [8] is inspired by a framework introduced by Ullman and Yannakakis [26]
for the parallel transitive closure problem. However, to the best of our knowledge no
general techniques for simulating parallel algorithms in theW-Stream model have been
addressed so far in the literature.

2 Cahiers du LAMSADE

Our contributions. In this paper, we show howPRAM algorithms can be turned into
near-optimal streaming algorithms for several classical combinatorial problems in the
W-Stream model. As a first step, we show that anyPRAM algorithm that runs in
time T usingN processors and memoryM can be simulated inW-Stream usingp =
O((T ·N · log M)/s) passes. This yields near-optimal trade-off upper bounds of the form
p = O((n · polylog n)/s) in W-Stream for several problems on sequences and forests
of size n. Relevant examples include sorting, list ranking, and Euler tour. For other
problems, however, this simulation does not provide good upper bounds. One prominent
example is given by graph problems, for which efficient PRAM algorithms typically re-
quireO(m + n) processors on graphs withn vertices andm edges. For those problems,
our first simulation method would yield bounds of the formp = O((m · polylog n)/s),
while p = Ω(n/s) almost-tight lower bounds inW-Stream are known for many of them.

To overcome this problem, we study an intermediate parallel model, which we call
RPRAM, derived from thePRAM model by relaxing the assumption that a processor
can only access a constant number of cells at each round. For some problems, this allows
it to reduce substantially the number of processors while maintaining the same number
of rounds. While this may be unrealistic in practice, we show that simulatingRPRAM
algorithms inW-Stream leads to near-optimal algorithms (up to polylogarithmic factors)
for several fundamental problems, including sorting, minimum spanning tree, biconnected
components, and maximal independent set. Algorithms obtained in this way may not
always be optimal (although very close to being so): we prove this by showing that for
some of the problems above there are better algorithms designed directly inW-Stream
without using simulations.

Finally, we show that there exist problems for which the increased computational
power of theRPRAM model cannot be exploited to reduce the number of processors
required by aPRAM algorithm while maintaining the same time bounds, and thus cannot
lead to betterW-Stream algorithms: one example is deciding whether a directed graph
contains a cycle of length two.

2 Simulating parallel algorithms in W-Stream

In this section we show general techniques for simulating parallel algorithms in theW-Stream
model. As we will see in the next sections, our techniques yield near-optimal algorithms
for many classical combinatorial problems in theW-Stream model. We first discuss how
to simulate general CRCW PRAM algorithms.

Theorem 1 LetA be aPRAM algorithm that usesN processors and runs in timeT using
spaceM = poly(N). ThenA can be simulated inW-Stream in p = O((T ·N ·log M)/s)
passes usings bits of working memory and intermediate streams of sizeO(M + N).

Cahiers du LAMSADE 3

Proof (Sketch).In the PRAM model, at each parallel round every processor can read
O(1) memory cells, performO(1) instructions to update its internal state, and possibly
write O(1) memory cells. We assume that each memory address, cell value, and pro-
cessor state can be represented usingO(log M) bits. A round ofA can be simulated in
W-Stream by performingO((N log M)/s) passes, where at each pass we simulate the
execution ofΘ(s/ log M) processors usings bits of working memory. The content of the
memory cells accessed by the algorithm and the state of each processor are maintained on
the intermediate streams as items of the form(address, value) and(processor, state),
respectively. The task of each processor can be simulated in a constant number of passes
by first reading from the input stream its state and the content ofO(1) memory cells, exe-
cuting an instruction of the algorithm, and then writing to the output stream the new state
and possibly the values of theO(1) output cells. Memory cells that remain unchanged are
simply propagated through the intermediate streams by just copying them from the input
stream to the output stream at each pass. ✷

There are many examples of problems that can be solved near-optimally inW-Stream
using Theorem 1. For instance, list ranking can be solved in PRAM inO(log n) rounds
andO(n/ log n) processors [3], wheren is the length of the list; by Theorem 1, this yields
aW-Stream algorithm that runs inO((n log n)/s) passes. As another example, an Euler
tour of a tree withn vertices can be found in parallel inO(1) rounds usingn proces-
sors [16], which by Theorem 1 yields again ap = O((n log n)/s) bound inW-Stream.
However, for other problems, the bounds that can be obtained in this way are far from
optimal. For instance, efficient PRAM algorithms for graph problems typically require
(m+n) processors, wheren is the number of vertices, andm is the number of edges. For
these problems, Theorem 1 yields bounds of the formp = O((m · polylog n)/s), while
p = Ω(n/s) almost-tight lower bounds are typically known for many of them.

We now introduce a variant of thePRAM model, which would be completely unreal-
istic in a practical setting, but will be useful to derive efficient algorithms inW-Stream
for problems where Theorem 1 does not yield good results.

Definition 1 AnRPRAM (RelaxedPRAM) is an extended CRCWPRAM machine with
N processors and memory sizeM where at each round a processor can executeO(M)
instructions, which:

• can read all the values stored in memory. Each value can only be read a constant
number of times, and no assumptions can be made as to the order in which values
are given to the processor;

• can write an arbitrary subset of the memory cells. The result of concurrent writes to
the same cell in the same round is undefined. Writing can only be performed after
all read operations have been done.

4 Cahiers du LAMSADE

Similarly to aPRAM, each processor has a constant number of registers of sizeO(log M)
bits.

Notice that, while in aPRAM each processor can read/write onlyO(1) memory cells
at each round, in anRPRAM this restriction is relaxed so that any number of cells can
be accessed in the same parallel round. This jump in computational power allows it to
reduce substantially the number of processors used by many classicalPRAM algorithms
while maintaining the same number of parallel rounds, or even reducing it. As shown
below, parallel algorithms implemented in this more powerful model can be simulated in
W-Stream within the same bounds of Theorem 1.

Theorem 2 Let A be anRPRAM algorithm that usesN processors and runs in time
T using spaceM = poly(N). ThenA can be simulated inW-Stream in p = O((T ·
N · log M)/s) passes usings bits of working memory and intermediate streams of size
O(M + N).

Proof (Sketch).The claim can be proven similarly to Theorem 1. The main difference is
that a processor in theRPRAM model can read and write several memory cells at each
round, executing many instructions while still usingO(log M) bits to maintain its internal
state. Since the instructions of algorithmA performed by a processor during a round do
not assume any particular order for reading the memory cells, reading memory values
from the input stream can still be simulated in one pass. Since writing operations occur
after all reads have been done, updating memory values can be performed in an additional
pass by replacing cell values read from the input stream with the new values in the output
stream. ✷

In the remainder of this paper, we show that parallel algorithms for several classical
problems can be naturally implemented in theRPRAM model, yielding by Theorem 2
efficient algorithms inW-Stream.

3 Sorting

As a first simple application of the simulation techniques introduced in Section 2, we
show how to derive efficient sorting algorithms inW-Stream. Wefirst recall thatn items
can be sorted on aPRAM with O(n) processors inO(log n) parallel rounds [16]. By
Theorem 1, this yields aW-Stream sorting algorithm that runs inp = O((n log2 n)/s)
passes. InRPRAM, however, sorting can be solved byO(n) processors in constant time
as follows. Each processor is assigned to an input item; in one parallel round it scans
the entire memory and counts the number of items smaller than and equal to the item the
processor is assigned to. Leti andj be those numbers, respectively. Then each processor

Cahiers du LAMSADE 5

writes its own item into all the cells with indices in the rangei + 1 throughi + 1 + j, thus
producing a sorted sequence. This yields the following theorem.

Theorem 3 Sortingn items inRPRAM can be done inO(1) parallel rounds usingO(n)
processors.

Using Theorem 2 and Theorem 3, we obtain aW-Stream sorting algorithm that takes
p = O((n log n)/s) passes, thus matching the performance of the best known algorithm
for sorting in a streaming setting [20]. Since we can prove that sorting requiresp =
Ω(n/s) passes in theW-Stream model, this bound is essentially optimal.

4 Graph algorithms

In this section we discuss how to derive efficientW-Stream algorithms for several graph
problems using theRPRAM simulation of Theorem 2. We notice that efficientPRAM
graph algorithms typically requireO(m+n) processors [6] on graphs withn vertices and
m edges. Simulating such algorithms inW-Stream using Theorem 1 would yield bounds
of the formp = O((m · polylog n)/s), while p = Ω(n/s) almost-tight lower bounds
in W-Stream are known for many of them. Graph connectivity is one prominent exam-
ple [8]. Notice that, assigning each vertex to a processor,RPRAM gives enough power
for each vertex to scan its entire neighborhood in a single parallel round. Since many
parallel graph algorithms can be implemented using repeated neighborhood scanning, in
many cases this allows it to reduce the number of processors fromO(m + n) to O(n)
while maintaining the same running time. By Theorem 2, this yields improved bounds of
the formp = O((n · polylog n)/s). We now show however that there are graph problems
for which this is impossible.

Lemma 1 Testing whether a directed graph withm edges contains a cycle of length two
requiresp = Ω(m/s) passes inW-Stream.

Proof (Sketch).We prove the lower bound by showing a reduction from the bit vector
disjointness two-party communication complexity problem. Alice has anm-bit vectorA
and Bob has anm-bit vectorB; they wish to know whetherA andB are disjoint, i.e.
A · B > 0. Let e(i) = (xi, yi) and leter(i) = (yi, xi), wherexi = i div ⌈√m ⌉ and
yi = i mod ⌈√m ⌉. To make the reduction, Alice creates a stream containing an edge
e(i) for eachi such thatA[i] = 1 and Bob creates a stream containing an edgeer(i) for
eachi such thatB[i] = 1. Let G be the directed graph induced by the union of the≤ 2m
edges in the streams created by Alice and Bob. Clearly, there is a cycle of length two in
G if and only if A · B > 0. Since solving bit vector disjointness requires transmitting
Ω(m) bits [17], and the distributed execution of any streaming algorithm would require

6 Cahiers du LAMSADE

the working memory image to be sent back and forth from Alice to Bob at each pass, it
must bep · s = Ω(m). Hence,p = Ω(m/s). ✷

Lemma 1 implies that testing whether a directed graph has a cycle of length two re-
quiresΩ(m/(n log n)) rounds on anRPRAM with n processors. Notice that this problem
can be easily solved in one round on aPRAM with O(m+n) processors, by just checking
in parallel whether there is any edge(x, y) that also appears as(y, x) in the graph.

4.1 Connected components (CC)

A classicalPRAM random-mating algorithm for computing the connected components
of a graph withn vertices andm edges requiresO(m + n) processors andO(log n) time
with high probability [6, 22]. Wefirst recall how the algorithm works, and then we show
that it can be implemented inRPRAM with just O(n) processors. By Theorem 2, this
yields a near optimal algorithm inW-Stream.

Parallel algorithm. The algorithm is based on building a set of star subgraphs and
contracting the stars. It iterates the following sequence of steps.

1. Each vertex is assigned the status of parent or child independently with probability
1/2;

2. For each child vertexu, determine if it is adjacent to a parent vertex. If so, choose
one such a vertex to be the parentf(u) of u, and replace each edge(u, v) by
(f(u), v) and each edge(v, u) by (u, f(v));

3. For each vertex having parentu, set the parent tof(u).

In this contraction phase, the probability that a vertex is assigned to a connected com-
ponent, i.e. has a neighbor parent, is at least1/4. It has been shown that with high
probability the number of iterations is bounded byO(log n).

RPRAM implementation. Each iteration can be implemented inRPRAM in constant
time usingO(n) processors as follows. We attach a processor to each vertex. In a round
we assign to each vertex the status of parent of child. In a second round each vertex scans
its neighborhood to find a parent, if exists (in case of several parents, we can break ties
arbitrarily). Updating the parents as in step three can also be done in one round. This
yields the following bound.

Cahiers du LAMSADE 7

Theorem 4 CC can be solved inRPRAM usingn processors inO(log n) rounds with
high probability.

By Theorem 2, this yields the following bound inW-Stream.

Corollary 1 CC can be solved inW-Stream in O((n log2 n)/s) passes with high proba-
bility.

By thep = Ω(n/s) lower bound for CC inW-Stream [8], this upper bound is optimal up
to a polylogarithmic factor. We note however that CC can be solved deterministically in
W-Stream in O((n log n)/s) passes [8].

4.2 Minimum spanning tree (MST)

As explained in [6], the randomized CC algorithm given above can be extended to find a
minimum spanning tree in a (connected) graph.

Parallel algorithm. The algorithm is based on the property that given a subsetV ′ of
vertices, a minimum weight edge having one and only one endpoint inV ′ is in any MST.
We modify the CC algorithm as follows. At the second step, each child vertexu deter-
mines the minimum weight incident edge(u, v). If v is a parent vertex, thenf(u) = v
and flag the edge(u, v) as belonging to the spanning tree. Ifv is not a parent vertex,
do nothing. This algorithm computes a MST and performsO(log n) iterations with high
probability.

RPRAM implementation. Assuming that edge weights can be encoded usingO(log n)
bits, the modification does not affect significantly the number of rounds needed in RPRAM,
since each iteration can still be performed inO(1) rounds.

Theorem 5 MST can be solved inRPRAM usingn processors inO(log n) rounds with
high probability.

By Theorem 2, we obtain the following bound inW-Stream.

Corollary 2 MST can be solved inW-Stream in O((n log2 n)/s) passes.

We now show that we can improve this bound by alog n factor with an algorithm designed
directly inW-Stream.

8 Cahiers du LAMSADE

W-Stream algorithm. We compute the MST by progressively adding edges as follows.
We compute for each vertex the minimum weight edge incident to it. This set of edges
E ′ is added to the MST. Then we compute the connected components induced byE ′ and
contract the graph by considering each connected components as a single vertex. We
repeat these steps until the graph contains a single vertex. More precisely, we consider at
each iteration a contracted graph where the vertices are the connected components of the
partial MST so far computed. LetGi = (Vi, Ei) be the graph before theith iteration:

1. for each vertexu ∈ Vi, wefind a minimum weight edge(u, v) incident tou and add
(u, v) to the MST. LetE ′

i = {(u, v), u ∈ Vi};

2. we run a CC algorithm on the graph(Vi, E
′

i). The connected components obtained
in this way are the vertices ofVi+1;

3. we replace each edge(u, v) by (c(u), c(v)), wherec(u) andc(v) represent the labels
of the connected components previously computed.

We now analyze the number of passes required inW-Stream. Let |Vi| = ni. The first and
the third steps requireO((ni log n)/s) passes each, since we can process in one pass
O(s/ log n) vertices. As computing the connected components takesO((ni log n)/s)
passes, theith iteration requiresO((ni log n)/s) passes. We note that at each iteration,
we add an edge for every vertex inVi. Hence, the number of connected components
is divided by at least two. Therefore the total number of passes performed is given by
T (n) = T (n/2) + O((n log n)/s), which sums up toO((n log n)/s).

Theorem 6 MST can be computed inO((n log n)/s) passes inW-Stream.

By thep = Ω(n/s) lower bound for CC inW-Stream [8], this upper bound is optimal up
to a logarithmic factor. To the best of our knowledge, no previous algorithm was known
for MST in W-Stream.

4.3 Biconnected components (BCC)

Tarjan and Vishkin [25] give aPRAM algorithm that computes the biconnected compo-
nents (BCC) of an undirected graph inO(log n) time usingO(m+n) processors. We give
anRPRAM implementation of their algorithm that can be simulated inW-Stream using
O((n log2 n)/s) passes. We also give a direct implementation that uses onlyO((n log n)/s)
passes.

Cahiers du LAMSADE 9

Parallel algorithm. Given a graphG, the algorithm considers a graphG′ such that
the vertices inG′ correspond to the edges inG and the connected components ofG′

correspond to the biconnected components ofG. The algorithm starts from a rooted
spanning treeT on G and builds a subgraphG′′ of G′ having as vertices all the edges of
T . The edges ofG′′ are built in such a way that two vertices are in the same connected
component ofG′′ if and only if the corresponding edges inG are in the same biconnected
component. After computing the connected components ofG′′ the algorithm appends the
remaining edges ofG to their corresponding biconnected component. We now briefly
sketch the five steps of the algorithm:

1. build a rooted spanning treeT of G and compute for each vertex its preorder and
postorder numbers together with the number of descendants. Also, the vertices are
labelled with their preorder numbers.

2. compute for each vertexu two values,low(u) andhigh(u), given as follows.

low(u) = min({u} ∪ {low(w)|p(w) = u} ∪ {w|(u,w) ∈ G \ T})
high(u) = max({u} ∪ {high(w)|p(w) = u} ∪ {w|(u,w) ∈ G \ T}),

wherep(u) denotes the parent of vertexu.

3. add edges toG′′ according to the following two rules. For all(w, v) ∈ G \ T with
v + desc(v) ≤ w, add((p(v), v), (p(w), w)) to G′′ and for all (v, w) ∈ T with
p(w) = v andv �= 1, add((p(v), v), (v, w)) to G′′ if low(w) < v or high(w) ≥
v + desc(v), wheredesc(v) denotes the number of descendants of vertexv.

4. compute the connected components ofG′′.

5. add the remaining edges ofG to their biconnected components. Each edge(v, w) ∈
G \ T , with v < w, is assigned to the biconnected component of(p(w), w).

RPRAM implementation. We giveRPRAM descriptions for all the five steps of the
algorithm, each of them usingO(log n) time andO(n) processors. First, we compute a
spanning tree for the graph using theRPRAM algorithm previously introduced. Rooting
the tree and computing for each vertex the preorder and postorder numbers as well as
the number of descendants can be done using list ranking and Euler tour [25], which
takeO(log n) time andO(n) processors inPRAM, thus inRPRAM. Since the second
step takesO(log n) time usingO(n) processors inPRAM [25], the same bounds hold
for RPRAM. As for the third step, we implement it inRPRAM in constant time and
O(n) processors by allowing every vertex to read its neighborhood. For computing the
connected components ofG′′ in the fourth step, we use theRPRAM algorithm previously
introduced that takesO(log n) time andO(n) processors. Finally, we implement the

10 Cahiers du LAMSADE

last step of the algorithm inRPRAM in O(1) time andO(n) processors by reading for
all verticesv the whole neighborhood and assign the edges to the proper biconnected
components.

Since all the steps of the algorithm can be implemented inRPRAM in O(log n)
rounds andO(n) processors, we get the following result.

Theorem 7 BCC can be solved inRPRAM usingO(n) processors inO(log n) rounds.

By Theorem 2, this yields the following bound inW-Stream.

Corollary 3 BCC can be solved inW-Stream in O((n log2 n)/s) passes.

We now show that we can improve this bound by alog n factor with an implementation
designed directly inW-Stream.

W-Stream algorithm. We describe how to implement directly inW-Stream the steps
of the parallel algorithm of Tarjan and Vishkin [25]. Notice that we have given con-
stant timeRPRAM descriptions for the third and the fifth step, thus by applying the
simulation in Theorem 2 we obtainW-Stream algorithms that run inO((n log n)/s)
passes. For computing the connected components in the fourth step, we can use the algo-
rithm in [8] that requiresO((n log n)/s) passes. Therefore, to achieve a global bound of
O((n log n)/s) passes, we must give implementations that run inO((n log n)/s) passes
for the first two steps. For the first step, we can compute a spanning tree within the
bound of Theorem 6. Rooting the tree and computing the preorder and postorder numbers
together with the number of descendants can be easily implemented inO((n log n)/s)
passes using list ranking, Euler tour and sorting. As for the second step, we compute
the low andhigh values by processings/ log n vertices at each pass, according to the
postorder numbers.

Theorem 8 BCC can be solved inW-Stream in O((n log n)/s) passes.

By thep = Ω(n/s) lower bound for CC inW-Stream [8], this upper bound is optimal up
to a logarithmic factor. To the best of our knowledge, no previous algorithm was known
for BCC inW-Stream.

4.4 Maximal independent set (MIS)

We give an efficientRPRAM algorithm for the maximal independent set problem (MIS),
based on thePRAM algorithm proposed by Luby [18]. Through the simulation in Theo-
rem 2, this leads to an efficientW-Stream implementation.

Cahiers du LAMSADE 11

Parallel algorithm. A maximal independent setS of a graphG can be built incremen-
tally through a series of iterations, as follows. At each iteration, in the first step, a random
subsetI of the vertices inG is determined, by including each vertex with probability
1/(2 · deg(v)). Then, in the second step, for each edge(u, v) of G such thatu, v ∈ I, the
vertex with the smallest degree is removed fromI. Finally, in the third step, the vertices
in I are added toS, and then both the vertices inI and their neighbors are removed from
G. The above steps are repeated untilG gets empty.

RPRAM implementation. The first step of each iteration can clearly be implemented
in constant time by anRPRAM with O(n) processors, since each vertex can compute its
own degree in one parallel round. The second step also can be implemented in constant
time, by having each vertex inI scan its neighborhood, and remove itself if it encounters
a neighbor also inI and with a larger degree. Finally, the third step can be implemented
in constant time as well, since each vertex not inI, in just one parallel round, can scan its
neighborhood and remove itself fromG if one of its neighbors is inI.

Theorem 9 MIS can be solved inRPRAM usingO(n) processors inO(log n) rounds
with high probability.

By Theorem 2, this yields the following bound inW-Stream.

Corollary 4 MIS can be solved inW-Stream in O((n log2 n)/s) passes with high prob-
ability.

We now show that the bound of Corollary 4 is optimal up to a polylogarithmic factor.

Theorem 10 MIS requiresΩ(n/s) passes inW-Stream.

Proof (Sketch).The proof is based on a reduction from the bit vector disjointness commu-
nication complexity problem. Alice and Bob have each a vector of sizen. They build a
graph on4n verticesvj

i , wherei = 1, · · · , n andj = 1, · · · , 4. If Ai = 0, then Alice adds
edges(v1

i , v
2
i) and(v3

i , v
4
i), whereas ifBi = 0, then Bob adds edges(v1

i , v
3
i) and(v2

i , v
4
i).

The size of any MIS is2n if A · B = 0 and strictly greater otherwise. ✷

To the best of our knowledge, no previous algorithm was known for MIS inW-Stream.
It remains an open question whether one can solve this problem more efficiently in this
model.

12 Cahiers du LAMSADE

References

[1] G. Aggarwal, M. Datar, S. Rajagopalan, and M. Ruhl. On the streaming model aug-
mented with a sorting primitive. InProceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’04), 2004.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the
frequency moments.Journal of Computer and System Sciences, 58(1):137–147,
1999.

[3] R. Anderson and M. G. L. A simple randomized parallel algorithm for list-ranking.
Information Processing Letters, 33(5):269–273, 1990.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. InProceedings of the 21st ACM Symposium on Principles of
Database Systems (PODS’02), pages 1–16, 2002.

[5] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algorithms,
with an application to counting triangles in graphs. InProceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms (SODA’02), San Francisco,
California, pp. 623–632, 2002.

[6] G. Blelloch and B. Maggs. Parallel algorithms. InThe Computer Science and
Engineering Handbook, pages 277–315. 1997.

[7] Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vemgroff, and J. Vitter.
External-memory graph algorithms. InProc. 6th Annual ACM-SIAM Symposium
on Dicrete Algorithms (SODA’95), pages 139–149, 1995.

[8] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space for passes in graph
streaming problems. InProc. 17th Annual ACM-SIAM Symposium of Discrete Al-
gorithms (SODA’06), pages 714–723, 2006.

[9] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph prob-
lems in a semi-streaming model. InProc. of the 31st International Colloquium on
Automata, Languages and Programming (ICALP’04), 2004.

[10] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances
in the streaming model: the value of space. InProceedings of the 16th ACM/SIAM
Symposium on Discrete Algorithms (SODA’05), pages 745–754, 2005.

[11] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate
L1 difference algorithm for massive data streams.SIAM Journal on Computing,
32(1):131–151, 2002.

Cahiers du LAMSADE 13

[12] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Fast,
small-space algorithms for approximate histogram maintenance. InProceedings
of the 34th ACM Symposium on Theory of Computing (STOC’02), pages 389–398,
2002.

[13] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Quicksand: Quick sum-
mary and analysis of network data. Technical report, DIMACS Technical Report
2001-43, 2001.

[14] L. Golab and M. Ozsu. Data stream management issues Ð a survey. Technical
report, School of Computer Science, University of Waterloo, TR CS-2003-08, 2003.

[15] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.In
“External Memory algorithms”, DIMACS series in Discrete Mathematics and The-
oretical Computer Science, 50:107–118, 1999.

[16] J. Jájá.An introduction to parallel algorithms. Addison-Wesley, 1992.

[17] E. Kushilevitz and N. Nisan.Communication Complexity. Cambridge University
Press, 1997.

[18] M. Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal of Computing, 15(4):1036–1053, 1986.

[19] A. McGregor. Finding matchings in the streaming model. InProceedings of the 8th
International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems (APPROX’05), to appear, 2005.

[20] I. Munro and M. Paterson. Selection and sorting with limited storage.Theoretical
Computer Science, 12:315–323, 1980.

[21] S. Muthukrishnan. Data streams: algorithms and ap-
plications. Technical report, 2003. Available at
http://athos.rutgers.edu/∼muthu/stream-1-1.ps.

[22] J. Reif. Optimal parallel algorithms for integer sorting and graph connectivity. Tech-
nical Report TR 08-85, Aiken Computation Laboratory, Harvard University, Cam-
bridge, 1985.

[23] J. Ruhl. Efficient Algorithms for New Computational Models. PhD thesis, Mas-
sauchussets Institute of Technology, September 2003.

[24] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases of
network traffic. InProceedings USENIX Annual Technical Conference, 1998.

14 Cahiers du LAMSADE

[25] R. Tarjan and U. Vishkin. Finding biconnected components and computing tree
functions in logarithmic parallel time. InProc. 25th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’84), pages 12–20, 1984.

[26] J. Ullman and M. Yannakakis. High-probability parallel transitive-closure algo-
rithms. SIAM Journal on Computing, 20(1):100–125, 1991.

Cahiers du LAMSADE 15

