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Forces and the existence of stresses in invariant continuum mechanics

Reuven Segev

Department of Mechanical Engineering, Pearlstone Center for Aeronautical Engineering Studies, Ben Gurion

University, Beer Sheva, Israel

In an invariant formulation of pth-grade continuum mechanics, forces are defined as elements of
the cotangent bundle of the Banach manifold of C? embeddings of the body in space. It is shown
that forces can be represented by measures which generalize the stresses of continuum mechanics.
The mathematical representation procedure makes the restriction of forces to subbodies possible.
The local properties of the stress measures are examined. For the case where stresses are given in
terms of smooth densities, it is shown that the structure of forces agrees with the form of forces one
assumes in the traditional formulation, and the equilibrium differential equations are obtained.

I. INTRODUCTION

It is well known that the laws of continuum mechanics,
the mechanics of deformable bodies, cannot be deduced
from the laws of mechanics of material points and rigid bo-
dies. Additional assumptions are introduced and new no-
tions such as internal forces, external forces, stresses, and the
equilibrium equation emerge.

The geometric framework in which the classical theory
of continuum mechanics is developed is the three-dimen-
sional Euclidean space. The following paragraphs review the
basic structure of the theory.

The first basic assumption made in continuum mechan-
ics regarding the nature of forces is that the total force acting
on a body B is of the form

f=J;bdv+LBtda, M

where b is a continuous vector field, called the body force,
defined in the body, and ¢ is a continuous vector field, called
the surface force, defined on the boundary of the body. The
basic problem of continuum mechanics is encountered when
we try to restrict a given force on B to a subbody. Consider-
ing a subbody P of the body B, the total force fp acting on it
should also be given in terms of a body force and a surface
force as in Eq. (1). In general, the fields b and ¢ associated
with the subbody P are different from those given on B. In
particular, physical experience shows that even if P is dis-
joint from the boundary of B, a surface force acts on the
boundary of P. This newly emerged surface force is tradi-
tionally termed internal force or traction as it may be inter-
preted as the force that is applied on P by its complement in
the body. Thus, the values of b and ¢ at a point X € P will
depend in general on the subbody P under consideration and
we write

b=>bX,P), t=t(X,P)

The next assumption, called Cauchy’s postulate, deals
with the dependence of b and ¢ on P. It states that b does not
depend on P so that b = b (X), and that the surface force de-
pends on P only through the unit vector n perpendicular to
the boundary of Pat X, i.e., t = ¢ (X,n). Clearly, this last hy-
pothesis does not provide all the necessary information need-
ed in order to determine ¢.

Assuming that the total force on each subbody of the
body B vanishes, it is possible to prove the following results.
There exists a tensor field o in the body such that

t(X,n) = ol X )(n(X)). (2)

The tensor field o is the stress field, and it has to satisfy the
differential equation

divo+b=0 inB. (3)

If we assume in addition that the total moment on each
subbody of B vanishes, we find that ¢ is symmetric.

From Eqs. (1) and (2) it is clear that if o is given, one can
associate a unique body force field and a unique surface force
field with each subbody. However, the differential equation
(3), known as the equlibrium equation, and the boundary
condition (2) cannot determine the stress uniquely for given b
and ¢ on B. This lack of uniqueness in the determination of
the stress field means that the force on a body cannot be
restricted to subbodies in a unique fashion. In order to deter-
mine the stress field, constitutive relations are introduced.
The constitutive relations, obtained by physical experi-
ments, relate the stress with the configuration of the body
and supply all the necessary information so that the stress
can be determined uniquely. Clearly, using Eq. (2), o can be
determined uniquely if ¢ is given for every subbody P of B.

Modern attempts to axiomatize the theory of forces and
stresses can be found in Gurtin and Williams,! Gurtin and
Martins,? and Truesdell.? The authors postulate a system of
axioms describing the properties of forces in general. In ad-
dition, they assume equilibrium and they assume that exter-
nal forces are composed of body forces that are absolutely
continuous with respect to the volume measure, and surface
forces that are absolutely continuous with respect to the sur-
face area of the body. With these assumptions the authors
prove that forces are given in the form of Eq. (1) and that
Cauchy’s postulate holds. Marsden and Hughes* have gen-
eralized the theory to Riemannian manifolds using an invar-
iance principle for an assumed form of a balance of energy
where they assume the transformation rules for the various
variables including b and z.

During the 1960’s, in an attempt to formulate theories
that would account for interactions that are more complicat-
ed than those afforded by the classical theory, the theories of
couple stresses and the theories of materials of grade p> 1



were developed. A historical account of the subject together
with a review of the various approaches can be found in
Truesdell and Noll® (pp. 389—401). For a variety of applica-
tions one can consult Mindlin® and references cited therein.
Unlike Cauchy’s theory, the theories of materials of grade p
are based on energy principles in which the potential energy
density is assumed to depend on derivatives of order p of the
deformation.

In this paper we propose a theory of forces and stresses
based on the principle that forces should be defined as ele-
ments of the cotangent bundle T *Q of and appropriate con-
figuration manifold Q. Specifically, we show that pth-order
continuum mechanics corresponds to the case where the
configuration space is the set of all p-times differentiable
embeddings of the body in space equipped with the C? topol-
ogy. It turns out that in this case forces can be represented by
measures on the pth jet bundle over the body where the
representing measures generalize the stresses. For example,
it follows that in first-order continuum mechanics and the
case of three-dimensional Euclidean geometry [where the
first jet bundle can be identified with B XR*® L (R? R?)]
any force can be represented in the form

S () =f u'dy, +f u,du’;,
B B

where u;, and u’; are the components of a measure over B
valued in R*®L(R> R?). The first three components
vanish if a Buclidean symmetry requirement is imposed and
the u/, correspond to the stress. If these measures are differ-
entiable with respect to the volume measure, their densities
are the components of the stress field. In the more general
case where a connection is specified on the space manifold,
any force can be represented in the form

fw=3 | vuda,
k=0JB

where V¥is the k th covariant derivative and the {0, } are the
representing measures.

The resulting structure has the following features.

(a) The theory applies in the general geometry of differ-
entiable manifolds.

(b) The definition of a force extends the definition given
in the case of finite-dimensional classical mechanics by Ar-
nold’ and Tulczyjew® to the infinite-dimensional case. Thus,
it clarifies the point of departure of continuum mechanics
from analytical mechanics.

(c) Some assumptions made in the classical construc-
tion, such as the form (1) of the forces on bodies, are obtained
mathematically as results of the definition of forces.

(d) The theory links the properties of forces and stresses
with the axiom of impenetrability.

(e) The theory allows stresses which are as irregular as
measures, while the classical theory deals with continuous
stresses only.

(f) The theories of materials of grade p are generalized to
differentiable manifolds. The suggested formulation is free
of any energy considerations and the relation between the
theory of materials of grade one and materials of a higher
grade is clear and simple. The grade of a material is a conse-

quence of the choice of a topology on the set of configura-
tions.

(g) A generalized form of the equilibrium equation is
obtained as a result of the mathematical procedure, and the
origin of the nonuniqueness in the relation between stresses
and forces is explained.

(h) A simple constitutive theory is suggested in which
body self-determinism and continuity imply jet locality.

Il. THE BASIC STRUCTURE

Definition 2.1: A body is a compact differentiable mani-
fold with corners. A typical body will be denoted by B and its
dimension will be denoted by .

Definition 2.2: The physical space is a differentiable
manifold § without a boundary.

Definition 2.3: A configuration of class p is a C*? embed-
ding of a body B in the physical space for p>1.

The requirement that a configuration of a body into
space is an embedding is a result of two traditional princi-
ples: the principle of impenetrability stating that one portion
of the matter never penetrates within another, and the prin-
ciple of permanence of matter stating that no region of posi-
tive finite volume is deformed into one of zero or infinite
volume (cf. Truesdell and Toupin,’ pp. 234-244).

For a fixed body B and a given p, the configuration space
Q is the set of all configurations of class p of the body in
space.

We recall'®>"3 that the set C?(B,S') of C? mappings of B
into S can be given the structure of a Banach manifold. For
anyk € C?(B,S), the tangent space TC?(B,S ), can be identi-
fied with CP(x*r), the Banachable space of C? sections of
the pullback of the tangent bundle 7 by x. The Banach space
topology of CP(x*r) is given as follows. Let :K — R "be a
C” mapping defined on a compact set K. We use the notation

loll , = max sup {IDWx)|}, 0O<j<p.

Clearly, || || , isa norm for the space of all such C” mappings.

Now, let B,,...,B, be a covering of B by compact sub-
manifolds of the same dimension as B such that each B, is
contained in the domain of a vector bundle chart ¥, of «*75.
Then for u € C?(x*1g) define

lul = max gl =1

where u; is the local representative of u in the chart ;.
Again, | || is a norm on C?(x*rg) and any other norm in-
duced by another covering will induce an equivalent topol-
ogy on C?k*rg).

The tangent space TC?(B,S ), can also be identified with
the vector space of vector fields along «, ie,
{ueCPB,TS); rsou=x}.

In addition, we recall that since p>1, the set of C” em-
beddings is an open subset'* of C?(B,S ). Hence, Q is a Ban-
ach manifold and we have



TQ, =C?k*rs)={uc C?B,TS);

An element of TQ is a virtual displacement, a term moti-
vated by the second interpretation we gave of 70, .

Definition 2.4: A force (of grade p) is an element of the
cotangent bundle 7 *Q.

Let fe T*Q, and u € TQ, for some configuration «.
The evaluation f(u) is traditionally called the virtual work
performed by the force f on the virtual displacment u.

The basic structure, as defined in this section, has been
given for the finite-dimensional configuration space by Ar-
nold’ and Tulczyjew.® In the infinite-dimensional case con-
sidered here, the specification of the class of admissible con-
figurations and the topology chosen will determine the
nature of forces. It is our aim to study the consequences of
these choices and to show that the basic properties of forces
and stresses in continuum mechanics can be obtained natu-
rally in the suggested framework.

Tsou = «}.

ill. THE REPRESENTATION OF FORCES BY STRESSES
AND THE PRINCIPLE OF VIRTUAL WORK

Given « € Q, the identification of TQ, with C?(x*rg)
allows us to identify the forces in T*Q, with section distri-
butions in C?(k*rs)*. Thus, the problem of restriction of
forces from a given body to its subbodies means mathemat-
ically that we have to study the restrictions of C? section
distributions.

Consider the jet extension mapping

Jpi CPlx*rs) — COUP(Kk*7s)).
We note that j, is linear, injective and if we use natural
charts on both «*7g and JPk*rs) and norms induced on
C?(k*r5) and C%JP(x*1)) by these charts, we observe that
Jp is also norm preserving. It follows that every force in
C?(k*rs)* is of the form j*(o) for some o € COJP(k*7))*,
where

i COR g — Coletrs)?
is the adjoint of the jet extension mapping. The elements of
COJP(k*rg))* are called stresses. Hence, if f = j*o), we
have f(u)= o (j,(u)) for every virtual displacement u and
we say that the stress o represents the force f. This is a
generalization of the principle of virtual work in continuum
mechanics which states that the virtual work performed by
the force on a virtual displacment is equal to the virtual work

performed by the stress on the derivative of the virtual dis-
placement.

IV. LOCAL PROPERTIES OF STRESSES

By their definition, forces are special types of section
distributions or currents (Choquet-Bruhat et al.'> pp. 400-
406, DeRham,'® Schwartz'’) and stresses that belong to a
simpler class of distributions (measures) represent them. In
this section we consider the local properties of stresses.

Let B,,...,B, be compact submanifolds of B of the same
dimension as B whose interiors cover B and let ¢,,...,4, be a
C = partition of unity such that supp ¢; Cinterior B;. It can
be shown that if 7 is a vector bundle over B, then

Co(m = [(wl,...,w,) e o C%n|B);
i=1

w; |BinBj =w; | B; an}

is isomorphic to C%#). The isomorphism is given by
wr— (w|B,,...w|B,) and its inverse given by
(wy,..w,)— =, where w,eC%) is given by
;| B; = ¢,w; and i, = O outside B; (for a complete proof see
Palais,® pp. 10 and 11).

Given vector bundle charts

¥, 7B, >K XR"Y KCR™

(assuming that B is m-dimensional and that the fiber of 7 is
N-dimensional) and denoting by 3, the first component of
V¥,, C%m|B;) can be identified with C°(y,(B;))", the space
of N-tuples of continuous real valued functions on ¥,{B;) for
each i. Thus, C %) is isomorphic with'°

(i) & CowpB;

W, loy, 0y, = v ‘°w,~°¢,~ on BinBj}

via w— (w;,...,w, ), where w, = ¥,ow|B;oy,~ !, and the in-
verse is given by w = 3,i,, where iv;€ C°(#) are given by
W, |B; = ¢,(¥;” 'ow,o¢;) and iv; = 0 outside B,.

We conclude, therefore, that given a partition of unity, a
vector bundle atlas, and u € C°(w)*, there exists a collec-
tion { p; }, i = 1,..,r, p; € C;(B,))"*, such that

pw) =Y u,(¥,ow|Boy").
i=1

Identifying C°(¢;(B,))¥* with C°(¢;(B;))* and observing
that C %(¢,(B,))* is the space of Radon measures on ¢;(B; ), we
conclude that each y; is a collection of N measures on ¢;(B; ).

Let {U,,¥,,¥.,] be a vector bundle atlas of 7, and let
C%(¥,(U,)) denote the Banach space of continuous func-
tions with compact support in ¥,(U,) equipped with the
usual topology so that C2(y, (U, ))* is the space of Radon
measures on ¥, (U, ). Assume that for each « there is a given
Ko € CoY, (U )Y, such that for each pair of indices,
B (Y owoy ) = pg(Wgowoypy'), for each weC%m)
whose support is contained in U,nUgz;. We now define
u € C%m)* by

plw) = z w08, woy~ ) weC%m),

where {¢;] is a finite partition of unity such that
supp ¢; C U, . It can be shown that u is independent of the
partition of unity so that any collection of local measures
that satisfies the transformation rule define an element of
CO%m)*.

Having reviewed the local properties of elements of
C %()*, we extend them to a wider class of sections, the inte-
grable sections. We say that a function y;: ¢,(U)— RV is
integrable with respect to the collection of measures
{ i} k= 1,...,N, if each component is integrable with re-
spect to all the p, i.e., if

il = supf
Sk Ji

i

|l!1j‘d|:lfik|<°°'
u)



It can be shown that for a section u of 7 with support in
UinU,; and measures u, and u; on ¢,(U;) and ¢,(U;), re-
spectively, satisfying the compatibility condition given
above, W,oucy,” 'is u, integrable if and only if ¥ ;oucy ;~!
is u; integrable. Thus, we say that a section of 7 is integrable
with respect to u € C %m)* ifits local representatives are inte-
grable with respect to the local representatives of g, of p.

Let y ;- be the characteristic function of a subset T of B.
If TnU, is p, measurable, y 1.y, is integrable with respect to
each of the u,,k=1,.,N, and we can restrict
u; to TnU; by p;|ThU; = y gy, #;- In case the family { 4, }
satisfies the compatibility condition on the intersections of
domains of charts so that it contains local representatives of
some peC%m)*, the same holds for the collection
{ u;|TnU,;} which will represent u|T =y, u, the restric-
tion of u to T. In particular, if P is a subbody of B, i.e., a
compact m-dimensional submanifold of B, u can be restrict-
ed to P.

Applying the foregoing results to the case where 7 is the
vector bundle J(x*(7s)), we conclude that a stress is repre-
sented locally by a collection of ¥ Radon measures that
transform according to the rule given above, where N is the
dimension of the fiber of J?(x*{r5)). Conversely, any such
collection of measures satisfying the transformation rule
represents a stress.

We denote the evaluation of the stress measure
o € C%JP(k*7g))* on a section w by 5 w do, and for a sub-
body P, we denote the evaluation of o|P on a section u of
J?((x|P)*{rs)) by § pu do.

V. THE CASE OF A CONNECTION

We now assume that connections are specified both on
the vector bundle 75: 7S — S and the vector bundle 75:
TB — B. The connection on 75 induces a connection on
x*1, and we recall that given a connection on both 7, and
x*7, we have an induced connection on the vector bundle of
p-multilinear mappings L ?(r5,x*7s): LP(TBx*TS)— B,
such that we have covariant derivatives

Viue CP~{Lrg.x*rs)), O<i<p,

for u € C?k*rs) (see Eliasson'! for details).
Consider the mapping

P .
VP2 CP*rg)— CY @ L'(ryh*rs))
- i=0

given by
u v (u,Vu,..,V*u)

Again, this is a linear continuous injection with a closed
image, and since

P . .
¢ & Lirax*rs)

( 8, CoULiranere)

P ,
= @ COYLi(rgu*rs))*,
i=0

we have a representation of forces by collections of tensor
measures (0o,01;...,0,), 0; € C L {(75,4*75))*, in the form

flu)= Zp"o J; Viu do,.

-

Thus, in case connections are specified on 7, and 75,
forces can be represented by tensor valued measures. We
note that the case p = 1 corresponds to classical continuum
mechanics, where o, is the tensor measure which corre-
sponds to the stress tensor. In this case we do not need the
connection on 7, as it is not required for the first covariant
derivative.

VI. THE RELATION TO PREVIOUS WORKS

In this section we review some ideas suggested in pre-
vious works,'®?° and relate them to the formulation given
here.

In Refs. 19 and 20 it was suggested that vector bundles
over B and § can serve as mathematical models for the local
properties of both body and space so that the vector space
attached to each point represents mathematically the neigh-
borhood of this point. A local configuration was defined as a
vector bundle morphism between the two vector bundles.
The local configuration space, local virtual displacements,
and local forces were defined for this new model, termed the
local model, in analogy with the previous set of definitions
which will be referred to henceforth as the global model. The
local configuration space is the Banach manifold of all local
configurations, local virtual displacements are elements of
the tangent bundle, and local forces are elements of the co-
tangent bundle of the local configuration space. It was
shown that local forces generalize the stresses of continuum
mechanics, and the principle of virtual work was obtained as
aresult of a requirement for compatibility between these two
models. The particular case where 75 and 7 represented the
body and space in the local model was studied. In this case
the local configuration space is the collection of vector bun-
dle morphisms 75 — 75 which can be identified with the
collection of sections of the jet bundle 7': J (B, S) — B.

Using the language of jet bundles and the properties of
manifolds of sections of jet bundles,'° the following obvious
generalization can be made. A local configuration of order p
is a continuous section of 77: J?(B, S ) — B. The local config-
uration space is the manifold of sections C °(7?). A local vir-
tual displacement is an element of the tangent bundle
TC%m?), and a local force o is an element of the cotangent
bundle T *C % ?).

Since both the global model and the local model repre-
sent the same physical phenomenon they are related by com-
patibility conditions in the following way.

Consider the jet extension mapping

Jp: CPa%)— Co%m?).

We say that a local configuration y € C%n?) is compatible
with a global configuration k € C?7°) if y = j,(x). 4 local
virtual displacement w € TC °(1r?) is compatible with a global
virtual displacement u € TC?(7°) if w = T'(j,)(u). We say
that a global force fe T *C?(n°) is compatible with the local
Jorce 0 € T*COm?) g 5, if f=T7*j,)o). These defini-
tions can be summarized by saying that the two models are

related by the jet functor J .
The relation between the formulation given in this sec-

tion and the rest of this paper is established in the following
proposition.



Proposition 6.1: (i) For any global configuration,
x, T*C%n?) jw» the space of local forces at the local config-
uration compatible with «, can be identified with the space of
stresses representing forces at «.

(ii) A global force f is compatible with a local force o if
and only if the stress that can be identified with o by (i) repre-
sents f.

Proof: The proof of the proposition becomes obvious
once the following results of Palais'® on sections of jet bun-
dles are used.

(a) Given x € C?(#°), there is a natural isomorphism

TCOw?), o =C O P(ic*Ts)).

(b) For k € CP(n°), the tangent to the jet extension map-
ping

T(jp)e: TCPm) — TCAm?); 1

is given by u > j (u), where u € C?(k*r5)=TC?(#"), and
the identification of (i) is used.
The assertions follow immediately.

VIl. FORCE SYSTEMS

The representation of forces by stress measures provides
an answer to the basic problem of restriction of forces to
subbodies. Given a stress measure o, a unique force f; is
induced on every subbody P by

folu) = f J,)do, ueCHK|P)r),

or in other words, the force on Pis represented by the restric-
tion of the stress measure to P.

We will use the term force system for a set function as-
signing a force fp € C?({x|P)*rs)* to every subbody P of B.
We will say that a force system is consistent if there exists a
stress representation o such that the force given on any sub-
body P is represented by the restriction of o to P.

Since the jet extension map is not surjective we cannot
expect that the representation of forces by stresses will be
unique. This feature is well known in continuum mechanics
and it is referred to as static indeterminacy. It is the static
indeterminacy which forces the use of material properties or
constitutive relations in order to be able to restrict forces to
subbodies. However, as the next proposition shows, a force
system can be consistent with at most one stress, i.e., if we
know the force acting on each subbody we can determine the
stress uniquely. This statement is a generalization of the
principle in continuum mechanics according to which the
stress at a point can be determined uniquely if the traction
across every surface is given. In the classical case however,
the result is stated for the case p = 1 only, and the stress
tensor measure is given in terms of a tensor field whose value
at a given point we want to determine.

Proposition 7.1: If a force system is consistent with the
stresses o, and o, then, o, = 0,.

Proof: In order to show that o, = o,, it suffices to show
that their local representatives in any given chart are equal.
Let A4 be a subbody contained in the domain of a chart in B.
For any subbody P of 4, let f be the force acting on Pin the
given force system which is consistent with both ¢, and o,.

We denote by ' the components of the local representative
of ueC?(x|P)*rg) and for the multi-index
a = (a;,...,a,, ), we recall that the local representative of
J,(w)is{D®u'}, |a| =a, + - + a,, < p. Let u,, andv,, be
the measures on P—the image of P under the chart—that
represent o, and 0,, respectively. By the representation of
forces by stresses we have

P . P .
st =[ 3 Dudu=[ $ Deud,
Plal=0 Pla| =0

for every u € C?((x|P)*rg) and every subbody P.

In particular, for j € {1,...,n}, where n is the dimension
of S, let u satisfy u' = §"/. By the equation above we have

KialP)=v,(P), |a|=0,
for every subbody P of 4. Since the two measures agree on
every subbody we have 1, = v ,,|a| = 0.

Now, given j, B, with | 8| = 1, let u satisfy u' = §'x?,
where (x*) are the local coordinates in the given chart. We
have

D%'du,, =J- D' dv,,
L le|<1 P |ajz<1

as the higher-order derivatives vanish. Since y,, = v, for
la| =0, and since D “*u’#0 only for i = j, @ = S, we have
1 ;5(P) = v,;g(P), for every subbody P and arbitrary j, 5,
| B| = 1. We conclude that that u,, = v, for all i and a,
with |a| = 1.

We can continue the process evaluating the virtual work
performed on the virtual displacements % such that
u' = §'ix® = §x"y(x*)*...(x")"", with |a| = 2,3,..., p to ob-
tain u;, = v,, for all @ with |a|< p.

Proposition 7.2: Let a force system { fp } which is consis-
tent with a stress o, be given. Then, if 4 is a subbody con-
tained in the domain of a chart on x*r¢ with coordinates
(x*,u”), the local representatives u,, of o are given by the
following inductive process.

Let (6'/x*)' be the section of C*((x|4 )*rs) whose local
representatives satisfy ©' = §/x® for given j and @. Then,

:u'ja ({)) = fP(5ij),s

HalP) = foloxey
a:

oy b ([ xe-ngy,
fga(a—m!fpx Wie

O<|a|<p,

la| =0;

where < means that B;<a;and | B| < |a|.
Proof: By hypothesis

£ =[S DS duy
PlBi<p
Since,

D&% = [a/(a— BN]x*— #
for B <a, and D?Px* =0,for a < 3, we have



fp(8"x") = 6'al po (P)

a! J‘ e
+ Y —2 | gina-sgy,
A @ B He

|Bl<p

=a!:uja(1~))

al a_ B
WY L" Wis

The proposition suggests a procedure which enables one
to determine whether a given force system is consistent with
any stress, and to obtain the local representatives of this
stress if it exists. Given any vector bundle atlas on x*rg, one
has to evaluate f,(5/)’ for all subbodies P contained in the
domain of charts. Then, if for every chart, the set function
P f,(8)' for all subbodies contained in the domain of the
chart can be extended to a measure on the domain of the
chart, we can identify u, (P), |@| =0, with f; (6”)' for the
various charts. We proceed by evaluating
fp(8x*)', |a| = 1, and we use the relations of the last pro-
position and the previously obtained u;, (P), |a| =0, to ob-
tain p, (P), |a| = 1. We check that u,,, |a| =1, can be
extended to measures and we continue the process for
fp(8Yx%)', |a| > 1, until we reach a pth step such that
M =O0forall |@|> p. Next, we have to check that the u;,
satisfy the transformation rules on the intersections of
charts. If the compatibility conditions are satisfied, we con-
clude that the { u , }, || < p, obtained are the local repre-
sentatives of a stress which is consistent with the given force
system.

VIil. CONSTITUTIVE RELATIONS

As we mentioned in the introduction, the problem of the
restriction of forces to subbodies, which was transformed
into a problem of nonunique relation between forces and
stresses, leads to the specification of the material properties
as additional information. The material properties are intro-
duced via the so called constitutive relations, which in classi-
cal continuum mechanics, associate the stress at a point with
the deformation gradient at that point. In this section we
suggest a way by which constitutive theory may be incorpo-
rated in the structure that we developed.

We assume that the following two principles hold in
continuum mechanics.

Axiom 8.1. (the principle of body self-determinism): The
force acting on a body is determined by the configuration of
the body, ie, for any body B there is a section
Fy: Q— T*Q which we call the loading of B.

Axiom 8.2 (the principle of consistency): Given any con-
figuration « of the body B, the force system {Fp(«|P); Pis a
subbody of B }, is consistent.

Thus, by Proposition 7.1, the principle of consistency
implies that any configuration of B determines a unique
stress representation in 7T*C%xs”). The mapping
Wy Q — T*Cn?)that associates stresses with the various
configurations is called a constitutive relation for B.

Given a force fe€ T*Q and a constitutive relation ¥,
such that f = T *(j,|(¥g(x)), the measure ¥ (k) induces a
unique force on any subbody and the problem of the restric-
tion of the force is immediately solved. The general problem
of continuum mechanics can be formulated now as follows.
Given a loading F of B and a constitutive relation ¥, de-
termine the configuration « such that W (x) represents Fy (x),
i.e., Fy(e) = T*(j,)(¥plx)

It should be noted that in the general geometric frame-
work we use, any “force” is a “follower force” in the sense
that a force has meaning only when it is associated with a
configuration. Thus, rather than looking for an equilibrium
configuration under a given force, a meaningless problem,
one has to find the equilibrium configuration for a given
loading.

We can examine now the way in which the principle of
local determinism restricts the constitutive relations. Let P
be subbody of Band let ¥, ¥, be constitutive relations on P
and B, respectively. Since for any «, the principle of body
determinism implies that the force on P and any of its subbo-
dies is determined by «|P, we have W,(x|P)= Wg(«x)|P.
Thus, we will omit the suffix and we will write ¥ when no
confusion can arise. We also note that this principle implies
that it is sufficient to examine the case where B is in R™.
Moreover, assuming that the constitutive relations are con-
tinuous, we can show that the constitutive relations are p-jet
local in the following sense.

Proposition 8.3: Let W be a continuous constitutive rela-
tion and let x € B. Then, for any € >0, there exists a §>0
such that if a subbody P is contained in a ball of radius & (in
the R™ Euclidean metric) centered at x, then,

¥} P — W/, (kx| P || <€,

where j ,(«)(x) denotes the pth-order Taylor expansion of x
about x.

Proof: Given any € > 0, the continuity of ¥ implies that
there exists a 8, > 0 such that if ||x — j ,(x)(x)||. » <&, then
[|W(x) — W(J ,(x)x))]| < €. By Taylor’s theorem, given &, >0,
there is a >0 such that ||x|P — j,(«)(x)|P||., <&, if P is
contained in a ball of radius 6 about x. Thus, by locality

W) P — W(j, ()x|P |
= [|W(x|P) — ¥(/, (k)(x)|P)|| <.

Since there is no meaning to the value of a stress at a
point, the classical locality assumption that the value of the
stress at a point depends on the value of the deformation
gradient at that point cannot be obtained or even conjec-
tured. If stresses were continuous sections and if the space of
stresses were given the C ' topology, then the continuity ar-
gument of the previous proposition together with the two
principles would imply that the value of the stress at a point
depends only on the value of the pth jet at that point.

IX. STRESSES GIVEN BY SMOOTH DENSITIES

In this section, in order to complete the analogy with
classical continuum mechanics, we obtain the representa-
tion of forces by surface forces and body forces, the equilibri-
um differential equations, and the boundary conditions.



Since the procedure involves integration by parts, we assume
that the stresses are given in terms of smooth densities. We
also assume that a connection is specified on.S and that B and
S have the same dimension. It follows that the connection on
S induces a connection on B. Keeping « fixed during the
discussion, we identify the body with its image under «.

We saw that if connections are given on B and S, any
force can be represented in the form

flu)= i:o L V*u do,

where o is the k th-order stress measure. Consider the vec-
tor bundle L (L *(rz,4*r5), A T*B). Assuming that B is

orientable, a smooth section s, of this vector bundle induces
a k th-order stress measure o, by

J. Viudo, = f 5, 0V*u,
B B

where s,0V*u is the m-form whose value at xe B is
5 (x)(V*u(x)). In particular, if a volume element 8 is given on
B, the collection of sections {s,}, s,€ C *(L *(75,x%75)*)
will induce a stress representation

fw=3 [ suvtue,

where s, (V*u) is the real function whose value at x € B is
51 (x)(V*u(x)). More geometric structure is available in the
case where both the connection and the volume element are
derived from a Riemmanian metric.

In order to perform the integration by parts in the gen-
eral geometric framework, we generalize the definition of the
divergence of a tensor field as follows. We have the isomor-
phism

m

L (L*(rpk*rs), N T*B)

=AT*Bery®L* rpx*rs)*
and we define

co: L(L*(rgk*rs), A T*B)

m—1

— L(L*~Yrgx*rs), A T*B),

to be the mapping induced by the contraction of the first
two factors in the tensor product above. Then, for

5, € C (L (L*(ry.,x*7g), A T*B)), we define the divergence

m

divs,e C*(L (L*~Yr5.x*75), A T*B))by

div 5, (V*~ 'u) = d (cols, (V*~ 'u))) — 5, (V¥u).

Using local expressions it can be shown that the diver-
gence is well defined and that it agrees with the usual defini-
tion in the case of a Riemannian manifold.

For the case p = 1, let the force f be represented by
smooth densities in the form

flu)= Lso(u) +5:(Val),

where 5;€ C (L (L {r5,4*75), A T*B)). Using the defini-

tion of the divergence and Stokes’ theorem, one can show
that f can be represented by two sections

m m—1
beC=(L(rg, AN T*B))andte C=(L(i*r5, A T*IB))(i
is the embedding B — B) in the form

f=[ ow+ | e,

where b and ¢ satisfy div s, + b = s, and ¢ = i*ocols,). (We
use i* for both the pullback of differential forms and the
pullback of vector bundles.)

In the case of Riemannian geometry we obtain for the
three-dimensional case the usual result, i.e., if

flu) =f (so;u” + 51, ul)dv
B
(the vertical bar denotes covariant derivative), we have
flu)= f 4u’ dv + f Z;u’ da,
B dB

where sy, + 4; =45;, 7, =n, s},, and n is the unit nor-
mal to the boundary.

Remark: The term s, vanishes and the term s, can be
shown to be symmetric in the Euclidean geometry if we re-
quire that the force is invariant with respect to the Euclidean
group (cf. Refs. 4, 21, and 22).

For the case p = 2, the case of second-grade continuum
mechanics, we assume that the stresses are given in terms of
the densities s, 5, and s, such that

Flu) = f (solt) + 5,(Ve) + 5(V).

It can be shown that f can be represented in the form

Flu)= f blu)+ L (t () + t'(Va),

where b, t, and ¢ are in

m

m—1
C=(L(ry, A T*B)), C=(L(i*rs, A T*3B)),

and
m—1

C =(L (L{i*rp,i*k*7s)), N T*3B)),
respectively, and they satisfy

b =div’s, — div s, + s,

t = j*oco(s,) — i*oco(div s,),

" = j*oco(s,).

A further integration by parts of the term involving ¢ ' is pos-
sible only if we have additional geometric structure. Again,

for the three-dimensional Riemannian geometry, the classi-
cal results (see, e.g., Refs. 23 and 24) can be obtained.
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