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Filter implementation technique for multicriteria

characterization of coding domains in the joint

transform correlator

Laurent Bigué and Pierre Ambs

An improved method for implementing correlation filters in the joint transform correlator architecture is
proposed. We derived the method from computer-generated holography techniques. It allows us to use
any correlation filters, especially ones that provide an optimal trade-off between noise robustness, peak
sharpness, and optical efficiency, with any spatial light modulator ~SLM!. This method also allows for
an objective comparison of the performance of the coding domains of various SLM’s. © 1999 Optical
Society of America

OCIS codes: 070.5010, 070.4550, 230.6120.

1. Introduction

Since the inception of optical correlation under coher-
ent illumination,1–3 many correlation filters have
been proposed4–6 ~see Ref. 7 for a review!. Yet some
problems remain: These filters are to be imple-
mented into optical architectures, and they are dis-
played by means of spatial light modulators ~SLM’s!.
These SLM’s can encode only a limited number of
values called the coding domain, and in most cases
the filter values do not fit the coding domain. The
question of implementing correlation filters onto
SLM’s in the 4f architecture has already been
considered,8–10 and optimal solutions have been pro-
posed. In the joint transform correlator ~JTC! archi-
tecture the question is still open, because in the case
of highly restricted coding domains ~e.g., binary or
ternary! the adaptation of the previous technique
seldom succeeds. Nevertheless, such adaptation
proves of interest: It gives a general framework that
allows a user an objective comparison of different
filters and of various coding domains.

Laude and Réfrégier10 also answered a very impor-
tant question: Which coding domain ~which SLM!

performs best? Such a question is important when
it comes to choosing a SLM for a particular applica-
tion. This important question is still unanswered in
the case of the JTC.

The filter performance can be evaluated through
the estimation of several metrics: The sharpness of
the correlation peak, noise robustness, and optical
efficiency are usually considered; Juday9 proposed
another criterion for evaluating peak sharpness, and
Vijaya Kumar et al.11 also suggested the response
uniformity in the case of a composite distortion-
tolerant filter ~this list is not exhaustive!. Usually
comparing coding domains amounts to comparing
particular filters with different regions of support.
The results provided by this technique rely too much
on the type of filter considered and should be avoided.
A better idea, rather, is to synthesize optimal trade-
off ~OT! filters ~considering N criteria; these filters,
given N 2 1 criteria, will optimize the last criterion!.
Synthesizing a complete set of OT filters gives a
range of filters with quite different properties. The
implementations of all the filters into the set on the
various coding domains can be compared and will
give a comparison of the various coding domains over
a large number of different filters.

Our purpose in this paper is to propose a technique
that allows for as good a filter implementation as
possible into the JTC ~the implementation of the
scene is not within the scope of this paper, but it can
be considered with much interest as discussed below!.
In Section 2 we review the state of the art concerning
OT filters. In Section 3 we describe the method we
suggest for the implementation onto limited coding
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domains. Section 4 gives examples of such imple-
mentations. In Section 5 we apply this technique to
the comparison of coding domains provided by vari-
ous SLM’s. Finally, Section 6 consists of a discus-
sion about coding the scene.

2. Optimal Trade-Off Filters: Review

In the following—for clarity—images will be repre-
sented as one-dimensional vectors obtained by a lex-
icographical reading.

Let us mention the basic principle of OT filters.6

We consider correlation filters h ~or ĥ in the Fourier
space! that correspond to a reference image r. For
historical reasons one of the most popular filters is
the matched filter expressed as

~ĥM!k 5
r̂*k

Ŝk

, (1)

where Ŝ denotes the power spectral density of the
noise the filter is matched to and * is the complex
conjugate. It is shown that this filter minimizes the
mean-squared error expressed as

MSE 5 (
k

Ŝkuĥku
2. (2)

Many other filters have been proposed. We notice
among them the inverse filter that optimizes peak
sharpness. We will characterize peak sharpness
through the computation of the correlation plane en-
ergy ~CPE! that must be all the lower, since the peak
is sharp. CPE can be expressed as

CPE 5 (
k

D̂kuĥku
2, (3)

where D̂ is the power spectral density of the reference
image ~D̂k 5 ur̂ku2!r. Then the inverse filter is ex-
pressed as follows:

~ĥI!k 5
r̂*k

D̂k

5
r̂*k

ur̂ku
2 . (4)

Another important criterion is the filter optical ef-
ficiency h:

h 5 uĥ1
z r̂u2 5 U(

k

ĥ*kr̂kU2

, (5)

where 1 denotes the complex-conjugate transposition
operator and the raised dot denotes the scalar prod-
uct between two vectors.

This criterion is optimized by the phase-only fil-
ter12:

~ĥPO!k 5
r̂*k

ur̂ku
. (6)

The filters presented above prove quite efficient as
far as the criterion they optimized is concerned.
Conversely, they exhibit little performance for other
criteria.13 In such cases it can be interesting to syn-
thesize a filter whose behavior is intermediate. A

simple linear combination of the three above-
mentioned filters could be convenient, but Réfrégier14

proposes instead a filter called the OT filter that,
given two criteria, optimizes the latter one. It can be
shown that this filter minimizes the linear combina-
tion of criteria E~ĥ!:

E~ĥ! 5 aMSE 1 bCPE 2 2gh, (7)

where ~a, b, 2g! are the coordinates of a unity vector
u of the first quadrant. This filter is expressed as

~ĥOT!k 5 g
r̂*k

B̂k

, (8)

where

B̂u 5 aŜ 1 bD̂. (9)

In some cases the use of modified criteria, such as
signal-to-noise ratio ~SNR! or peak-to-background
correlation energy ~PBCE!, is preferable. They can
be expressed as

SNR~h! 5
h~h!

MSE~h!
5

U(
k

ĥ*kr̂kU2

(
k

Ŝkuĥku
2

, (10)

PBCE~h! 5
h~h!

CPE~h!
5

U(
k

ĥ*kr̂kU2

(
k

D̂kuĥku
2

. (11)

Drawing the locus of points ~SNR, PBCE, h! when
u describes the first quadrant gives a hypersurface of
the criteria space. In the case in which three crite-
ria are considered, the locus is a three-dimensional
surface called the optimal characteristics surface
~OCS!. Since for N 2 1 given criteria it maximizes
the Nth criterion, this surface is convex. In the
present case, in which no constraint is applied to the
filter ~any point of the filter can take any complex
value!, there is no point in tracing the whole OCS,
since SNR and PBCE are independent of h. The
only interesting figures are then the two-dimensional
~2D! cross section ~SNR, PBCE! of the OCS.

3. Implementation of Optimal Trade-Off Filters onto

Limited Coding Domains

The implementation of correlation filters is per-
formed with SLM’s, characterized by a coding domain
~i.e., the complex values it can produce!. Some ex-
amples of coding domains are given Fig. 1, and a
review of existing modulation techniques can be
found in Ref. 15.

Actually, implementing correlation filters onto
modulators with limited capabilities is an old prob-
lem that has already led to a large number of publi-
cations. Two methods can be considered: Either
the filter can be directly calculated in its final form
~binary or ternary, for example!,16–18 or an ideal
continuous-valued filter is first computed and then
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constrained onto the coding domain of the modula-
tor.9,10 We will use the latter, which is probably
more complicated but nevertheless more versatile:
Some direct methods are often dedicated to given
coding domains and cannot be extended to other do-
mains in a simple way. Other considerations then
show that our chosen method produces filters that are
at least as good as those produced with the first tech-
nique ~by construction, an OT filter that is optimally
implemented is the best possible implementation ac-
cording to a given number of criteria!.

As stated above, correlation filters and especially
OT filters such as those mentioned above, present a
large range of values, real or complex, that most
SLM’s cannot reproduce. In that case the best solu-
tion10 is to make the filter fit the SLM coding domain:
The filter must be processed to have only a restricted
number of different values.

Let us consider the same three criteria as in Sec-
tion 2. We denote the unconstrained OT filter re-
lated to the compromise vector u~a, b, 2g! ĥu

0, and its
optimal implementation onto the coding domain ĥ.
It can be shown10 that ĥ minimizes the modified en-
ergy function:

Ew~ĥ! 5 (
k

~B̂u!kuĥk 2 ~ĥu
0!k exp~iw!u2, (12)

where w [ @0; 2p# is an angular parameter to be
optimized. This solution can be seen as a simplified
version of the minimum Euclidean distance principle
proposed by Juday,9 except that in this particular
case the only parameter to be optimized is the
dephasing angle w ~the optimization of the gain pa-
rameter suggested by Juday is discussed in Section
4!.

A. Implementation into the 4f Correlator

The implementation of OT filters into such a corre-
lator has already been considered.10 In the case in
which there are three criteria ~SNR, PBCE, and h! it
is shown that the OT filter’s ĥu

0 optimal implemen-
tation ĥ minimizes the energy function:

Ew~ĥ! 5 (
k

uĥk 2 ~ĥu
0!k exp~iw!u2. (13)

Though this optimization is performed through an
iterative search, the required amount of computation
remains low and ĥ can be easily computed: The
implementation ĥ is no more than the Euclidean pro-
jection of ĥu

0 ~dephased by w! onto the considered
coding domain. Recently, Vijaya Kumar et al.19 pro-
posed a simple method to compute this optimal angle.

B. Implementation into the Joint Transform Correlator

In the case of an implementation into the JTC the
problem proves more complicated, because we dis-
play h and not ĥ. The energy function E~ĥ! must
then be expressed in the direct domain. Through
Parseval’s theorem we obtain the following from Eq.
~12!:

Ew~h! 5 Bu
1

z $@h 2 hu
0 exp~2iw!#*

p @h 2 hu
0 exp~2iw!#%

5 (
k

(
k9

~Bu!k z @hk 2 ~hu
0!k exp~2iw!#

z @hk2k9 2 ~hu
0!k2k9 exp~2iw!#*, (14)

where p denotes the convolution operator. No ana-
lytical solution clearly appears, except when Bu is a
Dirac pulse, that is, when B̂u is uniform ~similar to a
white-noise power spectral density!. In this trivial
case Eq. ~14! can be simplified as

Ew~h! 5 @h 2 hu
0 exp~2iw!#* z @h 2 hu

0 exp~2iw!#

5 (
k

uĥk 2 ~ĥu
0!k exp~iw!u2

5 (
k

uhk 2 ~hu
0!k exp~iw!u2, (15)

and the solution similar to that used in the 4f corre-
lator is valid.

Nevertheless, in the most general case, the two
summations are time consuming and will not allow
for the iterative search of h from this expression.
But we notice that our purpose is similar to that of
computer-generated holography ~CGH!: to produce
a given distribution in the direct domain with a dis-
tribution in the Fourier space that has a limited num-
ber of possible values. We will therefore manage to
apply CGH techniques to our case.

1. Computer-Generated Holography Techniques

Since the inception of CGH in the late 1960’s, numer-
ous methods have been proposed. In general, the
more accurate they are, the slower they are. We will
detail only two of them, known to be the most effi-
cient.

Generalized projection onto convex sets. This kind
of method, not originally dedicated to holography,
consists of performing successive direct and inverse
Fourier transforms, each time preceded by constraint
imposition: In the space domain a quantization is
performed, and in the Fourier domain a windowing or
an error reduction is achieved. From a historic
viewpoint, Burch’s technique20 and the iterative Fou-
rier transform algorithm ~IFTA!21 are the first ex-

Fig. 1. Examples of coding domains: ~a! unity disk, ~b! real axis
~@21;1#!, ~c! amplitude only ~@0;1#!, ~d! phase only, ~e! binary, ~f !

ternary, ~g! spiral.
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plicit implementations from the projection onto
convex sets ~POCS! family in the CGH domain. The
IFTA was derived from the Gerchberg–Saxton algo-
rithm,22 originally designed for the recovery of phase
figures when only intensity figures are known in both
direct and Fourier planes. In fact, all these algo-
rithms are part of generalized POCS,23 whose first
explicit theoretical formulation for CGH is found in
Ref. 24. The POCS framework25 provides an effi-
cient tool for CGH methods design, thanks to the
variety of constraints it can take into account, includ-
ing the progressive quantization in the hologram
plane21 and the progressive quantization of pixels
chosen randomly.26

Direct binary search. The direct binary search
~DBS!27 amounts to performing a Monte Carlo tech-
nique. A random binary hologram is generated, and
the error between the reconstruction produced by the
hologram and the desired distribution is computed.
Then, one after the other, each pixel is inverted, and
for each inversion the error is computed again. The
inversion is maintained if the error has decreased.
This cycle is stopped when the error stops decreasing.
This method is known to be quite powerful but also
time consuming. It can be improved with the addi-
tion of simulated annealing, but the computation
time becomes excessive. This method is attractive
in the case in which the coding domains are limited in
extent ~e.g., binary! but should be avoided when the
number of possible levels increases.

Hybrid technique. The comparison between DBS
and IFTAyPOCS is difficult, because there are many
variants of each. Nevertheless, as reported by sev-
eral authors, DBS generally proves more efficient
than POCS, but it consumes far more computer
time.28–30 The advantages of the two methods can
be achieved when the two are combined.30 A few
IFTAyPOCS-like iterations are first performed, pro-
viding a preliminary hologram.

The hologram produced by IFTAyPOCS is then
used in DBS iterations instead of the initial random
distribution. This implementation proves efficient
~almost as efficient as DBS!, although it remains far
less computer intensive than the classic DBS tech-
nique ~the required number of DBS iterations is re-
duced!. Of course, such a combination is to be
considered only in the case in which DBS can be
applied and is not used in the case of continuous or
many-leveled domains.

2. Applications of Computer-Generated Hologram
Techniques to Correlation Filter Implementation

The previously described techniques require a few
modifications before they can be used for correlation
filter implementation. In that case the desired fil-
ter, expressed in the Fourier plane, corresponds to
the reconstructed image in the CGH case and the
filter implementation ~in the direct domain! to the
hologram. The error is replaced with the modified
energy function of Eq. ~12!. Applying CGH tech-
niques to correlation filter implementation has al-
ready been considered elsewhere, but the CGH

techniques used, often noniterative detour-phase
methods31,32 similar to Lee’s technique,33 show poorer
results than do the methods presented above that
take account of the minimum Euclidean distance
principle.9 Below, a hybrid technique that combines
IFTAyPOCS and DBS is used.

Our POCS-like technique consists of a gradient
projection algorithm, in which the classic projection is
replaced with a progressive projection, as suggested
by Wyrowski.21 Thus we call this algorithm
gradient-progressive projection ~GPP!. It is exten-
sively described in Appendixes A and B. Because of
the addition of DBS iterations to GPP iterations
when the extent of the coding domain remains lim-
ited ~i.e., when the coding levels are discrete!, in the
following such a technique may be denoted GPP 1
DBS ~this version of the algorithm is described in
Appendix C!.

4. Examples of Implementations

We computed a set of filters, which describe a large
range of trade-offs ~a, b, 2g!, from the reference image
depicted Fig. 2 and drew their OCS. Here drawing
such a surface does not prove useful; 2D cross sec-
tions of these OCS’s are more interesting. Each of
them is a monotonic curve that is all the more opti-
mal, since it will be close to the top right-hand corner
of the figure ~the point whose coordinates are the
respective maxima of the two considered criteria!.
The criteria have been normalized to their maximum
values, obtained with either the matched filter
~SNR!, the inverse filter ~PBCE!, or the phase filter
~h!. As explained above, when no constraint is ap-
plied to the filters, the only interesting curve is the
2D cross section ~SNR, PBCE! ~Fig. 3!.

For our simulations we chose a white-noise model
~whereas our algorithm is not dedicated to a partic-
ular noise model!. The two reasons for this choice
are ~i! literature about the 4f correlator presents re-
sults that consider white noise ~how to compare 4fy
JTC if we consider two different noise models! and ~ii!
choosing a white-noise model minimizes noise mis-
matching ~mismatching occurs when the noise model
that was taken into account during the filter synthe-
sis does not correspond to the model of the noise that
affects the scene!.

We compared the method we advocate with the
traditional noniterative projection in the case of a
binary coding domain that constitutes the most strin-

Fig. 2. Reference image used for synthesizing OT filters.
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gent case. Figure 4 depicts the compromise between
peak sharpness and efficiency. Clearly, the classic
Euclidean projection behaves worse than our method
GPP 1 DBS that provides a better compromise. In
that particular case of a binary domain, GPP used
alone does not work correctly @the locus ~PBCE, h! is
reduced to a single point# and does not allow a user to
tune the compromise between peak sharpness and
optical efficiency: Whatever the filter considered in
the beginning, it converges to the same binary distri-
bution.

As far as the compromise between noise resistance
and efficiency is concerned ~Fig. 5!, we can notice
that, in the best case, the classic projection shows the
same performance as GPP 1 DBS. This is not sur-
prising, since in this case ~we chose a white-noise
model! Eq. ~14! reduces to Eq. ~15! and a classical
Euclidean projection is the simplest and the best so-
lution. Once again, GPP used alone does not allow a
user to tune the compromise between the considered
criteria.

The most interesting curve may be the one that
describes the trade-off between noise resistance and
peak sharpness ~Fig. 6!. As expected, the classic Eu-
clidean projection does not provide a genuine portion
of OCS, since the curve is not monotonic. The com-
promise provided by GPP is better, because the curve
looks like a real OCS part, and it is closer to the ideal

case. But as in the previous cases, using GPP 1
DBS proves to be the best solution. In the following,
its use, when possible, is preferred.

One may object that sometimes GPP 1 DBS proves
complicated and does not provide better performance
than do simpler methods. Our response is that this
technique can be used whatever the considered tun-
ing of the compromise between the various criteria
and that no other technique can perform better.

Let us compare our technique with Juday’s sugges-
tions9: It finally amounts to performing an iterative
search over the angular parameter w ~when needed,
in the case of the spiral coding domain!. As far as
the gain parameter g is concerned, it is either fixed
directly ~when we study the trade-off between PBCE
and h or between SNR and h!, because in this case the
optimization concerns a criterion other than h, or it is
iteratively optimized when we study the trade-off be-
tween SNR and PBCE.

5. Comparison of Coding Domains

We implemented the previous set of filters onto lim-
ited coding domains and drew the locus of points
~SNR, PBCE, h!. Here the rigorous denomination
OCS should not be used, because the surfaces do not

Fig. 3. Locus of points ~SNR, PBCE!. The filters are not con-
strained to a particular coding domain.

Fig. 4. Locus of points ~PBCE, h! for a 5 0 in the case in which the
filter is constrained onto a binary domain. Various methods were
investigated.

Fig. 5. Locus of points ~SNR, h! for b 5 0 in the case in which the
filter is constrained onto a binary domain. Various methods were
investigated.

Fig. 6. Locus of points ~SNR, PBCE! in the case in which the filter
is constrained onto a binary domain ~g has been optimized!. Var-
ious methods were investigated.
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a priori show the same monotony as does genuine
OCS. Once again, 2D cross sections will be studied.

Figure 7 depicts the compromise between peak
sharpness and efficiency. This trade-off is disap-
pointing: In this particular case ~a 5 0!, it amounts
to implementing inverse filters that are known to be
unstable and hard to implement in 4f architecture
~regularization, i.e., limitation of the filter dynamic
range, is often required!. In the JTC architecture
their implementation is also difficult. Our tech-
nique allows for the tuning of the trade-off, but opti-
cal efficiency remains low for continuous domains.
We notice paradoxically that the binary and the ter-
nary domains perform better than do continuous do-
mains, but they are more extended: This can be
explained simply, because of the numerical technique
used for the implementation, which finely optimizes
the convergence in the case in which the coding do-
main is restricted.

Figure 8 reports the study of the trade-off between
noise resistance and optical efficiency ~b 5 0!. The
loci of the trade-off indicate that there is not much
room to maneuver: A mere ternary coding allows a
user to reach the most interesting part of the curve
and to almost equal the performance of the continu-
ous coding. This is not surprising, since the filters
we implemented ~b 5 0! are matched filters and in

our particular case are matched to white noise, as
discussed in Section 4. Their aspect is therefore
similar to that of the reference, and their gray-level
histogram, instead of being quite continuous as in the
general case of OT filters, involves a reduced number
of rays ~in this case five, two of which are much higher
than the others!. Then implementing these filters
onto a limited coding domain ~even with three levels!
proves to be close to optimum.

Figure 9 reports the most interesting study, which
concerns the trade-off between noise resistance and
peak sharpness. In this case, a value is chosen for a,
and the value of b is the one that optimizes the com-
promise. This involves optimizing the gain param-
eter as suggested by Vijaya Kumar et al.8; it is also an
iterative search. Results for domain @0;1# are not
explicitly given, since it is equivalent to using domain
@0;1# or @21;1#, except that the efficiency is not the
same. The filter implemented onto @0;1# is simply
derived from the one implemented onto @21;1# by a
simple affine relation as

~h@0;1#!k 5 0.5 z @~h@21;1#!k 1 1#. (16)

It can be easily verified that the two considered
criteria, SNR and PBCE, are not modified, since

~ĥ@0;1#!k 5 0.5 z ~ĥ@21;1#!k, @k Þ 0, (17)

provided that we impose ~ĥ@0;1#!0 5 ~ĥ@21;1#!0 ~corre-
sponding to a zero-order filtering!.

The binary coding performs quite well, especially if
we compare its behavior with that of the 4f correla-
tor.10 Ternary coding, of course, performs better.
But the most dramatic behavior is that of spiral cod-
ing. The latter shows excellent performance ~it was
already interesting in the 4f architecture!, close to
that of pure-amplitude coding. We better under-
stand this phenomenon when we observe the evolu-
tion of the projection angle w ~Fig. 10!. w evolves
according to the filter histogram so that it compen-
sates for the gain variation when the gain parameter

Fig. 7. Implementation of OT filters onto various coding domains.
The curves describe the compromise between peak sharpness and
optical efficiency.

Fig. 8. Implementation of OT filters onto various coding domains.
The curves describe the compromise between noise resistance and
optical efficiency.

Fig. 9. Implementation of OT filters onto various coding domains.
The curves describe the compromise between noise resistance and
peak sharpness. As explained in Section 5, the results for @0;1#

are not explicitly given.
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g varies ~without modification of the spectral density
shape B̂u!.

The implementation onto a 360° spiral is undoubt-
edly attractive. In future studies it will be interest-
ing to investigate the implementation onto spirals
with a different maximum dephasing or onto spirals
whose characteristics have been experimentally de-
termined.

6. Discussion

In the present paper we have given elements to an-
swer the question, Which coding should be used to
best code an OT filter in a JTC? Another important
question would be, Which coding should be used to
best code the scene in a JTC? Here we discuss the
fact that this latter point, which cannot be alleviated,
is not within the scope of the present paper. We can,
however, notice that such a discussion has been tack-
led in the case of the 4f correlator.34 In the present
study the scene is assumed to be noncoded ~displayed
as is, which is, of course, not possible at the moment
with currently available SLM’s!.

Our purpose was to provide an algorithmic tool for
computing efficient implementations of OT filters and
to exhibit the interesting potential properties of the
typical coding provided by twisted nematic liquid-
crystal devices ~the spiral coding!.

The question of coding the scene, although quite
similar to that of coding the filter from the technical
point of view, proves to be different. In any case the
coding of the scene and of the filter can be considered
separately, since two different modulators can be
used. The filter and the scene do not usually have
the same requirements. The filter exhibits fine de-
tails and can be displayed at a low rate @provided a
large bank of filters is not used; in that case a mul-
tichannel correlator can be considered, or several
classical filters can be put together into a composite

filter such as a synthetic discriminant function fil-
ter7#. The scene can exhibit many details ~but most
of them may be noise and so may be undesirable! and
must usually be displayed at a high rate ~in applica-
tions such as tracking, for example!. In this case a
twisted nematic liquid crystal, whose typical operat-
ing rate is below 100 Hz35 ~and for most devices even
below 25 Hz! cannot be used, and the only possible
coding domains that can be achieved are the binary or
bipolar ones, or a cascade of such devices,36 resulting
in multiple levels of amplitude andyor phase. In
such a case it can prove interesting to dissociate the
display of the filter and of the image.

These few elements form only the starting point of
an interesting problem: The question of coding the
input image deserves further study, which will have
to be considered elsewhere.

7. Conclusion

The implementation of correlation filters onto coding
domains of limited extent is imposed by technology:
At the moment no existing spatial light modulator
~SLM! is capable of coding any complex value within
the unity disk. In the case of the joint transform
correlator ~JTC! we propose a method that allows a
user to code any optimal trade-off ~OT! filter ~any
filter, actually! onto any coding domain in a satisfac-
tory and sometimes optimal way. The method con-
sists of using computer-generated holography ~CGH!
techniques. Even in the case of restricted coding
domains with which classic methods scarcely con-
verge toward a satisfactory solution, our technique, a
combination of POCS-like and DBS-like techniques,
gives satisfactory results.

This implementation technique also allows us to
compare various coding domains: A bank of OT fil-
ters is coded onto these domains, and the loci of points
described by the values of the criteria for each filter
are compared. Analyzing the trade-off between
peak sharpness and optical efficiency can seem am-
biguous. But the trade-off between noise resistance
and optical efficiency, and especially the one between
noise resistance and peak sharpness, leads to the
conclusion that there is a strict hierarchy, related to
the extent of the domain. Binary and ternary cod-
ings perform quite well ~in fact, far better than in the
4f correlator!, partly because of an optimization
method dedicated to discrete coding domains. The
spiral coding domain, in case of a 360° phase dynamic
range, shows high performance, sometimes close to
the one of the filter constrained to @21;1# and seems
quite promising. In any case, as pointed out by de
Bougrenet de la Tocnaye and Dupont,15 we may ex-
pect complex amplitude or pure amplitude SLM’s
that would remove the need for a genuine coding
~only saturation would have to be taken into account!.
But even in this case it would be interesting to study
which SLM’s perform better, considering that one
SLM is used for the reference and another for the
scene and that they do not necessarily have to exhibit
the same characteristics.

Fig. 10. Complex histograms of OT filters implemented onto a
spiral coding domain. The original filter ~a! is supported by the
real axis ~thick line!. When one implements a filter onto a spiral,
the angle w evolves in the function of the gain parameter g @in ~c!

g is 40% smaller than in ~a!; the histogram is therefore more
compact# to make the projection onto the histogram minimize the
Euclidean distance between the original filter and its projection
onto the spiral. In ~b! the implementation is performed with w 5

0; in ~d!, the filter has to be dephased by 100° before projection to
make the projection onto the spiral ~e! minimize the Euclidean
distance.
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Appendix A: GPP, Projection onto a Continuous

Domain ~Real Only or Phase Only! without Dephasing

Optimization

It can be shown with simple considerations that the
ideal filter hu

0 is real only and that its optimal
implementation onto a real-only coding domain
therefore requires no dephasing, unlike its imple-
mentation onto a spiral coding domain @such as
described in Fig. 1~g!#. An algorithm for this latter
case is developed in Appendix B. It also seems
more obvious that the implementation onto a per-
fect phase-only coding domain @Fig. 1~d!# requires
no additional dephasing, because of the circular
symmetry of the domain.

1. Let k 5 0, hk 5 hu
0, Ek 5 1`. Choose a

tolerance coefficient Tol for the error reduction and
speed0 for the speed of the error reduction. Let
speed 5 speed0.

2. Project hk onto the coding domain:

hp
k

5 3~hk!.

3. Compute the Fourier transform ĥp
k of hp

k.
4. Perform a gradient error reduction:

• Compute error: Ek11 5 ¥n ~B̂u!nu~ĥu
0!n 2

~ĥp
k!nu2.

• If Ek11 2 Ek , Tol Ek11, go to step 7; else
if Ek11 , Ek, perform a gradient reduction:

ĥOK
5 ĥp

k,

~ĥk11!n 5 ~ĥOK!n 1 @~ĥu
0!n

2 ~ĥOK!n# speed ~B̂u!n;

else let speed :5 speedy2 and perform a
gradient reduction:

~ĥk11!n 5 ~ĥOK!n 1 @~ĥu
0!n 2 ~ĥOK!n#

3 speed ~B̂u!n.

5. Compute the inverse Fourier transform hk11 of
ĥk11.

6. Perform k :5 k 1 1 and go back to step 2.
7. h 5 hp

k.

It must be taken into account that a high speed
coefficient can accelerate the whole process; it can
also make the convergence more difficult.

Appendix B: GPP, Projection onto a Continuous

Domain Such as the Complex Spiral Described in

Figure 1

1. Let k 5 0, hk 5 hu
0, Ek 5 1`. Choose a

tolerance coefficient Tol for the error reduction and
speed0 for the speed of the error reduction. Let
speed 5 speed0.

2. Set w 5 0, Ebest 5 1`.
3. Project hk onto the dephased coding domain:

hp
k

5 3@hk exp~iw!#.

4. Compute the Fourier transform ĥp
k of hp

k.
5. Compute the error caused by projection:

Ek11 5 (
n

~B̂u!n z u~ĥu
0!n 2 ~ĥp

k!nu2; if Ek11 , Ebest,

perform wbest 5 w, Ebest 5 Ek11.

6. Increment w and go back to step 3, until w
5 2p.

7. Perform a gradient error reduction:

Ek11 5 Ebest, w 5 wbest, hp
k

5 3~hk exp~iw!#

~the filter projection may have been stored instead of
being computed again!.

If Ek11 2 Ek , Tol, Ek11, go to step 10; else if Ek11

, Ek, perform a gradient reduction:

ĥOK
5 ĥp

k,

~ĥk11!n 5 ~ĥOK!n 1 @~ĥu
0!n

2 ~ĥOK!n# speed ~B̂u!n;

else let speed :5 speedy2 and perform a gradient
reduction:

~ĥk11!n 5 ~ĥOK!n 1 @~ĥu
0!n 2 ~ĥOK!n# speed ~B̂u!n.

8. Compute the inverse Fourier transform hk11

of ĥk11.
9. Perform k :5 k 1 1 and go back to step 2.

10. h 5 hp
k.

Appendix C: GPP 1 DBS, Projection onto a Discrete

Domain

To simplify the description of the algorithm, we as-
sume that the considered domain is real only. Then
no iterative search over w [ @0, 2p# is necessary for
minimizing the error function. We assume use of N
levels of quantization.

1. Compute N levels of quantization:

$level@1#, . . . , level@N#% 5 H0,
1

N 2 1
, . . . ,

K

N 2 1
,

. . . , 1 2
K

N 2 1
, . . . , 1

2
1

N 2 1
, 1J .

Let k 5 0, K 5 1, hk 5 hu
0, Ek 5 1`. Choose a

tolerance coefficient Tol for the error reduction and
speed0 for the speed of the error reduction. Let
speed 5 speed0.

2. Project hk onto the progressive coding domain:

~hp
k!n 5 5~hk!n if

K

N 2 1
, ~hk!n , 1 2

K

N 2 1
3@~hk!n# else

,
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where 3 denotes the Euclidean projection operator
onto the progressive domain that consists of $lev-
el@1#, . . . , level@K#, level@N 2 K 1 1#, . . . , level@N#%.

3. Compute the Fourier transform ĥp
k of hp

k.
4. Perform a gradient error reduction:

• Compute the error: Ek11 5 ¥n ~B̂u!nu~ĥu
0!n

2 ~ĥp
k!nu2.

• If Ek11 2 Ek , Tol Ek11, go to step 7; else if
Ek11 , Ek, perform a gradient reduction:

ĥOK
5 ĥp

k,

~ĥk11!n 5 ~ĥOK!n 1 @~ĥu
0!n

2 ~ĥOK!n# speed ~B̂u!n;

else let speed :5 speedy2 and perform a
gradient reduction:

~ĥk11!n 5 ~ĥOK!n 1 @~ĥu
0!n 2 ~ĥOK!n#

3 speed~B̂u!n.

5. Compute the inverse Fourier transform hk11

of ĥk11.
6. Go back to step 2.
7. If K 5 ~N 2 1y2! ~N odd! or if K 5 ~Ny2! ~N

even!, go to step 9.
8. If K :5 K 1 1, perform h0 5 hk, k 5 0 and go

to step 2.
9. DBS part: for the sake of clarity let h 5 hk

and Eprev 5 Ek11, Eglob 5 Ek11.
10. Let i 5 0.
11. Let j 5 0, best 5 hi.
12. If ~hi Þ level@ j#!, perform hi 5 level@ j#!; else

j: 5 j 1 1. If j 5 N 1 1, perform i :5 i 1 1 and go
back to step 11.

13. Compute the Fourier transform ĥ of h.
14. Compute the error E 5 ¥n~B̂u!nu~ĥu

0!n

2 ~ĥ!nu2.
15. If E , Eprev, perform best 5 hi, Eprev 5 E; else

hi 5 best.
16. If j , N, perform j :5 j 1 1 and go to step 12.
17. If j 5 N and i Þ length ~h!, perform i :5 i 1 1

and go to step 11.
18. If Eglob 2 Eprev , Tol Eprev, perform Eglob

5 Eprev and go back to step 10.
19. Stop.

The authors thank the anonymous reviewers
whose comments helped to make this paper clearer
and Richard Juday for valuable suggestions.
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pour l’amélioration du contraste des images optiques,” C. R.
Acad. Sci. 237, 607–609 ~1953!.

2. A. VanderLugt, “Signal detection by complex spatial filtering,”
IEEE Trans. Inf. Theory 10, 139–145 ~1964!.

3. C. S. Weaver and J. W. Goodman, “A technique for optically
convolving two functions,” Appl. Opt. 5, 1248–1249 ~1966!.

4. H. J. Caulfield and W. T. Maloney, “Improved discrimination
in optical character recognition,” Appl. Opt. 8, 2354–2356
~1969!.

5. Y. N. Hsu and H. H. Arsenault, “Optical pattern recognition
using circular harmonic expansion,” Appl. Opt. 21, 4016–4019
~1982!.
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