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below body forces and regard the stress concentration factor as the ratio between

the maximal stress and the maximum of the applied load (either body force or

traction).

Using this point of view, we introduced in a recent article [8] the notion of a

generalized stress concentration factor as a quantitative measure of how bad is

the geometry of a body in terms of the ratio between the maximal stresses and

the maximum of the applied loads. Specifically, generalized stress concentration

factors may be described as follows. Let F be a force on a body � that is given in

terms of a body force field b and a surface force field t and let � be any stress

field that is in equilibrium with F. Then, the stress concentration factor for the

pair F, � is given by

KF;� ¼
supx � xð Þj jf g

supx;y b xð Þj jf g; t yð Þj jf g ; x 2 �; y 2 @�: ð1:1Þ

Here, for |�(x) | we use some norm |� | on the space of stresses at a pointYa finite

dimensional space. Similarly, |b(x) | and | t(y) | are the norms in R3 of the values

of the body force and the surface force fields. The value of KF;� depends on the

norms chosen for stresses and external loadings and the same it true for the other

objects defined below.

We can interpret the foregoing definition in terms of notions from plasticity.

Failure criteria (e.g., the Tresca and von Mises yield criteria) are usually semi-

norms rather then norms on the space of stress matrices. If we overlook this fact

momentarily, and regard them as norms, it is not surprising that KF;� depends on

the norm chosenYdistinct norms may be thought of as distinct yield criteria. If

supx{|�(x) |} = Y is regarded as the condition that some region of the body

becomes plastic, Y
�
KF;� is the value of the supremum of the external force that

will initiate plasticity. (In the usual case where the yield condition is given by a

seminorm, KF;� can only give a bound on the supremum of forces that will ini-

tiate plasticity.)

Returning to the definition of the generalized stress concentration factor, we

note that since we do not specify a constitutive relation, for each force F there is

a class SF of stress fields � that are in equilibrium with F. The optimal stress

concentration factor for the force F is defined by

KF ¼ inf
�2�F

KF;�

� �
; ð1:2Þ

i.e., it is the least stress concentration factor when we allow the stress field to

vary over all fields that are in equilibrium with F. Finally, the generalized stress

concentration factor KYa purely geometric property of � Y is defined by

K ¼ sup
F

KFf g ¼ sup
F

inf�2�F
supx � xð Þj jf gf g

supx;y b xð Þj j; t yð Þj jf g ; ð1:3Þ
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where F varies over all forces that may be applied to the body. Thus, the gen-

eralized stress concentration factor reflects the worst case of loading of the

body.

It was shown in [8] that the generalized stress concentration factor is equal to

the norm of a mapping associated with the trace operator of Sobolev mappings.

Specifically, it was shown that when suprema in the expressions above are re-

placed by essential suprema, then,

K ¼ sup
�2W 1

1
�;R3ð Þ

R

�

�j jdVþ
R

@�

�̂�
�� ��d A

R

�

�j jdVþ
R

�

r�j jdV
; ð1:4Þ

where W 1
1 �;R3
� �

is the Sobolev space of integrable vector fields � on � whose

gradients l� are also integrable, and �̂� is the trace of � 2 W 1
1 �;R3
� �

on ¯�
(whose existence is a basic property of Sobolev spaces).

Consider the Radon measure m on � defined by

� Dð Þ ¼ V D \ �ð Þ þ A D \ @�ð Þ ð1:5Þ

(V and A are the volume and area measures, respectively), and let L1;� �;R3
� �

be the space of fields on � that are integrable relative to m equipped with the

L1;� -norm so

wk kL1;� ¼
Z

�

wj j dV þ
Z

@�

wj j d A: ð1:6Þ

Then, the trace operator induces an extension mapping � : W 1
1 �;R3
� �

!
L1;� �;R3
� �

and the expression for the generalized stress concentration factor

above may be written in the form

K ¼ �k k ð1:7Þ
Y the basic result of [8].

The treatment in [8] allows stresses and forces that are more general than

those treated usually in continuum mechanics. In addition to the usual stress

tensor �im the stress object contains a self force field �i. Furthermore, the stress

field need not be symmetric and the resultants and total torques due to the forces

F need not vanish. The generalized form of the equilibrium equations between

the forces and stresses was taken in the form

Z

�

biwi dV þ
Z

@�

tiwi dA ¼
Z

�

�iwi dV þ
Z

�

�ikwi;k dV : ð1:8Þ

Thus, the infimum in the definition of the optimal stress concentration factor may

be attained for a stress field that is not admissible physically.
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In the present work we restrict the admissible stress fields to symmetric tensor

fields and the forces are required to have zero resultants and total torques. These

requirements are well known to be equivalent to the requirements that the power

produced by the forces and stresses on rigid velocity fields vanishes.

The expression for the generalized stress concentration factor we obtain here

for the rigid velocity invariant forces and stresses may be written as

K ¼ �=Rk k; ð1:9Þ

where R denotes the collection of rigid velocity fields, a subspace of the

function-spaces we are considering. The extension mapping

�=R!: LD �ð Þ=R! L1;� �;R3
� ��

R ð1:10Þ

between the corresponding quotient spaces is given by �=R w½ �ð Þ ¼ � wð Þ½ �. It is

well defined for elements of the space LD(�) containing the vector fields w of

integrable stretchings

" wð Þ ¼ 1

2
rwþ rwð ÞT
� �

:

The space LD(�) and its properties (see [1, 2, 9, 11Y13], and [4] for nonlinear

strains) are the main technical tools we use in this work.

For a projection mapping that gives an approximating rigid velocity field to

any vector field w and a corresponding w0 that has zero rigid component, this

result may be written more specifically as

K ¼ �0k k

¼ sup
w02LD �ð Þ0

inf r2R
R

�

P

i

w0i � rij jdVþ
R
@�

P

i

w0i � rij jd A

	 


1
2

R
�

P

i;m
w0i þ w0m;i

�� ��dV
: ð1:11Þ

Here, d0 is the extension mapping for vector fields having zero rigid components

and LD(d)0 is the space of vector fields in LD(�) having zero rigid components.

Section 2 presents some properties of rigid velocity fields, stretchings and the

approximations of velocity fields by rigid ones. Section 3 outlines the definitions

and results pertaining to the space LD(�) and is based on [12]. Section 4 applies

the properties of LD-fields to the problem under consideration and Section 5

presents additional comments and observations. Some details regarding the

notation we use and results on normed spaces and their normed dual spaces are

available in [8].

I wish to thank R. Kohn for pointing out the BD-literature to me and F. Ebobisse

for his PhD thesis and comments on it.
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2. Preliminaries on Stretchings and Rigid Velocities

2.1. BASIC DEFINITIONS

Let � be an open and bounded three-dimensional submanifold of R3 with vol-

ume |�| having a differentiable boundary and w a vector field over �. We set

"(w) to be the tensor field

" wð Þim ¼
1

2
wi;m þ wm;i

� �
; ð2:1Þ

i.e., the symmetric part of the gradient. As w is interpreted physically as a

velocity field over the body, "(w) is interpreted as the stretching. Alternatively, if

w is interpreted as an infinitesimal displacement field, "(w) is the corresponding

linear strain. In the sequel we will refer to "(w) as the stretching associated with

w. Here, the partial derivatives are interpreted as the distributional derivatives so

one need not care about the regularity of w.

We identify the space of symmetric 3 � 3 matrices with R6. For a symmetric

tensor field " whose components are integrable functions we use the L1-norm

"k k ¼
X

i;m

"imk kL1 : ð2:2Þ

This norm may be replaced by other equivalent norms (possibly norms invariant

under coordinate transformations). Thus, the space of L1-stretching fields is

represented by L1 �;R6
� �

with the L1-norm as above.

A vector field w on � is of integrable stretching if its components are

integrable and if each component "(w)im 2 L1(�). It can be shown that this

definition is coordinate independent. The vector space of velocity fields having

integrable stretchings will be denoted by LD(�). This space is normed by

wk kLD ¼
X

i

wik kL1þ
X

i;m

" wð Þim
�� ��

L1 : ð2:3Þ

Clearly, we have a continuous linear inclusion LD �;R3
� �

! L1 �;R3
� �

. In

addition, w [ "(w) is given by a continuous linear mapping

" : LD �ð Þ ! L1 �;R6
� �

: ð2:4Þ

2.2. THE SUBSPACE OF RIGID VELOCITIES

A rigid velocity (or displacement) field is of the form

w xð Þ ¼ aþ !� x; x 2 � ð2:5Þ

where a and ! are fixed in R3 and ! � x is the vector product. We can replace

! � x with ~!! xð Þ where e!! is the associated skew symmetric matrix so w xð Þ ¼
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aþ ~!! xð Þ. We will denote the 6-dimensional space of rigid body velocities by R:
For a rigid motion

e!!im ¼
1

2
wi;m � wm;i

� �
; ð2:6Þ

an expression that is extended to the non-rigid situation and defines the vorticity

vector field so wi;m ¼ " wð Þim þ e!!im .

Considering the kernel of the stretching mapping " : LD �ð Þ ! L1 �;R6
� �

, a

theorem whose classical version is due to Liouville states (see [12, pp. 18Y19])

that Kernel " ¼ R.

2.3. APPROXIMATION BY RIGID VELOCITIES

We now wish to consider the approximation of a velocity field by a rigid ve-

locity field. Let r be a Radon measure on � and 1 r p r V. For a given

w 2 Lp;� �; R3
� �

, we wish to find the rigid velocity r for which

inf
r02R

w� r0k kL p;�

� �p ¼ inf
r02R

Z

�

X

i

wi � r0i j pd�j ð2:7Þ

is attained. Thus we are looking for vectors a and b that minimize

e ¼
Z

�

X

i

wi � ai � "ijkbjxk

�� ��pd�: ð2:8Þ

We have

@e

@al

¼
Z

�

p
X

i

wi � ai � "ijkbjxk

�� ��p�1 wi � ai � "ijkbjxk

� �

wi � ai � "ijkbjxk

�� �� ��ilð Þd�;

@e

@bl

¼
Z

�

p
X

i

wi � ai � "ijkbjxk

�� ��p�1 wi � ai � "ijkbjxk

� �

wi � ai � "ijkbjxk

�� �� �"ijk�jlxk

� �
d�;

ð2:9Þ
and we obtain the six equations for the minimum with the six unknowns al, bm

0 ¼
Z

�

wl � al � "ljkbjxk

�� ��p�2
wl � al � "ljkbjxk

� �
d�;

0 ¼
Z

�

X

i

wi � ai � "ijkbjxk

�� ��p�2
wi � ai � "ijkbjxk

� �
"ilkxk d�:

ð2:10Þ

Particularly simple are the equations for p = 2. In this case we obtain
Z

�

w d� ¼
Z

�

r d�; and

Z

�

x� wd� ¼
Z

�

x� rd�: ð2:11Þ
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If we interpret r as a mass distribution on �, these two conditions simply state

that the best rigid velocity approximations should give the same momentum and

angular momentum as the original field.

Of particular interest (see [12, p. 120]) is the case where r is the volume

measure on �. Set x to be the center of volume of �, i.e.,

x ¼ 1

�j j

Z

�

xdV : ð2:12Þ

Without loss of generality we will assume that x ¼ 0 (for else we may replace

x by x� x in the sequel).

Let w be the mean of the field w and I the inertia matrix relative to the center

of volume, so

w ¼ 1

�j j

Z

�

wdV ; Iim ¼
Z

�

xkxk�im � xixmð ÞdV ð2:13Þ

and

I !ð Þ ¼
Z

�

x� !� xð ÞdV : ð2:14Þ

The inertia matrix is symmetric and positive definite and so the solution for r

gives

r ¼ wþ !� x ð2:15Þ

with w as above and

! ¼ I�1

Z

�

x� w dV

0

@

1

A: ð2:16Þ

Thus, w 7! wþ !� xð Þ , with w and ! as above, is well defined for integrable

velocity fields and we obtain a mapping

�R : L1 �;R3
� �

! R: ð2:17Þ

It is straightforward to show that �R is indeed a linear projection onto R.
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Also of interest below will be the case where p = 1 and and the measure r is

given by

� Dð Þ ¼ � Dð Þ ¼ V D \ �ð Þ þ A D \ @�ð Þ; ð2:18Þ

as in Section 1. The conditions for best approximations r = a + b � x assume the

form

Z

�

wl � al � "ljkbjxk

� �

wl � al � "ljkbjxk

�� �� dV þ
Z

@�

wl � al � "ljk

� �

wl � al � "ljkbjxk

�� �� d A ¼ 0; ð2:19Þ

Z

�

X

i

wi � ai � "ijkbjxk

� �

wi � ai � "ijkbjxk

�� �� "ilkxk dVþ
Z

@�

X

i

wi � ai � "ijk

� �

wi � ai � "ijkbjxk

�� �� "ilkxkd A¼ 0;

ð2:20Þ

where z/|z | is taken as 0 for z = 0. (For an analysis of L1-approximations see [7]

and reference cited therein.)

2.4. DISTORTIONS

Let W be a vector space of velocities on � containing the rigid velocities R and

let w1 and w2 be two velocity fields in W. We will say that the two have the same

distortion if w2 = w1 + r for some rigid motion r 2 R. This clearly generates an

equivalence relation on W and the corresponding quotient space W=R will be

referred to as the space of distortions. If � is an element of W=R then "(w) is the

same for all members of w 2 �. The natural projection

� : W!W=R ð2:21Þ
associates with each element w 2 W its equivalence class w½ � ¼ wþ r rj 2 Rgf .

If W is a normed space, then, the induced norm on W=R is given by (see

Appendix A)

w½ �k k ¼ inf
w02 w½ �

w0k k ¼ inf
r2R

w� rk k: ð2:22Þ

Thus, the evaluation of the norm of a distortion, is given by the best approx-

imation by a rigid velocity as described above.

Let W be a vector space of velocities contained in L1 �;R3
� �

, then, �R
defined above induces an additional projection

�0 wð Þ ¼ w� �R wð Þ: ð2:23Þ

The image of �0 is the kernel W0 of �R and it is the subspace of W containing

velocity fields having zero approximating rigid velocities. Clearly, we have a

R. SEGEV



bijection � : W=R!W0 . On W0 we have two equivalent norms: the norm it

has as a subspace of W and the norm that makes the bijection � : W=R!W0

an isometry.

With the projections �0 and �R, W has a Whitney sum structure W¼W0�R:

2.5. EQUILIBRATED FORCES

Let W be a vector space of velocities (we assume that it contains the rigid

velocities). A force F 2 W* is equilibrated if F(r) = 0 for all r 2 R . This is

of course equivalent to F(w) = F(w + r) for all r 2 R so F induces a unique

element of W=Rð Þ*. Conversely, any element of G 2 W=Rð Þ* induces an equil-

ibrated force F by F(w) = G([w]), where [w] is the equivalence class of w. In

other words, as the quotient projection is surjective, the dual mapping �� :
W=Rð Þ*!W* is injective and its image Y the collection of equilibrated forces Y

is orthogonal to the kernel of �. Furthermore, as in Appendix A, �* is norm

preserving. Thus, we may identify the collection of equilibrated forces in W*

with W=Rð Þ*.

If 	R : R!W is the inclusion of the rigid velocities, then,

	R* : W*! R* ð2:24Þ

is a continuous and surjective mapping. The image 	R* Fð Þ will be referred to as

the total of the force. In particular, its component dual to w will be referred to as

the force resultant and the component dual to 5 will be referred to as the re-

sultant torque. Thus, in particular, the resultant force and torque vanish for an

equilibrated force. This structure may be illustrated by the sequences

0 ��! R ��!	R W ��!� W=R ��! 0;

0  �� R*  ��	
�

R
W*  ���

�
W=Rð Þ*  �� 0:

ð2:25Þ

Using the projection �R and the Whitney sum structure it induces we have a

Whitney sum structure W* ¼W0* � R* and it is noted that the norm on W0* is

implied by the choice of norm on W0.

3. Fields of Integrable Stretchings

In this Section we list the basic properties of vector fields of integrable stretching

(or deformation) as in [12] (see also [1, 2, 9, 11, 13] and [4] for nonlinear strains).

The presentation below is adapted to the application we consider and is not

necessarily the most general.

If both w and "(w) are in Lp for 1 < p < V, the Korn inequality (see [3])

implies that w 2 W 1
1 �ð Þ . This would imply in particular that w has a trace on the

boundary of �. However, as shown by Ornstein [5], w need not necessarily be

STRESS CONCENTRATION AND EQUILIBRIUM



in W 1
1 �;R3
� �

for the critical value p = 1. Nevertheless, the theory of integrable

stretchings shows that the trace is well defined even for p = 1.

3.1. DEFINITION

We recall that LD(�) is the vector space of fields with integrable stretchings.

With the norm

wk kLD ¼
X

i

wik kL1 þ
X

i;m

" wð Þim
�� ��

L1 ; ð3:1Þ

LD(�) is a Banach space.

3.2. APPROXIMATION

C1 �;R3
� �

is dense in LD(�).

3.3. TRACES

The trace operator can be extended from W 1
1 �;R3
� �

onto LD �;R3
� �

. Thus, there

is a unique continuous linear mapping


 : LD �ð Þ ! L1 @�;R3
� �

ð3:2Þ

such that 
 wð Þ ¼ wj@�, for every field w of bounded stretching that is a restriction

to � of a continuous field on the closure �. Thus, the norm of the trace mapping

is given by


k k sup
w2LD 4ð Þ

+ðwÞk kL 1

wk kLD

: ð3:3Þ

As a result of the approximation of fields of bounded stretchings by smooth

vector fields on �, ||
 || may be evaluated using smooth vector fields in the

expression above, i.e.,


k k ¼ sup
w2C1 �;R3ð Þ

wj@�

�� ��
L1

wk kLD

: ð3:4Þ

3.4. EXTENSIONS

There is a continuous linear extension operator

E : LD �ð Þ ! LD R3
� �

such that E(w)(x) = w(x) for almost all x 2 �.

R. SEGEV



3.5. REGULARITY

If w is any distribution on � whose corresponding stretching is L1, then w 2
L1 �;R3
� �

.

3.6. DISTORTIONS OF INTEGRABLE STRETCHINGS

On the space of LD-distortions, LD �ð Þ=R, we have a natural norm

�k k ¼ inf
w2�

wk kLD: ð3:5Þ

This norm is equivalent to

" �ð Þk k ¼
X

i;m

" wð Þim
�� ��

L1 ; ð3:6Þ

where w is any member of �. Clearly, the value of this expression is the same for

all members w 2 � and we can use any other equivalent norm on the space of

symmetric tensor fields.

Using the projection �R as above we denote by LD(�)0 the kernel of �R and

by �0 the projection onto LD(�)0 so

�0; �Rð Þ : LD �ð Þ ! LD �ð Þ0 �R:

Then, there is a constant C depending only on � such that

�0 wð Þk kL1 ¼ w� �R wð Þk kL1r C " wð Þk kL1 : ð3:7Þ

3.7. EQUIVALENT NORMS

Let p be a continuous seminorm on LD(�) which is a norm on R . Then,

p wð Þ þ " wð Þk kL1 ð3:8Þ

is a norm on LD(�) which is equivalent to the original norm in 3.1. For example,

using the fact that the trace mapping is continuous, we may use

p wð Þ ¼ 
 wð Þk k
L1 @�;R3ð Þ ð3:9Þ

and the following equivalent to the LD-norm:

wk k� ¼ 
 wð Þk k
L1 @�;R3ð Þ þ " wð Þk kL1 : ð3:10Þ
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4. Application to Equilibrated Forces and Stresses

4.1. LD-VELOCITY FIELDS AND FORCES

The central object we consider is LD(�) whose elements are referred to as

LD-velocity fields. Elements of the dual space LD(�)* will be referred to as

LD-forces. Our objective is to represent LD-forces by stresses and by pairs

containing body forces and surface forces.

Rather than the original norm of Equation (3.1) it will be convenient to use an

equivalent norm as asserted by Equation (3.7) as follows. Let

�R : LD �ð Þ ! R ð4:1Þ

be the continuous linear projection defined in Paragraph 2.3 and let q : R! R,

be a norm on the finite dimensional R . Then,

p ¼ q � �R : LD �ð Þ ! R ð4:2Þ
is a continuous seminorm that is a norm on R � LD �ð Þ. It follows from

Equation (3.7) that

wk k0LD ¼ q �R wð Þð Þ þ " wð Þk kL1 ð4:3Þ

is a norm on LD(�) which is equivalent to the original norm defined in Equation

(3.1).

4.2. LD-DISTORTIONS

With the norm �k k0LD , the induced norm on LD �ð Þ=R is given by

w½ �k k0LD ¼ inf
r2R

wþ rk k0LD; ð4:4Þ

so, using �R rð Þ ¼ r; " rð Þ ¼ 0 and choosing r ¼ ��R wð Þ, we have

w½ �k k0LD ¼ inf
r2R

q �R wþ rð Þð Þ þ " wþ rð Þk kL1

� �

¼ inf
r2R

q �R wð Þ þ rð Þ þ " wð Þk kL1

� �

¼ " wð Þk kL1 :

ð4:5Þ

Let �0 : LD(�) Y LD(�)0 be the projection onto LD(�)0 Î LD(�), the

kernel of �R . Then,

�0 wð Þk k0LD ¼ w� �R wð Þk k0LD

¼ q �R w� �R wð Þð Þð Þ þ " w� �R wð Þð Þk k0L1

¼ " wð Þk kL1 :

ð4:6Þ
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We conclude that with our choice of norm �k k0LD on LD(�), the two norms in

Equation (3.6) are not only equivalent but are actually equal. Thus, this choice

makes LD(�)0 isometrically isomorphic to LD �ð Þ=R .

4.3. EQUILIBRATED LD-FORCES AND THEIR REPRESENTATIONS BY STRESSES

Summarizing the results of the previous Sections we can draw the commutative

diagram

LD �ð Þ ��!" L1 �;R6
� �

j# � � k
LD �ð Þ=R ��!"=R L1 �;R6

� �
:

ð4:7Þ

Here, Liouville’s rigidity theorem implies that the kernels of " and � are iden-

tical, the rigid velocity fields, and "=R given by "=R �ð Þ ¼ " wð Þ, for some w 2
�, is an isometric injection.

This allows us to represent LD-forces Y elements of LD(�)* Y using the dual

diagram.

LD �ð Þ* ��!"
�

L1 �;R6
� �

"j �� k
LD �ð Þ=Rð Þ* ��!"=Rð Þ�

L1 �;R6
� �

:

ð4:8Þ

Now, "=Rð Þ* is surjective and as in [8] the HahnYBanach Theorem implies that

any T 2 LD �ð Þ=Rð Þ* may be represented in the form

T ¼ "=Rð Þ* �ð Þ ð4:9Þ

for some essentially bounded symmetric stress tensor field � 2 L1 �;R6
� �

. Fur-

thermore, the dual norm of T is given by

Tk k ¼ inf
T¼ "=Rð Þ* �ð Þ

�k kL1 ¼ inf
T¼ "=Rð Þ* �ð Þ

ess sup
i;m;x2�

�im xð Þj j
( )

: ð4:10Þ

In fact, the infimum is attainable so there is a stress tensor field b�� 2 L1 �;R6
� �

such that Sk k ¼ b��k kL1, with S ¼ "* b��ð Þ . As �* is norm preserving (see Appendix

A), the same holds for any equilibrated LD-force. That is, using the same ar-

gument for LD �ð Þ=Rð Þ* and the fact that �* is a norm-preserving injection, any

equilibrated LD-force S 2 LD(�)* may be represented in the form

S ¼ "* �ð Þ ð4:11Þ
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for some stress field � and

Sk k ¼ inf
S¼"* �ð Þ

�k kL1 ¼ inf
S¼"* �ð Þ

ess sup
i;m;x2�

�im xð Þj j
( )

: ð4:12Þ

4.4. m-INTEGRABLE DISTORTIONS AND EQUILIBRATED FORCES ON BODIES

Following [8] we use L1;� �;R3
� �

to denote the space of integrable vector fields

on � whose restrictions to ¯� are integrable relative to the area measure on ¯�.

On this space we use the norm

wk kL1;� ¼
Z

�

wj j dV þ
Z

@�

wj jdA ¼ wk k
L1 �;R3ð Þ þ wk k

L1 @�;R3ð Þ: ð4:13Þ

Alternatively, the L1;�-norm may be regarded as the L1-norm relative to the

Radon measure m, defined above and hence the notation.

Forces, being elements of the dual space L1;� �;R3
� �

*, may be identified with

elements of L1;� �;R3
� �

. A force F on a body, given in terms of a body force

b and a surface force t, may be identified with a continuous linear functional

relative to the L1;� -norm if the body force components bi and surface force

components ti (alternatively, |b| and |t| ) are essentially bounded relative to the

volume and area measures, respectively. In this case, the representation is of the

form

F wð Þ ¼
Z

�

biwi dV þ
Z

@�

tiwi dA: ð4:14Þ

Moreover, the dual norm of a force is the L1;� -norm, given as

Fk kL1;� ¼ Fk k*L1;� ¼ ess sup
x2�; y2@�

b xð Þj j; t yð Þj jf g; ð4:15Þ

as anticipated.

It is well known that if F is equilibrated, i.e., F 2 �0* Gð Þ for some G 2
L1;� �;R3
� ��

R
� �

*; then,

Z

�

b dVþ
Z

@�

t dA ¼ 0; and

Z

�

x� b dVþ
Z

�

x� t dA ¼ 0: ð4:16Þ
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4.5. LD-FORCES REPRESENTED BY BODY FORCES AND SURFACE FORCES

Using the trace operator 
, for each w 2 LD(�) we may define

� wð Þ : �! R3 ð4:17Þ

by d(w)(x) = w(x) for x 2 � and d(w)(y) = 
(w)(y) for y 2 ¯�. The trace theorem

Paragraph 3.3 and the original definition in Equation (3.1) of the norm on LD(�)

imply that we defined a linear and continuous mapping

� : LD �ð Þ ! L1;� �;R3
� �

: ð4:18Þ

By the linearity of the trace mapping and using 
(r) = r for r 2 R, we set


=R : LD �ð Þ=R! L1 @�;R3
� ��

R; ð4:19Þ

by 
=R w½ �ð Þ ¼ 
 wð Þ½ � . Similarly, we set

�=R : LD �ð Þ=R! L1;� �;R3
� ��

R; ð4:20Þ

by �=R w½ �ð Þ ¼ � wð Þ½ �. We note that the quotient mappings 
=R and �=R are

bounded. For example, for any r 2 R

� wð Þ þ rk kL1;� ¼ � wþ rð Þk kL1;� r �k k wþ rk kLD; ð4:21Þ

so

� wð Þ½ �k kL1;� ¼ inf
r2R

� wð Þ þ rk kL1;� r �k kinf
r2R

wþ rk kLD

¼ �k k w½ �k kLD; ð4:22Þ

and the analogous argument applies to 
.

Thus we have the following commutative diagram:

L1;� �;R3
� �

* ��!� LD �ð Þ

�
j# j# �

L1;� �;R3
� ��

R ��!�=R LD �ð Þ=R:

ð4:23Þ

The dual commutative diagram is

L1;� �;R3
� �

* ��!�* LD �ð Þ*

�
j# j# �*

L1;� �;R3
� ��

R
� �

* ��!�=Rð Þ*
LD �ð Þ=Rð Þ*:

ð4:24Þ

In particular, the image under d* of an equilibrated force F 2 L1;� �;R3
� �

is an

equilibrated LD-force.
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As the norm of a mapping and its dual are equal, we have1

�=Rk k ¼ �=Rð Þ*k k ¼ sup
G2 L1;� �;R3ð Þ=Rð Þ*

�=Rð Þ* Gð Þk k
Gk k

¼ sup
G2 L1;� �;R3ð Þ=Rð Þ*

inf �=Rð Þ* Gð Þ¼ "=Rð Þ* �ð Þ �k k
Gk k :

ð4:26Þ

Using the fact that the two mappings �* are isometric injections onto the

respective subspaces of equilibrated forces, we may replace G above by an

equilibrated force F 2 L1;� �;R3
� �

, and �=Rð Þ* Gð Þ ¼ "=Rð Þ* �ð Þ is replaced by

d*(F) = "*(�).

�=Rk k ¼ sup
F

inf �* Fð Þ¼"* �ð Þ ess supi;m;x �im xð Þj jf g
� �

ess supi;x;y bi xð Þj j; ti yð Þj jf g ; ð4:27Þ

over all equilibrated forces in L1;� �;R3
� �

. Explicitly, the condition d*(F) =

"*(�) is the principle of virtual work

Z

�

b�w dV þ
Z

@B

t�w dA ¼
Z

�

��" wð ÞdV ; ð4:28Þ

as anticipated, and we conclude that

K ¼ �=Rk k: ð4:29Þ

REMARK 4.1. If we want to regard �=R as a mapping between function spaces

we should use the decompositions of the respective spaces into Whitney sums.

We already noted that LD �ð Þ=R is isometrically isomorphic to LD(�)0 Y the

space of LD-vector fields having zero rigid components. Now L1;� �;R3
� �

0
is

bijective to L1;� �;R3
� ��

R but as a subspace of L1;� �;R3
� �

it has a different

norm (see Paragraph 2.4). Since we are interested in the quotient norm in order to

1 Note that we cannot use

�k k ¼ �*k k ¼ sup

F2L1;� �;R3ð Þ
�* Fð Þk k
Fk kL1;� ¼ sup

F

inf�* Fð Þ¼"* �ð Þ �k kf g
Fk kL1;� ð4:25Þ

because "* is not surjective so there might be no � satisfying the condition d*(F) = "*(�).
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use the essential supremum for the dual norm, we will endow L1;� �;R3
� �

0
with

the quotient norm w0k k ¼ inf r2R w0 � rk kL1;� Y which brings us back to the

problem of best approximation by rigid velocity as described in the end of

Paragraph 2.3. Thus, �=R becomes identical to the restriction

�0 ¼ �jLD �ð Þ0 : LD �ð Þ0 ! L1;� �;R3
� �

0
ð4:30Þ

of d to vector fields having zero rigid components. Its norm is given by

�=Rk k ¼ �0k k ¼ sup
w02LD �ð Þ0

inf r2R

Z

�

X

i

w0i � rij jdV þ
Z

@�

X

i

w0i � rij jdA

( )

1

2

Z

�

X

i;m

w0i;m þ w0m;i

�� ��dV

:

ð4:31Þ

Again, one may use smooth vector fields to evaluate the supremum as these are

dense in LD(�).

5. Concluding Remarks

In this section we emphasize some immediate consequences of the analysis pre-

sented above.

5.1. GENERALIZED STRESS CONCENTRATION FACTORS FOR SURFACE FORCES

The forgoing analysis may be simplified naturally to the case where only surface

forces are applied to the body by making the following modifications.

	 The body force is omitted,
	 there is no need to use the measure m and L1;� �;R3

� �
is replaced by

L1 @�;R3
� �

,
	 the extension d is replaced by the trace mapping 
 : LD �ð Þ ! L1 @�;R3

� �

(particularly in Subsection 4.5).

Thus, the generalized stress concentration factor is defined now as

K ¼ sup
t2L1 @�;R3ð Þ

inf
�2�t

ess supx � xð Þj jf g
ess supy t yð Þj jf g ; ð5:1Þ

and the corresponding result is

K ¼ 
=Rk k: ð5:2Þ
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5.2. REPRESENTATION OF FORCES BY LD-FUNCTIONALS

We note that d is not surjective. However, we can state the following

PROPOSITION 5.1. Image d is dense in L1;� �;R3
� �

.

Proof. We first show that C1ð�Þ is dense in L1;� �;R3
� �

. Let u 2 L1;� �;R3
� �

be an arbitrary field and " > 0 an arbitrary positive number. The restriction

uj@� is in L1 @�;R3
� �

and may be approximated by a smooth mapping u@ :
@�! R3 such that

uj@� � u@k
��

L1 <
"

3
:

Now, u@ may be extended to a smooth field buu@ that vanishes outside an arbi-

trarily chosen open neighborhood U of ¯� in � such that
Z

�

buu@j jdV <
"

3
: ð5:3Þ

We may also approximate uj� by a smooth function u0 having a compact

support D in � such that uj��u0

�� ��
L1 < "=3. Denoting the zero-extension of

u0 to � by buu0 , set

u" ¼ buu@ þ buu0:

Thus,

Z

�

u� u"j jdV ¼
Z

�

u� buu0 � buu@j jdV

r
Z

�

u� buu0j jdV þ
Z

�

buu@j jdV

<
2"

3
;

ð5:4Þ

and

Z

@�

u� u"j jdA ¼
Z

@�

u� buu0 � buu@j jdA

r
Z

@�

u� buu@j jdA

<
"

3
:

ð5:5Þ
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Thus,

u� u"k kL1;� ¼
Z

�

u� u"j jdV þ
Z

@�

u� u"j jdA < ": ð5:6Þ

Now, the restrictions of smooth mappings on � to � are dense in LD(�) and

for each u 2 C1 �;R3
� �

,

� uj�
� �

¼ u:

Thus, the dense subset C1 �;R3
� �

is contained in Imaged which implies the

assertion. Ì

Since the natural quotient projection � : L1;� �;R3
� �

! L1;� �;R3
� ��

R is sur-

jective and continuous, and since �=R � � ¼ � � � , we have the following.

COROLLARY 5.2. The image of the mapping �=R is dense in L1;� �;R3
� �

=R.

PROPOSITION 5.3. The mappings d* and �=Rð Þ* are injective.

This is implied immediately as the images of the corresponding maps are

dense in the respective Banach spaces (see [10, p. 226]).

We conclude that d* and �=Rð Þ* are embeddings of the spaces of forces

represented by bounded body forces and surface forces into the corresponding

spaces of bounded functionals on LD(�) and LD �ð Þ=R.

With the representation of LD-functionals by stresses as in Subsection 4.3 we

obtain the representation of equilibrated forces in L1;� �;ðð R3Þ
�
RÞ* by stresses,

i.e., for any equilibrated force F 2 L1;� �;R3
� ��

R
� �

*, there exists some stress

field � 2 L1 �; R6
� �

such that

�* Fð Þ ¼ "* �ð Þ: ð5:7Þ

5.3. OPTIMAL STRESSES FOR GIVEN LOADINGS

Let F ¼ b; tð Þ 2 L1;� B;R3
� �

be an equilibrated force so that there is an F0 2
L1;� �;R3
� ��

R
� �

* such that �*(F0) = F. Then,

�* � �=Rð Þ* F0ð Þ ¼ �* � �* F0ð Þ; ð5:8Þ

so �* �=Rð Þ* F0ð Þð Þ ¼ �* Fð Þ, and because �* is norm preserving, it follows that

�=Rð Þ*k F0ð Þk ¼ �* Fð Þk k.
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Using the representation of LD-functionals by stresses an in Subsection 4.3

and in [8], we conclude that

�* Fð Þk k ¼ inf
F¼ "=Rð Þ* �ð Þ

�j jk kL1 : ð5:9Þ

In addition, the infimum is attained by some optimal stress field b�� 2 L1 �;R6
� �

so

�* Fð Þk k ¼ b��j jk kL1 : ð5:10Þ

In other words, for the optimal stress field b��

ess sup
x2�

b��j jf g ¼ �* Fð Þk k: ð5:11Þ

Using

�* Fð Þ wð Þ ¼ F � wð Þð Þ ¼
Z

�

b �w dV þ
Z

@�

t �w dA; ð5:12Þ

where for simplicity we use w ¼ 
 wð Þ, we obtain

ess sup
x2�

b��j jf g ¼ sup
w2LD �ð Þ

R

�

b �w dVþ
R

@�

t �w dA

�����

�����

wk kLD

: ð5:13Þ

Note that we may calculate the supremum using smooth fields w due to the

fact that they are dense in LD(�). Since the trace mapping is just the restriction

for such smooth mappings, we may replace the expression for the maximum of

the optimal stress by

ess sup
x2�

b��j jf g ¼ sup
w2C1 �;R3ð Þ

R

�

b �w dVþ
R

@�

t �w dA

�����

�����

k�RðwÞk þ
R

�

j" wð ÞjdV
: ð5:14Þ

Equilibrium of the external forces implies that the numerator is invariant

under the addition of a rigid velocity field and the same holds for " wð Þ: Thus, the

supremum is attained for a velocity field that satisfies �R wð Þ ¼ 0 and finally

ess sup
x2�

b��j jf g ¼ sup
w2C1 �;R3ð Þ

R

�

b �w dVþ
R

@�

t �w dA

�����

�����
R

�

j" wð ÞjdV
: ð5:15Þ
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Appendix A: Elementary Properties of Quotient Spaces

We describe below some elementary properties of quotient spaces of normed

spaces (e.g., [10, p. 227]).

A.1. THE QUOTIENT NORM

Let W be a normed vector space with a norm �k k and R a closed subspace of W

(e.g., a finite dimensional subspace). Then, the quotient norm �k k0 is defined on

W=R by

w0k k0 ¼ inf
w2w0

wk k: ðA:1Þ

Denoting by � : W!W=R the natural linear projection �(w) = [w], we clearly

have

� wð Þk k0 ¼ � wþ rð Þk k0 ¼ inf
r2R

wþ rk k;

for any r 2 R. The quotient norm makes the projection mapping � continuous

and the topology it generates on the quotient space is equivalent to a quotient

topology.

A.2 DUAL SPACES

We note that as the projection � is surjective, its dual mapping

�* : W=Rð Þ*!W* ðA:2Þ
is injective. Clearly, it is linear and continuous relative to the dual norms. If � 2
Image �* so � ¼ �* �0ð Þ; �0 2 W=Rð Þ*, then, for each r 2 R,

� rð Þ ¼ �� �0ð Þ rð Þ
¼ �0 � rð Þð Þ
¼ �0 0ð Þ
¼ 0:

ðA:3Þ

On the other hand, if for � 2W*; � rð Þ ¼ 0 for all r 2 R , then, we may

define �0 2 W=Rð Þ* by�0(w0) =�(w), for some w 2W such that �(w) = w0. The
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choice of w 2 w0 is immaterial because �(w + r) = �(w) + �(r) = �(w), for any

r 2 R . We conclude that

Image �* ¼ R? ¼ � 2W* � rð Þ ¼ 0 for all r 2 Rjf g:

Next we consider the dual norm of elements of the dual to the quotient space.

For �0 2 W=Rð Þ*, we have

�0k k ¼ sup
w02W=R

�0 w0ð Þj j
w0k k0

: ðA:4Þ

Thus,

�0k k ¼ sup
w02W=R

�0 � wð Þð Þj j
inf r2R wþ rk k for some w 2 w0j

	 


¼ sup
w02W=R

sup
r2R

�* �0ð Þ wð Þj j
wþ rk k for some w 2 w0j

	 


¼ sup
w02W=R

sup
r2R

�* �0ð Þ wþ rð Þj j
wþ rk k for some w 2 w0j

	 


¼ sup
w02W=R

sup
w02w0

�* �0ð Þ w0ð Þj j
w0k k

( )

¼ sup
w02W

�* �0ð Þ w0ð Þj j
w0k k

¼ �* �0ð Þk k:

ðA:5Þ

We conclude that �* is norm preserving.
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