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Abstract

We study an on-line model for set-covering implying that elements of the ground set of

size n arrive one-by-one and with any such element σi, arrive also the names of the sets

containing it in the final instance. Any new element has to be processed irrevocably before

the arrival of the next element. We study limits on the competitiveness of several greedy

rules solving several alternatives of this basic model. For any of them we give lower and

upper bounds for the competitive ratio achieved. We finally deal with the maximum budget

saving problem. Here, an initial budget is allotted that is destined to cover the cost of an

algorithm for solving set-covering and the objective is to maximize the savings on the initial

budget.

1 Introduction

Let C be a ground set of n elements and S a family of m subsets of C such that ∪S∈SS = C.
The set-covering problem consists of finding a family S ′ ⊆ S, of minimum cardinality, such that
∪S∈S′S = C. In what follows, for an element σi ∈ C, we set Fi = {Sj

i ∈ S : σi ∈ Sj
i } and

fi = |Fi|; also, we set f = max{fi : i = 1, . . . , n}.
The set-covering problem has been extensively studied over the past decades. It has been

shown to be NP-hard in Karp’s seminal paper ([6]) and O(log n)-approximable for both weighted
and unweighted cases (see [2], for the former and [5, 7, 10], for the latter; see also [8] for a
comprehensive survey on the subject). This approximation ratio is the best achievable, unless
P = NP ([9]).

In on-line computation, one can assume that the instance is not known in advance but it is
revealed step-by-step. Upon arrival of new data, one has to decide irrevocably which of these
data are to be taken in the solution under construction. The fact that the instance is not
known in advance, gives rise to several on-line models specified by the ways in which the final
instance is revealed, or by the amount of information that is achieved by the on-line algorithm
at each step. In any of these models, one has to devise algorithms, called on-line algorithms,
constructing feasible solutions whose values are as close as possible to optimal off-line values, i.e.,
to values of optimal solutions assuming that the final instance is completely known in advance.
The closeness of an on-line solution to an optimal off-line one is measured by the so-called

∗A preliminary version of this paper, entitled Greedy algorithms for on-line set-covering and related problems

has been included in the Proceedings of the 12th Computing: The Australasian Theory Symposium (CATS’06),
J. Gudmundson (ed.), Australian Computer Science Communications 28(4), pp. 145–151, 2006
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competitive ratio m(x, y)/ opt(x), where x is an instance of the problem dealt, y the solution
computed by the on-line algorithm dealt, m(x, y) its value and opt(x) the value of an optimal
off-line solution. This measure for on-line computation has been introduced in [11].

Informally, the basic on-line set-covering model adopted here is the following: elements of
a ground set of size n arrive one-by-one and with any such element σi (arriving during step i),
arrive also something about some of the sets containing σi. This “something” can be either the
names of sets containing σi or more information related to their cardinalities, or their covering
potential, etc. At each step, σi has to be processed immediately, i.e., it has either to be covered
by some of the sets whose names has arrived with, or to be left uncovered risking so infeasibility
of the final solution.

We first assume that together with an element the names of the sets containing it in the final
instance are revealed. We show that if no further information is given, then the competitive ratio
of any algorithm is Ω(n).

Next, we handle several algorithms dealing with the on-line model just sketched. The first
one, called TAKE-ALL, takes at each step in the solution all the sets containing the element just
revealed, if it is still uncovered. We show that this algorithm has tight competitive ratio O(f),
where f is the maximum number of sets in S that contain a ground element. The second
algorithm, called TAKE-AT-RANDOM, is a randomized algorithm that at each step picks a set
at random among the ones whose names are revealed an take it in the solution, if it is still
uncovered. For this algorithm we provide an upper bound of O(n) for its competitiveness, as
well as an asymptotically matching lower bound.

We then assume that together with the names of the sets covering a revealed element, an
information concerning their covering potential is also communicated. We show that, in this
case, the competitive ratio of any algorithm that, for any arriving uncovered element, takes in
the cover at least one set containing it is bounded below by Ω(

√
n). Assuming that the covering

potential information given with any element is the name of the larger set containing it (in the
final instance) we show that the competitive ratio of the greedy algorithm, called TAKE-LARGEST,
consisting of taking this set in the solution is O(n) and that it is tight.

We next address the following question: “what an on-line algorithm must know about sets in
order to guarantee an upper competitive bound of O(

√
n)?” We show that such a bound can be

attained at least by an algorithm, called TAKE-LARGEST-ON-FUTURE-ITEMS, which at any step i
takes some set containing σi covering the most of the ground set-elements that have not been
yet covered (clearly, any uncovered element is yet unrevealed). This assumption can be seen as
the on-line counterpart of the natural greedy (off-line) set-covering algorithm, called GREEDY in
what follows. We recall that this algorithm takes in the solution a set covering the most of the
still uncovered elements.

Finally, we address a budget variant of set-covering. We assume that two algorithms collabo-
rate to solve the problem. The application-cost of the former is just the cardinality of the solution
it finally computes, while, for the latter, its application cost is the cardinality of its solutions
augmented by an overhead due, for example, to the fact that it is allowed to wait before making
its decisions. We can see the application cost of the former algorithm as a kind of budget allotted
to them that is not allowed to be overcome. The objective is to perform the maximum possible
saving upon the initial budget. We show that there exists a natural algorithm-cost model such
that GREEDY is asymptotically optimal for maximum budget saving when the budget allotted is
the application cost of TAKE-LARGEST-ON-FUTURE-ITEMS.

The remainder of this paper is organized as follows. In Section 2, we describe the main
result presented in the paper more in detail and we compare our approach to other approaches
introduced in the literature. Section 3 is devoted to a general competitiveness lower bound
for simple on line algorithms. In Section 4, we present two simple algorithms, TAKE-ALL and
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TAKE-AT-RANDOM and we discuss their performances. In Sections 5 and 6 the power of look
ahead is discussed, first by showing that any algorithm that knows the covering potential of
the sets which contain a revealed (not covered) item cannot attain a competitive ratio better
than Ω(

√

n/2) and then by exhibiting an algorithm whose competitive ratio matches such bound.
Section 7 is devoted to the budget version of the problem. Finally, in Section 8, conclusive issues
are discussed.

2 Description of the main results and related work

In [1], the following on-line set-covering model has been studied. We suppose that we are given
an instance (S, C) that it is known in advance, but it is possible that only a part of it, i.e., a
sub-instance (Sp, Cp) of (S, C) will finally arrive; this sub-instance is not known in advance. A
picturesque way to apprehend the model is to think of the elements of C as lights initially switched
off. Elements switch on (get activated) one-by-one. Any time an element c gets activated, the
algorithm has to decide which among the sets of S containing c has to be included in the
solution under construction (since we assume that (S, C) is known in advance, all these sets
are also known). In other words, the algorithm has to keep an online cover for the activated
elements. The algorithm proposed for this model achieves competitive ratio O(log n log m) (even
if less than n elements of C will be finally switched on and less than m subsets of S include these
elements).

The on-line model dealt here is inspired (yet quite different since it does not allow that,
once arrived, an element can disappear) from the one in [1]. Moreover, and most important,
the instance (S, C) is not known in advance. In our model, we are given an arrival sequence
Σ = (σ1, . . . , σn) of the elements of C (i.e., elements of C are switched on following the or-
der σ1, . . . , σn), the objective is to find, for any i ∈ {1, . . . , n}, a family S ′

i ⊆ S such that

{σ1, . . . , σi} ⊆ ∪S∈S′

i
S. Recall that for any σi, i = 1, . . . , n, we denote by Fi = {Sj

i : Sj
i ∈

S, σi ∈ Sj
i } the sets of S containing σi, by fi the cardinality of Fi, usually called frequency, and

we set f = maxσi∈Σ{fi}. We denote by S̄j
i the subset of the elements of Sj

i ∈ Fi still remaining

uncovered and by δj
i the cardinality of S̄j

i .
When σi switches on, something about sets in Fi, j = 1, . . . , fi is revealed. We first assume

that this “something” is the names of the sets covering σi, i.e., the names in Fi. We show that,
if no further information is supplied, then no on-line algorithm can achieve competitive ratio
better than O(n).

We then study the competitiveness of two algorithms dealing with this model, namely
TAKE-ALL and TAKE-AT-RANDOM.

The former, any time some σi arrives, if it is still uncovered, i.e., if none of the sets taken
in the solution up-to-date does belong to Fi, then takes all the sets in Fi in the solution under
construction. We show that the competitive ratio of TAKE-ALL is bounded above by f , the
maximum frequency of the final instance, and that this ratio is tight and can be even exponential
with n.

In the case of TAKE-AT-RANDOM, any time some σi arrives, if it is still uncovered, the algorithm
picks at random a set in Fi and puts it in the solution. We show that its competitive ratio is
bounded above by O(n). We also prove that its expected competitive ratio cannot be better
than O(n1−(1/ǫ)), for any ǫ > 0. We so have a lower bound that asymptotically matches its
competitive ratio.

We next assume that together with Fi, some more information is revealed about the covering
potential of some of the sets in Fi. We show that under this assumption, no on-line algorithm
that, upon the arrival of an uncovered element, processes it by adding to the cover at least one
set containing it can guarantee competitive ratio better than

√

n/2.
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Furthermore, we show that if together with Fi the name of some set Ŝi ∈ argmax{|Sj
i |, j =

1, . . . , fi} is revealed, then the greedy rule (called TAKE-LARGEST, in the sequel) that if σi is still
uncovered, takes Ŝi in the solution, achieves competitive ratio O(n).

The two results mentioned just above show that there is an important gap between the
general lower bound of

√

n/2 and the ratio achieved by TAKE-LARGEST. Hence, a question rises
naturally: “what an on-line algorithm must know in order to achieve a ratio closer to this bound,
say O(

√
n), respecting always the given on-line model? We show that there exists at least an

implementation doing this, if it owns some look-ahead informations.
We show that if together with σi and Fi, the name of some set S̃i ∈ argmax{δj

i , j = 1, . . . , fi},
i.e., the name of a set in Fi covering the most of the still unrevealed elements is revealed, then
the greedy rule (TAKE-LARGEST-ON-FUTURE-ITEMS) that adds S̃i in the cover, if σi remains still
uncovered, achieves tight competitive ratio O(

√
n). Let us note that TAKE-LARGEST-ON-FU-

TURE-ITEMS is a kind of on-line analogue of GREEDY. Hence, analysis of its competitiveness is
interesting by its own.

Note also that a basic and very interesting feature of the introduced models is their small
memory requirements, since the only information needed is the binary encoding of the names of
the sets. This is a major difference between our approach and the one of [1]. There, anytime an
element gets activated, the algorithm needs to compute the value of a potential function using
an updated weight parameter for each element and then chooses covering sets in a suitable way
so that this potential be non-increasing; the greedy online algorithm in our model needs only a
constant number of memory places, making it more appropriate for handling very large instances
with very few hardware ressources. For instance, the rules used here use at most O(m) space.

We are so faced to the power (rather the weakness) of greediness. Let us recall that the on-line
models that we consider assume no knowledge of the topology of the final instance (S, C) and
immediate processing of any arriving element σi. Obviously, the rules that we consider are the
only to feasibly solve the problem in such situations. Furthermore they are very efficient in time
and in memory requirements, hence well adapted to face really on-line practical situations. On
the other hand, since no a priori knowledge of instance’s topology is admitted, no algorithm can
do complex preliminary calculations (as the potential calculations in [1]) in order to judiciously
choose the set to be included in the cover under construction.

In many real-life problems, it is meaningful to relax the main specification of the online
setting, that is, to keep a solution for any partially revealed instance, in order to achieve a
better solution quality. In this sense, a possible relaxation is to consider that several algorithms
collaborate in order to return the final solution. The costs of using these algorithms can be
different the ones from the others, depending upon the sizes of the solutions computed, the time
overheads they take in order to produce them, etc. Moreover, we can assume that an initial
common budget is allotted to all these algorithms and that this budget is large enough to allow
use of at least one of the algorithms at hand to solve the problem without exceeding it. A nice
objective could be in this case, to use these algorithms in such a way that a maximum of the
initial budget is saved.

For the case of set-covering, the following budget-model, giving rise to what we call maxi-

mum budget saving problem is considered in Section 7. We assume that two algorithms collabo-
rate to solve it: say TAKE-LARGEST-ON-FUTURE-ITEMS and the greedy (off-line) algorithm. The
application-cost of the former is just the cardinality of the solution it finally computes, while,
for the latter, its application cost is the cardinality of its solutions augmented by an overhead
due, for example, to the fact that it is allowed to wait before making its decisions. For an in-
stance x of set-covering, the initial budget considered is B(x) =

√
n opt(x) (this is in order that

at least TAKE-LARGEST-ON-FUTURE-ITEMS is able to compute a solution of x without exceeding
the budget for any x). Denote by c(x, y) the cost of using A in order to compute a cover y for x.

4



The objective is to maximize the quantity B(x) − c(x, y) and, obviously, the maximum possible
economy on x is B(x)− opt(x). We show in Section 7 that there exists a natural algorithm-cost
model such that GREEDY is asymptotically optimal for maximum budget saving.

Before closing this section, let us quote another approach that could be considered to be
at midway between semi-on-line and reoptimization approaches, developed in [3]. There, the
problem tackled is the maintenance of approximation ratio achieved by an algorithm while the
set-covering instance undergoes limited changes. More precisely, assume that a set-covering
instance (S, C) and a solution S ′ for it are given. How many insertions of some of the ground
elements in subsets that did not previously contain these elements produce an instance for which
the solution S ′ of the initial instance guarantees the same approximation ratio in both of them?
In [3] it is shown that if solution S ′ has been produced by application of the natural greedy
algorithm achieving approximation ratio O(log n) ([2]), then after O(log n) such insertions initial
solution S ′ still guarantees the same approximation ratio. In the same spirit lies also the similar
set-covering model in [12].

3 The price of ignorance

In this section we consider the first version of the on-line model sketched in Section 2. Assume
an arrival sequence Σ = (σ1, . . . , σn) of the elements of C, and the objective is to find, for any
i ∈ {1, . . . , n}, a family S ′

i ⊆ S such that {σ1, . . . , σi} ⊆ ∪S∈S′

i
S. Once an element σi, i = 1, . . . ,

switches on, only the encodings of the members of Fi are also revealed.
For this case we first prove that when no additional information is given, any rule that has to

cover a new element without any look-ahead behaves rather badly. In this sense strategies that
choose elements either randomly or based upon observations of the past (for instance take the
subset that has appeared the most frequently or the most rarely until now) are highly inefficient.

Proposition 1. If no information is given about the sets revealed with an arriving not covered

ground element, then the competitive ratio of implementation of any greedy principle is Ω(n)

Proof. The adversary reveals a first uncovered element along with the names S1, . . . , SN of N
sets covering it in the final instance. He then keeps revealing uncovered elements along with all
sets from S1, . . . , SN not already taken into the cover, until the algorithm has taken all N sets
into the cover.

Suppose w.l.o.g. that the algorithm has taken S1, . . . , Sl1 , Sl1+1, . . . , Sl2 , Sl2+1, . . . , Sl3 , and
at the kth and final step, Slk−1+1, . . . , Slk = SN .

The adversary can give the following interpretation to the instance: S = {S1, . . . , SN}. There
are n = log N + k ground elements, namely {σ1, . . . , σlog N , 1, . . . , k} (notice also that k 6 N).
The set Si taken at step j contains the elements σp, for all places p where the binary expression
of i has an 1, plus elements in {1, . . . , j}. The arrival sequence is 1, . . . , k.

In this interpretation, the set SN , taken at the last step, is the ground set itself; thus, in such
a setting, the competitive ratio of the algorithm would be N , i.e., Ω(n)

It can be immediately seen that under the given model, any deterministic algorithm that
takes a specific set containing a new (uncovered) element σi (for example, the set of Fi that
comes first in lexicographic order) achieves competitive ratio O(n). Indeed, it chooses at most n
sets for an optimum greater than, or equal to 1.

4 Competitiveness of TAKE-ALL and TAKE-AT-RANDOM

4.1 Algorithm TAKE-ALL

Recall that algorithm TAKE-ALL, whenever a newly revealed element σi is not already covered
by sets already taken in the solution due to former arrivals, it takes in the solution the whole
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family Fi the names of the members of which have been revealed together with σi.

Proposition 2. The competitive ratio of TAKE-ALL is bounded above by f . This ratio is tight.

Proof. Denote by σ1, . . . , σk the critical elements of Σ, i.e., the elements having entailed the
introduction of S1, . . . , Sk in S ′. Denote also by S∗ an optimum off-line solution. Obviously, for
any of the critical elements, a distinct set is needed to cover it, in any feasible cover for C; hence:

|S∗| > k (1)

On the other hand, since, for i = 1, . . . , k, fi 6 f :
∣

∣S ′
∣

∣ 6 kf (2)

Combining (1) and (2), the competitive ratio is immediately derived.
In order to show tightness, consider an instance with ground set C = {1, . . . , n} and the

family of all 2n−1 sets formed by 1 union any other set in 2C\{1}. With an arrival sequence
starting with 1, the competitive ratio of TAKE-ALL would be 2n−1 = f .

Note that TAKE-ALL is similar to the approximation algorithm for minimum set-covering
presented in [4] and, furthermore, it guarantees the same approximation ratio.

Note also that, from Proposition 2, TAKE-ALL gives a much worse competitiveness than n.

4.2 Algorithm TAKE-AT-RANDOM

Recall that TAKE-AT-RANDOM chooses at random one set in Fi per revealed uncovered element σi

and puts it in the solution. It can be immediately seen that, with the same arguments as the
ones at the end of Section 3, TAKE-AT-RANDOM achieves competitive ratio O(n). In the following
proposition, we show that even its expected competitive ratio, if it chooses one of the sets
covering σi with uniform probability, cannot be much better than O(n).

Theorem 1. For any ǫ > 0, there exists an instance of the on-line set-covering with n ground

elements such that the expected competitive ratio of TAKE-AT-RANDOM is Ω(n1−(1/ǫ)).

Proof. For any ǫ > 0, fix an integer k > 1/ǫ and let N > 2k. Consider the instance with ground
set C = {1, . . . , n = Nk}. Family S contains the following sets:

• a partition of class sets S(i) = {j ∈ C : (j − 1) ÷ N = (i − 1)}; clearly, |S(i)| = N and
there exist Nk−1 class sets;

• for any j ∈ S(i) for some i, there exist 2N−1 internal sets, each one containing j plus the
elements of one of all possible subsets of S(i) (including the empty set);

• the ground set C itself.

Consider now an arbitrary arrival sequence, and compute the expected value of the cover, which
will be equal to the expected competitive ratio of TAKE-AT-RANDOM (equality holds, since the
optimum for this instance is C).

Every element belongs to one class set and to 2N−1 internal sets. We note by E(q) the
expected value of TAKE-AT-RANDOM on the instance of q elements defined as before. Then:

E

(

Nk
)

=
1

2N−1 + 1

(

1 +
N−1
∑

l=0

(

N − 1

l

)

(

1 + E

(

Nk − l − 1
))

)

≥ 1

2N−1 + 1

(

1 + 2N−1 + 2N−1
E

(

Nk − N
))

≈ 1 + E

(

Nk − N
)

The recursive relation yields then directly E(N k) ≥ Nk−1, i.e., E(n) = Ω(n1−(1/ǫ)).
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Example 1. We now give an example of construction of Theorem 1. Consider N = 3 and k = 3
(these values of N and k are not conformal with their definition but, in a first time, we use them
for simplicity). Then C = {1, 2, . . . , 27} and we have:

• class sets: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}, {16, 17, 18}, {19, 20, 21},
{22, 23, 24} and {25, 26, 27};

• for any class set {a, b, c}, there exist the internal sets: {a}, {b}, {c}, {a, b}, {a, c} and {b, c};

• finally C = {1, 2, . . . , 27} ∈ S.

Let us assume that σ1 = 17. With it will be revealed the following 22 + 1 = 5 sets: {17},
{17, 18}, {17, 19}, {17, 18, 19} and {1, 2, . . . , 27}. The average cover for the whole instance will
be of size 9, independently on the arrival sequence.

Indeed, for k = 3, N > 8. Taking N = 8, n = 512. In this case, the class sets would be
the partition of {1, 2, . . . , 512} into 64 subsequent 8-tuples. For any class set there would be 254
internal sets. With any element of the arrival sequence they would arrive 1 class set, plus 63
internal sets plus set {1, 2, . . . , 512}, i.e., 83−1 + 1 = 65 sets. The average cover size would be in
this case 64.

5 The nasty flaw of greediness

In this section, we consider a slightly enriched model for on-line set-covering by assuming that
together with any element σi of the arrival sequence, arrive not only the names of the sets
containing them to the final instance but also some information about the cover potential of
some of these sets.

In what follows, we show that, even for this revised model, no on-line algorithm can achieve
competitive ratio better than

√

n/2, even if it is allowed to choose at any step more than one
set to be introduced in the solution.

Theorem 2. Consider an on-line model for set-covering where together with any element σi of

the arrival sequence, arrive not only the names of the sets containing them to the final instance

but also some information about the cover potential of some of these sets. Then, on-line algorithm

for this model such that, at any step, it takes in the cover at least one set containing some not

yet covered arriving element can achieve competitive ratio less than
√

n/2, even if one assumes

that with any σi, S̃i is also revealed.

Proof. Consider the following set-covering instance built, for any integer N , upon a ground set
S = {xij : 1 6 j 6 i 6 N}; obviously, |C| = n = N(N + 1)/2. A path-set of order i is defined as
a set containing N − i + 1 elements {xiji

, . . . , xNjN
}. The set-system S of the instance contains

all possible path-sets of each order i, 1 6 i 6 N . Clearly, there exist N !/0! path-sets of order 1,
N !/1! path-sets of order 2, and so on and, finally, N !/(N − 1)! path-sets of order N , i.e., in
all N !(1 + . . . + 1/(N − 1)!) ≈ eN ! path-sets. Finally, the set-system S is completed with an
additional set Y containing all elements of C but those of some path-set of order 1, that will be
specified later (hence, |Y | = n − N).

As long as there exist uncovered elements, the adversary may choose to have an uncovered
element xij of the lowest possible i arriving, which will be contained only in all path-sets of order
less than or equal to i. Notice that as long as algorithm A has r < N sets inserted in the cover,
there will be at least one element x(r+1)j for some j, 1 6 j 6 k + 1, not yet covered. Suppose
that after the arrival of σt, the size of the cover computed by A gets equal to, or greater than, N .
Clearly, 1 6 t 6 N . At time t + 1, a new element arrives, contained in some path-sets and in Y ,
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which can be now specified as consisting of all elements in C except of the elements of some
path-set S∗ of order 1 containing σ1, . . . , σt; the rest of the arrival sequence is indifferent.

Clearly the optimum cover in this case would have been path-set S∗ together with set Y ;
hence, kA/k

∗ > N/2, with N tending to
√

2n as n increases.
It is easy to see that the above construction can be directly generalized so that the same

result holds also in the case that the on-line algorithm is allowed to take more than one sets at
a time in the cover: if σ1 = x11, then as long as the size of the online cover is less than N , there
exists always some iℓ−1 < iℓ 6 N and some jiℓ for which xiℓjiℓ

is yet uncovered. Hence, if σℓ is
this element, then the algorithm will have to put some sets in the cover. Finally, the algorithm
will have put N sets in the cover, while the optimum will always be of size 2.

(1,1)

(2,1)

(3,1)

(2,2)

(3,2)
(3,3)

(a)

(1,1)

(2,1)

(3,1)

(2,2)

(3,2)

(3,3)

(b)

(1,1)

(2,1)

(3,1)

(2,2)

(3,2)

(3,3)

(c)

Figure 1: The counter-example of Theorem 2 for N = 5.

Example 2. In order to illustrate the construction in Theorem 2, consider the instance of
Figure 1, with N = 5 (the elements of C are depicted as cycles labelled by (i, j) for 1 6 j 6 i 6 3).
The Si sets can be thought of as paths terminating to a sink on the directed graph of Figure 1(a).
Assume that (1, 1) arrives, and algorithm A chooses sets {(1, 1), (2, 1), (3, 1)}, {(1, 1), (2, 2), (3, 2)}
for covering it; the uncovered element (3, 3) arrives next, so A has to cover it by, say, the set
{(2, 1), (3, 3)} (Figure 1(b)). The optimal cover might consist of set {(1, 1), (2, 2), (3, 3)} together
with a big set consisting of the rest of the elements, that could not have been revealed to A upon
arrival of (1, 1), or of (3, 3) (Figure 1(c)).

Let us now see what is the situation if we assume that together with Fi is also revealed the name
of some set Ŝi ∈ argmax{|Sj

i |, j = 1, . . . , fi} and we implement TAKE-LARGEST that consists of

taking Ŝi in the solution.
Observe first that the discussion about the competitiveness of deterministic algorithms that

take a specific set containing a new (uncovered) element, holds also for TAKE-LARGEST. Hence its
competitive ratio is bounded above by n. We now show that this ratio is asymptotically tight.

Consider the following set-covering instance: a ground set C = {1, . . . , 2N}, a family of
sets S = {S0, . . . , SN} with Si = {i, . . . , N + i}. Assume an arrival sequence starting with
N, N + 1, . . . , 2N . Then, TAKE-LARGEST, might take into the cover sets S1, . . . , SN , while the
optimum cover would be consisting of only S0, SN , thus yielding a competitive ratio of N/2.

6 The power of look-ahead

The discussion in Section 5 shows a large gap between the lower bound provided for any algorithm
for this model in Theorem 2 and the (tight) competitiveness of TAKE-LARGEST, that is one of the
most natural rules one could think about. So, an immediate question can be addressed: “what
an on-line algorithm has to know in order to achieve a competitive ratio O(

√
n)? is it possible

to devise such an algorithm?” The following result tackles these questions.
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Theorem 3. Consider an instance (S, C) of minimum set-covering with |C| = n. Assume an ar-

rival sequence Σ = (σ1, . . . , σn) and suppose that once an element σi, i = 1, . . . , switches on, the

encoding for S̃i ∈ argmax{δj
i , j = 1, . . . , fi} is also revealed together with . Consider implementa-

tion of TAKE-LARGEST-ON-FUTURE-ITEMS that, if σi is not already covered in one of the previous

steps, it takes S̃i in the solution under construction. Denote by S∗ = {S∗
1 , . . . , S∗

k∗} an optimal

off-line solution on (S, C). Then, the competitive ratio of TAKE-LARGEST-ON-FUTURE-ITEMS is

bounded above by min{
√

2n/k∗,
√

n}. Furthermore, there exist large enough instances for which

this ratio is at least
√

n/2.

Proof. Fix an arrival sequence Σ = (σ1, . . . , σn) and denote by c1, . . . , ck, its critical elements,
i.e., the elements having entailed introduction of a set in S ′. In other words, critical elements
of Σ are all elements ci such that ci was not yet covered by the cover under construction upon
its arrival. Assume also that the final cover S ′ consists of k sets, namely, S1, . . . , Sk, where S1

has been introduced in S ′ due to c1, S2 due to c2, and so on.
Let δ(Si) be the increase of the number of covered elements just after having taken Si in

the greedy cover (recall that if Si has been added in S ′ for critical element ci = σj , δ(Si) =

max{δ1
j , . . . , δ

fj

j }). We have:

δ (S1) = |S1| (3)

δ (Si) =

∣

∣

∣

∣

∣

i
⋃

ℓ=1

Sℓ

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

i−1
⋃

ℓ=1

Sℓ

∣

∣

∣

∣

∣

, 2 6 i 6 k (4)

Fix now an optimal off-line solution S∗ of cardinality k∗. Any of the critical elements c1, . . . , ck

can be associated to the set of smallest index in S∗ containing it. For any S∗
i ∈ S, we denote

by Ŝ∗
i , the set of the critical elements associated with S∗

i (obviously, Ŝ∗
i ⊆ S∗

i ). The critical

content h(S∗
i ) of any S∗

i ∈ S∗ is defined as the number of critical elements associated to it as
described before, i.e., h(S∗

i ) = |Ŝ∗
i |.

Let S∗
1 , . . . , S∗

r be the sets in S∗ of positive critical contents h(S∗
1), . . . , h(S∗

r ), respectively.
Clearly,

r
∑

i=1

h (S∗
i ) = k (5)

r 6 k∗ (6)

For any S∗
i , let c1

i , . . . , c
h(S∗

i )
i be the elements of its critical content ordered according to their po-

sition in the arrival sequence Σ; in other words, following our assumptions, Ŝ∗
i = {c1

i , . . . , c
h(S∗

i )
i }

(recall that Ŝ∗
i ⊆ S∗

i ).
Suppose, without loss of generality, that, for ℓ = 1, . . . , h(S∗

i ), the set Sjℓ
∈ S has been

introduced in S ′ when the critical element cℓ
i has been activated. At the moment of the arrival

of c1
i , the set S∗

i is also a candidate set for S ′. The fact that Sj1 has been chosen instead of S∗
i

means that δ(Sj1) > δ(S∗
i ); hence, since as noticed just above, Ŝ∗

i ⊆ S∗
i , the following holds

immediately: δ(Sj1) > δ(S∗
i ) > |Ŝ∗

i | = h(S∗
i ).

When c2
i gets activated, the set S∗

i has lost some of its elements that have been covered by
some sets already chosen by the algorithm. In any case, it has lost c1

i (covered by Sj1). So, fol-
lowing the arguments developed just above for Sj1 , δ(Sj2) > h(S∗

i )−1, and so on (quantities δ(·)
are defined either by (3), or by (4)). So, dealing with cℓ

i , the following holds:

h (S∗
i ) − ℓ + 1 6 δ (Sjℓ

) (7)
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For example, consider the illustration of Figure 2. Let S∗ be a set of the fixed optimal cover S∗ and
denote by Ŝ the set of its critical elements, c1, c2 and c3 (ranged in the order they have been acti-
vated). Let S be the set chosen by TAKE-LARGEST-ON-FUTURE-ITEMS to cover c2. The shadowed
parts of S∗, Ŝ and S correspond to elements already covered by TAKE-LARGEST-ON-FUTURE-ITEMS

at the moment of arrival of c2. At this moment, S must contain at least as many uncovered
elements as S∗ does and a fortiori at least one uncovered element for any yet uncovered critical
element of S∗ (two uncovered elements for S appear below the dashed line for c3 and c4).

S

Ŝ

S∗

c1 c2
c3 c4

Figure 2: An example for (7).

Summing up inequalities (7), for ℓ = 1, . . . , h(S∗
i ), and setting

∑h(S∗

i )
ℓ=1 δ(Sjℓ

) = ni, we finally
get for Si:

h (S∗
i ) (h (S∗

i ) + 1)

2
6

h(S∗

i )
∑

ℓ=1

δ (Sjℓ
) = ni =⇒ h (S∗

i ) 6
√

2ni (8)

Set, for 1 6 i 6 r, ni = αin, for some αi ∈ [0, 1]. Then,
∑r

i=1 αi = 1 and

r
∑

i=1

√
αi 6

√
r (9)

Using (5), (6), (8) and (9), we get:

k =
r
∑

i=1

h (S∗
i ) 6

√
2n

r
∑

i=1

√
αi 6

√
r
√

2n 6
√

k∗
√

2n (10)

Dividing the first and the last members of (10) by k∗, we get:

k

k∗
6

√

2n

k∗
(11)

On the other hand, remark that, if k∗ = 1, i.e., if there exists S∗ ∈ S such that S∗ = {S∗},
then TAKE-LARGEST-ON-FUTURE-ITEMS would have chosen it from the beginning of its running
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in order to cover σ1; next, no additional set would have entered the S ′. Consequently, we can
assume that k∗ > 2 and, using (11),

k

k∗
6

√
n (12)

Combination of (11) and (12) concludes the competitive ratio claimed.
Fix an integer N and consider the following instance (S, C) of minimum set-covering:

C =

{

1, . . . ,
N(N + 1)

2

}

S1 = {1, . . . , N}
S2 = {N + 1, . . . , 2N − 1}

...

SN =

{

N(N + 1)

2

}

SN+1 =

{

(i − 1)N − i(i − 3)

2
: i = 1, . . . , N

}

SN+2 = C \ SN+1

Consider the arrival sequence (1, . . . , N(N + 1)/2). TAKE-LARGEST-ON-FUTURE-ITEMS might
compute the cover S ′ = {Si, 1 6 i 6 N}, while the optimal one is S∗ = {SN+1, SN+2}.
Hence, the competitive ratio in this case would be N/2, with N = (−1 +

√
1 + 8n)/2 which

is asymptotically equal to
√

n/2 as claimed.

1 2 3 4 5

6 7

11 12

13 14

15

8 9

10

Figure 3: The ratio
√

n/2 for TAKE-LARGEST-ON-FUTURE-ITEMS is asymptotically attained.

For example, consider Figure 3. If Σ starts with 1, 6, 10, 13, 15, TAKE-LARGEST-ON-FUTU-
RE-ITEMS may have chosen sets {1, 2, 3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12}, {13, 14}, {15}, respectively,
while the optimal cover would consist of sets {1, 6, 10, 13, 15} and {2, 3, 4, 5, 7, 8, 9, 11, 12, 14}.
The proof of the theorem is now complete.

Revisit (11), set ∆ = maxSi∈S{|Si|} and take into account the obvious inequality: k∗ > n/∆.
Then, the following result is immediately derived from Theorem 3.

Corollary 1. The competitive ratio of TAKE-LARGEST-ON-FUTURE-ITEMS is bounded above

by
√

2∆.
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It can be easily seen from the proof of Theorem 3 that it also works even if one assumes that
the arrival sequence does not contain all the elements of C but only a part of them. In this
case, the competitive ratio achieved is

√

2n/k∗ 6
√

2n, since the hypothesis on the size of k∗

(discussed at the end of the proof of Theorem 3) is no more valid. This is important for
TAKE-LARGEST-ON-FUTURE-ITEMS because it can be seen as an algorithm working also for the
on-line model in [1] with provably upper competitive bound.

Corollary 2. The competitive ratio of TAKE-LARGEST-ON-FUTURE-ITEMS when assumed that

only a subset of C will finally be revealed is bounded above by
√

2n.

The counter-example instance given in the proof of Theorem 3 can be slightly modified to fit the
case where, at each step, whenever a yet uncovered element arrives, the algorithm is allowed to
take in the cover a constant number of sets containing it and such that the number of elements
yet switched off that belong to these sets is maximized.

Let F̄
[ρ]
i = argmax{|S̄j1

i ∪S̄j2
i ∪. . .∪S̄

jρ

i | : Sj1
i , Sj2

i , . . . , S
jρ

i ∈ Fi}, assume that together with Fi

also arrives some encoding for F̄
[ρ]
i and consider the modification of TAKE-LARGEST-ON-FUTU-

RE-ITEMS where, instead of S̃i, the members of F̄
[ρ]
i enter the solution under construction. Then,

the following holds.

Proposition 3. The competitive ratio of modified TAKE-LARGEST-ON-FUTURE-ITEMS is bounded

below by
√

ρn/2.

Proof. For some ρ > 1 and for some integer N , consider the following instance:

S =
{

X, Y, Sj
i : 1 6 i 6 N, 1 6 j 6 ρ

}

C =
N
⋃

i=1

ρ
⋃

j=1

Sj
i

(

|C| = ρ
N(N − 1)

2
+ N = n

)

X = {x1, . . . , xN}
∣

∣

∣
Sj

i

∣

∣

∣
= N − i + 1 for i = 1, . . . , N

Sj
i

⋂

Sk
l = ∅, if i 6= l

Sj
i

⋂

Sk
i = {xi} , if j 6= k

Y = C \ X

Consider the arrival sequence where x1, . . . , xN are firstly revealed. TAKE-LARGEST-ON-FUTU-

RE-ITEMS might take in the cover all the Sj
i ’s, while the optimal cover is {X, Y }. In this case,

the competitive ratio is ρN/2, with:

N =
ρ − 2

2ρ
+

√

(

ρ − 2

2ρ

)2

+ 2
n

ρ

i.e., the value of the ratio is asymptotically
√

ρn/2.
For example, set ρ = 2 and N = 5 and consider the instance of Figure 4. For Σ starting

with x1, x2, x3, x4, x5, the algorithm may insert to the cover the sets depicted as “rows”, while
the optimal cover would consist of the “column”-set {x1, x2, x3, x4, x5} together with the “big”
set containing the rest of the elements (drawn striped in Figure 4).

Finally, let us note that one cannot do better if a rule concerning the already covered elements
is added; the arrival sequence can be set in such a way that always arrive elements not yet covered,
until the greedy online cover reaches all elements.
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Figure 4: A counter-example for the case where the algorithm is allowed to take a constant
number of sets containing a recently arrived element.

In the weighted version of set-covering, any set S of S is assigned with a non-negative
weight w(S), and a cover S ′ of the least possible total weight W =

∑

S∈S′ w(S) has to be
computed. A natural modification of TAKE-LARGEST-ON-FUTURE-ITEMS in order to deal with
weighted set-covering is to put in the cover, whenever a still uncovered element arrives, a set Si

containing it that minimizes the quantity w(Si)/δ(Si). Unfortunately, this modification cannot
perform satisfactorily. Consider, for example, an instance of weighted set-covering consisting of
a ground set C = {x1, . . . , xn}, and three sets, S = C with w(S) = n, X = {x1} with w(X) = 1
and Y = C \ {x1} with w(Y ) = 0. If x1 arrives first, the algorithm could have chosen S to
cover it, yielding a cover for the overall instance of total weight n, while the optimal cover would
be {X, Y } of total weight 1.

7 The maximum budget saving problem

In this section, we study a kind of dual version of the minimum set-covering, the maximum
budget saving problem. Here, we are allotted an initial budget B(S, C) destined to cover the
cost of an algorithm that solves minimum set-covering on (S, C). Any such algorithm has its
own cost that is a function of the size of the solution produced, of the time overheads it takes in
order to compute it, etc. Our objective is to maximize our savings, i.e., the difference between
the initial budget and the cost of the algorithm. For simplicity, we assume that the maximum
saving ever possible to be performed is B(S, C) − k∗, where, as previously, k∗ is the size of an
optimum set-cover of (S, C).

We consider here that the set-covering instance arrives on-line. If a purely on-line algorithm is
used to solve it, then its cost equals the size of the solution computed; otherwise, if the algorithm
allows itself to wait in order to solve the instance (partly or totally) off-line then, its cost is the
sum of the size of the solution computed plus a fine that is equal to some root, of order strictly
smaller than 1, of the solution that would be computed by a purely on-line algorithm. We
suppose that the budget allotted is equal to k∗√n, where n = |C|. This assumption on B(S, C)
is quite natural. It corresponds to a kind of feasible cost for an algorithm; we assume that this
algorithm is TAKE-LARGEST-ON-FUTURE-ITEMS, the best among the ones seen in the paper.

The interpretation of this model is the following. We are allotted a budget corresponding to
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the cost of an algorithm always solving set-covering. In this way, we are sure that we can always
construct a feasible solution for it. Furthermore, by the second part of Theorem 3, it is very risky
to be allotted less than k∗√n since there exist instances where the bound

√
n is attained. On the

other hand, we can have at our disposal a bunch of on-line or off-line set-covering algorithms, any
one having its proper cost as described just above, from which we have to choose the one whose
use will allow us to perform the maximum possible economy with respect to our initial budget.
The fact that the measure of the optimum solution for maximum budget saving is B(S, C)− k∗,
has also a natural interpretation: we can assume that there exist an arrival sequence Σ for C such
that, for any σi ∈ Σ, an oracle can always choose to cover σi with the same set with which σi

is covered in an optimum off-line solution for instance (S, C). Under this assumption for the
measure of the optimum budget saving solution, this problem is clearly NP-hard since it implies
computation of an optimum solution for minimum set-covering. Finally, denoting by cA(S, C)
the cost of algorithm A when solving minimum set-covering on (S, C), the approximation ratio
of maximum set saving is equal to:

B(S, C) − cA(S, C)

B(S, C) − k∗
(13)

Obviously this ratio is smaller than 1 and, furthermore, the closer the ratio to 1, the better the
algorithm achieving it.

Theorem 4. Under the model adopted, GREEDY is asymptotically optimum for maximum budget

saving.

Proof. Consider an instance (S, C) of minimum set-covering and denote by kF and kL, the
sizes of the solutions computed by algorithms GREEDY and TAKE-LARGEST-ON-FUTURE-ITEMS,
respectively. By what has been assumed just above, denoting by cF the cost of using GREEDY,
there exist some ǫ > 0 such that:

cF(S, C)) = kF + k1−ǫ
L

(14)

Moreover, the following inequalities hold, the first one from [10] and the second one from Theo-
rem 3:

kF 6 k∗ log n (15)

kL 6 k∗√n (16)

Using (14), (15) and (16), we get the following inequality for cF(S, C)):

cF(S, C)) 6 k∗1−ǫn
1−ǫ
2 + k∗ log n 6

(

n
1−ǫ
2 + log n

)

k∗ (17)

On the other hand, as assumed above:

B(S, C) = k∗√n (18)

Using (13), (17) and (18), we obtain:

B(S, C) − cF(S, C)

B(S, C) − k∗
>

k∗√n −
(

n
1−ǫ
2 + log n

)

k∗

k∗
√

n − k∗
=

√
n −

(

n
1−ǫ
2 + log n

)

√
n − 1

(19)

It is easy to see that, for n large enough, the last term of (19) tends to 1, and the statement
claimed by the theorem is true.
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Remark also that if we are allotted with a budget equal to k∗ log n log m (i.e., the cost of the
on-line algorithm of [1]) and we assume that the fine paid by algorithm GREEDY is also computed
with respect to the algorithm of [1]), then a similar analysis as in the proof of Theorem 4 leads
to the same result, i.e., that GREEDY remains asymptotically optimum.

Also, if the budget allotted is k∗√n and one calls the on-line algorithm of [1], this latter
algorithm is asymptotically optimum for maximum budget saving.

8 Discussion

We have introduced several simple on-line models for set-covering and analyzed greedy rules for
them. Many of these rules are strongly competitive since no on-line algorithm for the models
that they treat can achieve better ratios than they do. One of the features of the models studied
here is that they are very economic and thus suitable to solve very large instances. Indeed, their
memory requirements are extremely reduced since the only information needed are the names
of m sets. Note that this is not the case for the intensive computations implied by the very
interesting model of [1].

Next, we have introduced and studied the maximum budget saving problem. Here, we have
relaxed irrevocability in the solution construction by allowing the algorithm to delay its decisions
modulo some fine to be paid. For such a model we have shown that the natural greedy off-line
algorithm is asymptotically optimum.

A subject for further research is the extension of our models to deal with minimum-weight
set-covering. For this version work is in progress.

Finally, let us note that the on-line models described in the paper can be extended to apply
to a different but related problem, the minimum dominating set. Consistently with the model
that we have adopted for the set-covering problem, our model for this latter problem is as follows.
Given a graph G(V, E) with |V | = n, assume that its vertices switch on one-by-one. Any time a
vertex σi switches on, the names of its neighbors are announced.

Consider the following classical reduction from minimum dominating set to set-covering:

• S = C = V ;

• the set Si ∈ S, corresponding to the vertex vi ∈ V , contains elements ci1 , ci2 , . . ., of C
corresponding to the neighbors vi1 , vi2 , . . ., of vi in G.

The set-covering instance (S, C) so constructed, has |S| = |C| = n. Furthermore, it is easy to
see that any set cover of size k in (S, C) corresponds to a dominating set of the same size in G
and vice-versa. Remark also that the dominating set model just assumed on G is exactly, with
respect to (S, C), the set-covering model dealt in the paper.
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