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Abstract

Mating systems are diverse in animals, notably in crustaceans, but can be inferred from a limited set of parameters. Baeza
and Thiel (2007) proposed a model predicting mating systems of symbiotic crustaceans with three host characteristics and
the risk of predation. These authors proposed five mating systems, ranging from monogamy to polygynandry (where
multiple mating occurs for both genders). Using microsatellite loci, we tested the putatively mating system of the
ectoparasite crab Dissodactylus primitivus. We determined the mating frequencies of males and females, parentage
assignment (COLONY & GERUD software) as well as the contents of female spermathecae. Our results are globally consistent
with the model of Baeza and Thiel and showed, together with previous aquarium experiments, that this ectoparasite
evolved a polygamous mating system where males and females move between hosts for mate search. Parentage analyses
revealed that polyandry is frequent and concerns more than 60% of clutches, with clutches being fertilized by up to 6
different fathers. Polygyny is supported by the detection of eight males having sired two different broods. We also detected
a significant paternity skew in 92% of the multipaternal broods. Moreover, this skew is probably higher than the estimation
from the brood because additional alleles were detected in most of spermathecae. This high skew could be explained by
several factors as sperm competition or cryptic female choice. Our genetic data, combined with previous anatomic analyses,
provide consistent arguments to suggest sperm precedence in D. primitivus.
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Introduction

The knowledge of mating systems is of primary importance to

determine the factors that have shaped evolutionary trends in a

given taxon. In return, phylogenetic or ecological constraints may

also explain why a mating system could be predominant in a

biological group. Mating systems are diverse in animals, but can be

predicted using a limited set of parameters that determine the

intensity of sexual selection, such as anisogamy, operational sex

ratio and the spatial and temporal distribution of ready-to-mate

individuals (especially receptive females) [1,2,3].

Crustaceans are extraordinarily diverse in morphology, life

history traits and habitat distribution [3,4,5]. They are ideal

biological models for the study of the selective forces affecting the

evolution of mating systems, because closely related species can

evolve different lifestyles and mating strategies. This prospect is

reinforced by the variability of many traits linked with sexual

selection, including internal vs. external fertilization, presence vs.

absence of sperm storage, intensive vs. no parental care,

semelparity vs. iteroparity [6,7]. Surprisingly, however, their

mating systems remain largely unexplored, with the noticeable

exception of commercially - exploited species [8,9,10].

Several crustacean taxa, including isopods, amphipods, shrimps

and crabs have evolved a symbiotic life history strategy. Symbiotic

crustaceans live with various other invertebrates (sponges,

anthozoans, sea urchins, among others), with relationships ranging

from parasitism to commensalism [4]. For these crustacean

symbionts, the hosts are discrete habitats providing food, shelter

and mating site. Such a discrete distribution of breeding habitats

may deeply influence mating systems, because the distribution and

abundance of host affect symbiont behavior and, hence, the rate

and number of interactions between potential mates. Based on the

framework of Shuster & Wade [2] and on life history strategies,

Baeza and Thiel [3] proposed a model predicting mating systems

in symbiotic crustaceans as a function of three host characteristics,

namely the relative size of host vs. symbiont, host morphological

complexity, and host abundance, as well on the predation risk off

hosts [5]. According to their model, these traits affect directly the

tendency of symbiotic crustaceans to either monopolize their hosts

(host guarding behavior, if hosts are not too large, rare and if

predation risk while changing host is high) or, rather, to roam

among them (host switching behavior, if hosts are too large and

too complex to be guarded, abundant, and if predation risk off

hosts is low). Monopolizing hosts or changing between them are
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the extremes of a continuum, where the rate and number of

interactions between individuals directly influence mating oppor-

tunities. Baeza and Thiel’s model comprises five mating systems,

ranging from strict monogamy to polygynandry (i.e., mating

occurs between multiple males and females with higher variance in

mate numbers for males). Surprisingly, polyandrogyny, which is

characterized by a higher variance in mate numbers for females, is

not considered in this theoretical model [2]. Interestingly, because

the model focuses on mating systems in discontinuous habitat, it

could be extended to other aquatic or terrestrial organisms living

in discrete refuges, like parasitoid insects, litter-associated

amphibians or sea-grasses bed associated species. While the

authors provided some examples illustrating their model, they

also claimed that empirical studies are lacking to confirm its

ubiquity [3,11]. Over the last decade, a number of works explored

the mating systems of ectosymbiotic crustaceans to test Baeza and

Thiel’s model. Most relied, on observations of life-cycles or of life

histories [3,5,11,12,13,14,15,16]. However, due to the aquatic

lifestyle of ectosymbiotic crustaceans, direct observations are not

easy and the knowledge on the species’ mating system is often

incomplete. Though polygamy or monogamy was suspected in a

number of cases, there was a lack of direct evidence [11,12,15].

More recently, mating systems have been investigated using

molecular tools, especially microsatellite loci [8,9,17,18]. These

studies showed that multiple mating occurs rather frequently in

crustaceans [18,19] but none of them concerns ectosymbiotic

species.

In the present work, we used the ectosymbiotic crab Dissodactylus

primitivus to test the prediction of the model of Baeza and Thiel [3]

that mating system can be inferred from host and crustacean life

history traits. D. primitivus is a pea-crab (Pinnotheridae), ectopar-

asite of two burrowing sea urchins (Meoma ventricosa and Plagiobrissus

grandis) distributed along the Caribbean and neighboring Amer-

ican coasts [11,20,21]. A higher fertility in pea-crab females living

on P. grandis was observed [13]. A population genetics analysis

revealed no genetic differentiation among crabs living on the two

different host species, suggesting a lack of host specialization [22].

Consequently, the higher fertility of females living on P. grandis

remained unexplained. Considering Baeza and Thiel’s model, the

authors hypothesized that D. primitivus could use a strategy of

‘‘pure-search polygynandry of mobile females’’ whereby both

males and females move between hosts to find several mates at the

period of reproduction. Indeed, individual hosts are relatively close

to each other with population densities of 0.2 individuals/m2 for

M. ventricosa and 0.02 individuals/m2 for P. grandis. Host sizes are

also particularly large compared to their symbiotic crabs (ca. 225

times larger in area). Finally, predation risk undergone by the

crabs when changing hosts could be low because they display the

same color as the surrounding coral sands. Using demographic

analyses, De Bruyn et al. [11,13] showed that D. primitivus

assemblages living on a same host are variable in composition.

Crabs can be found alone, in pairs (heterosexual or homosexual),

and up to 6 adult crabs can infect a single host [11,unpublished

data]. Furthermore, both genders could move among host

individuals, whatever the host species [11,13]. If a ‘‘pure-search

polygynandry of mobile females’’ mating system actually occurs, a

high rate of polyandry and polygyny should be genetically

detected.

Using microsatellite marker loci, we tested the ‘‘pure-search

polygynandry of mobile females’’ hypothesis in D. primitivus. We

determined the mating frequencies of males and females, as well as

parentage assignment by genotyping eggs from gravid females and

the contents of female spermathecae. In addition we addressed the

following two questions: (i) does mating system of D. primitivus vary

between the two hosts? This could account for the difference in

female fertility if mating frequency is positively associated with

fitness on P. grandis or, conversely, if females suffer sexual

harassment on M. ventricosa; and (ii) is multiple mating associated

to an unequal contribution of the females’ mates to offspring

production.

Materials and Methods

Sampling
Crabs were sampled in one site, located into the lagoon of

Discovery Bay (180u289N, 77u249W, Northern coast of Jamaica) in

March-April 2009 by SCUBA diving or snorkeling at depths

ranging from 2 to 4 m. All samples were obtained under the

University of the West Indies Collecting Permit from the National

& Environmental Planning Agency.

Fifteen hosts were sampled separately in plastic bags that were

immediately tied up after collection. Back in the laboratory, crabs

were individually isolated and preserved in pure ethanol. We

collected 39 gravid crab females (for a total of 64 females), among

which 18 were chosen for molecular analyses (9 from 8 M.

ventricosa and 9 from 7 P. grandis) (Table 1). All collected male crabs

at the same site (55 in total) were used for molecular analyses,

taking in account their host of origin (labeled ‘‘M’’ or ‘‘P’’ crabs

sampled on M. ventricosa or P. grandis, respectively). Gravid females

carried 203 eggs634 (mean 6 SD, N = 9). Genotyping was

performed on an average of 40.5664.67 eggs per clutch, totaling

758 eggs that were randomly sampled in each clutch (Table 1). For

14 of these 18 gravid females, we also collected a spermatheca.

Tissue and DNA extractions
For each adult crab, two legs were removed and dried during

two hours at ambient temperature. The clutch of each gravid

female was isolated and eggs were placed individually in a

microtube and dried during two hours. Then, the legs and eggs

were frozen at 280uC pending DNA extraction step.

DNA extractions were performed using a Chelex chelating resin

method [23]. Each sample was crushed using one tungsten ball

(3 mm diameter) and a mixer mill (1 min at 18 Hz). After having

added 100 ml of ‘‘Chelex solution’’ (1 g of Chelex into 20 ml of

sterile water), another crushing was made during 1 min. The

samples were then placed at 85uC during 90 min and mixed every

30 min. Finally, after centrifugation (3 min at 12 000 rpm), the

supernatant with DNA was collected.

Spermathecae were dried for one hour and then directly placed

into Chelex solution without any crushing step.

Amplification and genotyping
Four highly informative microsatellite loci [24] were amplified

in one multiplex (DpA113-VIC, DpA101-NED, DpD110-PET,

DpD111-FAM) (Table 2). PCR reactions were made in a volume

of 15 ml that includes 7.5 ml of Master Mix Qiagen (Taq

Polymerase, nucleotides), 1 ml of DNA, 0.3 ml (10 mM) of each

forward/reverse primer and 4.1 ml of sterile water. The PCR

conditions consisted of 40 cycles of 30 s at 94uC (denaturation), of

90 s at 51uC (annealing) and of 30 s at 72uC (elongation). These

cycles were preceded by a step of 15 min at 95uC (first

denaturation) and were followed by a step of 10 min at 72uC
(last elongation). Finally, 1 ml of amplified DNA was mixed with

0.4 ml of the size standard LIZ (AB) and 10 ml of formamide prior

to electrophoresis with an AB 3730 DNA Analyzer.

Genotypes were deduced from electropherograms using the

software Peak Scanner (products.appliedbiosystems.com). Allelic
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binning was done using the program Autobin but each genotype

was checked by eye [25].

Parentage analyses
Using FSTAT [26], we assessed deviation from Hardy-Weinberg

equilibrium using FIS and randomization of alleles between

individuals for 169 previously genotyped specimens, 82 and 87

individuals from P. grandis and M. ventricosa, respectively [22].

Then, we tested if the four loci were adequate for parentage

analysis. First, using the GERUD (2.0) software, we calculated an

exclusion probability (PE), namely, the probability to exclude a

candidate parent if this candidate is effectively unrelated to the

offspring [27,28]. This PE was estimated taking into account that

one parent is known with certainty (here the mother) and using the

allelic frequencies based on all adult individuals collected in

Discovery Bay (this study and [22]). We also calculated the

probability to detect multiple paternity in a sample of the offspring

(PrDM) using the software PrDM [29]. This software allows

Table 1. Characteristics of clutches, host infrapopulation composition and estimated fathers number and identity.

Mother’s (clutch) ID (a) No. of eggs genotyped No. of fathers (b) Adult infrapop. (c) Fatherhood (d)

f m m1 m2 m3

M12 46 2/2 2(1) 1 M15 1

M16 44 1/2 1(1) 1 2* 3

M22 31 1/1 2(1) 1 M24

M32 39 1/1 2(1) 1 M31

M39 47 1/1 1(1) 1 M38

M49 37 2/2 2(1) 0 4* 5

M64 36 4/6 1(1) 1 M63 M18 M84* 6* 7* 8*

M69 35 2/3 2(2) 1 M84* 2* 7*

M70 45 3/3 2(2) 1 M71 9 10

P3 42 2/2 1(1) 1 6* 8*

P5 45 2/3 1(1) 0 11 12 13*

P11 41 2/2 1(1) 2 14 15

P26 38 1/1 1(1) 3 P27

P46 37 1/1 1(1) 1 P45

P58 43 1/1 5(2) 3 16*

P59 35 2/2 5(2) 3 16* 17

P69 45 3/4 3(2) 0 13* 18 19 20

P70 44 3/3 3(2) 0 4* 21 22

Mean (SD) 40.56 (4.67) 1.89 (0.90)/ 2.22 (1.31)

(a) M = M. ventricosa and P = P. grandis, M69&M70, P58&P59, P69&P70 were found on the same host individual; (b) No. of fathers determined by GERUD/COLONY; (c)
composition of the adult infrapopulation (individuals on the same host individual) including the studied mother, f = females (including gravid females in brackets) and
m = males; (d) Fatherhood (COLONY analyses), Males were subdivided in three classes: m1 = fathers present with the mother on the host, m2 = males sampled in
Discovery Bay and m3 = inferred fathers, not sampled. Males in bold and shown by a star were contributing to two clutches.
doi:10.1371/journal.pone.0090680.t001

Table 2. The four microsatellite loci used in this study.

Locus Motif Primers Fluorochrome Size range (bp) A

DpA113 AC F: GCGTAGTTCTCCTCCCGTAG VIC 108–134 12

R: GCGCTACCCATCAGTCTTG

DpA101 CA F: CTCTCCGTCACTTTGTGTAGGT NED 217–259 16

R: GTGTTCTTGTGTGCGTGTATTC

DpD110 TAGA F: GAAGGGTTGCTTATAGACGTG PET 236–276 17

R: CCTCCTTGTTTACCGTGAGT

DpD111 CTAC F: CTTGACCTGACCTGTCTATCA FAM 251–309 11

R: CGGTGGACTACATAAGTAAAGG

A denotes the total number of alleles evaluated from a previous population genetics study [22]. The fluorochromes are part of the DS33 Applied Biosystems Standard
Dye Set.
doi:10.1371/journal.pone.0090680.t002
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calculation of a set of PrDM according to the number of putative

fathers, their relative contribution to offspring and the number of

offspring analysed by clutch [9,29]. For example, given the level of

informativeness of our set of loci, we may have increased the

number of offspring in order to detect rare contributions.

Parentage assignment was analyzed using two software: GERUD

2.0 and COLONY 2.0.2.1 [28,30,31]. While GERUD infers the

minimum number of fathers, COLONY infers the most likely

number of fathers.

Mother’s and genotyped offspring’s alleles were compared to

the set of alleles observed from her spermatheca. Extra alleles were

taken as a clue of additional inseminating males for which

contribution to clutch was not detected. The number of matings

was estimated by summing the number of newly males detected to

the minimum number of fathers (GERUD data).

We evaluated how the paternal contributions in each clutch

deviated from an equilibrate contribution (G-test for goodness-of-

fit on COLONY data, p-value threshold after Bonferroni

correction = 0.004) using an Excel Macro developed by McDonald

[32]. In addition, skewness (S) in paternity was calculated

according to Pamilo and Crozier [33]: S = (Mp2Me,p)/(Mp-1)

where Mp is the total number of fathers and Me,p is the effective

number of fathers [34]. We also evaluated the correlation between

relative contribution of fathers in a clutch and the genetic

similarity of the two partners. Genetic similarity (GS) was

calculated as GSij = 2 Nij/(Ni+Nj) with Nij the number of alleles

in common between the partners (i and j) and Ni and Nj the

number of alleles of the individuals i and j, respectively [18,35].

Other classical statistical tests (Mann-Whitney tests, Spearman

correlations, Wilcoxon signed-rank tests, G-tests) were performed

using STATISTICA 7.0 (statsoft.com), PAST (folk.uio.no/oham-

mer/past) or Excel Macro developed by McDonald [32].

Results

Overall FIS was equal to 20.025 for adult crabs from M.

ventricosa and 20.017 for crabs from P. grandis and were non-

significantly different from zero. This result is in agreement with a

previous population genetics study on a larger data set from

Discovery Bay [22].

None of the genotypes of the 73 adults used in our study were

similar except for two individuals (M16, M17), leading to a

probability of exclusion (PE), when one parent is known of 0.991.

This indicates that the four microsatellite markers were variable

enough to discriminate candidate parents. The probability to

detect multiple paternity (PrDM) increased rapidly with sample

size, indicating that the selected egg sample size ranging from 35 to

47 was high enough to detect multiple paternity even with unequal

contributions of the fathers (Table 3).

Clutch analysis: searching for evidence of polyandry and
polygyny in D. primitivus

Multiple paternity was detected in 12 clutches out of 18 in

COLONY (i.e., 66.7%) and 11 clutches in GERUD (i.e., 61.1%;

Table 1). Using GERUD, the minimal mean number of fathers

per clutch was 1.89 when combining data from both hosts (Table 1,

M. ventricosa SD = 1.05 and range = 1–4 and P. grandis SD = 0.78,

range = 1–3). Using COLONY, the estimated number of fathers

per clutch was 2.22 for the whole data set (Table 1), 2.33 for

females from M. ventricosa (SD = 1.58, range = 1–6) and 2.11 for

females from P. grandis (SD = 1.05, range = 1–4). These values

(between software) were non-significantly different (Mann-Whit-

ney test, U = 142.5, p = 0.54). Unless specified, most of the results

described in the forthcoming paragraphs will refer to results

obtained with COLONY, because the use of sampled fathers in

parentage assignment was possible with this software.

The estimated rate of polyandry in D. primitivus was the same on

both host species (6/9), and the number of fathers per clutch was

not significantly different between the two hosts (Mann-Whitney

test, U = 40.0, p = 0.96). The total number of fathers for the whole

data set was 32 (Table 1). Among them, COLONY detected eight

males that contributed to two different clutches (Table 1), one

being among our sampled males (M84) and seven inferred by

COLONY. Three fathers contributed to two clutches sampled

from the two different host species (males 4; 6 and 8 on Table 1).

Three pairs of females (M69–M70, P58–P59, P69–P70) were

collected on the same host individual (Table 1). Two of these pairs

were sired by different males, but the two females P58–P59 were

sired by the same male (male 13, not captured in our sampling).

There was a significant deviation from an equal contribution

among fathers in 11 out of 12 multipaternal clutches (Figure 1,

Table S1), with a skewness of paternity (S) ranging from 0.44 (P70)

to 0.96 (M12) with an average of 0.81 (SD = 0.16) (G-tests all

significant, all p,0.004). For 8 clutches out of 18, one father was

found on the same individual host than the mother (M15, M24,

M31, M38, M63, M71, P27, P45; Table 1; Figure 1). Among these

8 fathers, 7 were the principal (or the only one) contributors of the

clutch (Figure 1). The mean number of fecundated clutches by a

successful male is 1.25 (SD = 0.43, N = 32). The mean number of

offspring produced were 114.19 (SD = 98.37, N = 32) for males

and 203 (SD = 34, N = 9) for females (Table S2).

There was no association between the number of eggs per

clutch (a correction for female size was included by dividing the

number of eggs per clutch by the square of the cephalothorax

width) and the mating frequency (Spearman correlation, rs = 0.39,

p = 0.30, N = 9). Moreover, no correlation was detected between

genetic similarity of the two parents and the relative contribution

of fathers to the clutch (rs = 0.02, p = 0.90, N = 40).

Spermatheca analysis: searching for mates that did not
contribute to the clutch

The total number of additional alleles detected was different

between loci (DpA113: 4, DpA101: 12, DpD111: 23, DpD110: 7).

For the 14 spermathecae investigated, nine contained at least a

non-parental allele for two loci or more (Table 4). Moreover, two

of them had three non-parental alleles for at least two loci

(Table 4). There were significantly more mates than the minimum

number of fathers (estimated with GERUD) (2.71 vs 1.93,

Wilcoxon signed-rank test, z = 18.00, p = 0.008).

Discussion

Our results are globally consistent with the model of Baeza and

Thiel [3], indicating that mating system can be predicted from

host and crustacean life history traits. They show, together with

the experiments of De Bruyn et al. [11,13], that the ectoparasite

crab D. primitivus evolved a polygamous mating system where both

males and females move between hosts for mate search. Other

studies inferred mating systems of symbiotic crustaceans from this

predictive model [12,14,16]. However, our study is the first that

directly links such predictions with genetic measurements.

Parentage analyses reveal that polyandry is frequent in Dissodactylus

primitivus and concerns more than 60% of clutches, with clutches

being fertilized by up to 6 different fathers. Moreover, the number

of matings was greater than the number of fathers, indicating that

some male mates did not contribute to the offspring. Because we

did not genotyped the whole clutches, the difference between the

minimum number of fathers and the minimum number of matings

Polygamy in a Crustacean Parasite
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could be lower than our estimation. Anyway, our estimation of the

minimum number of matings was most likely conservative,

because (i) we considered an additional mating only when a new

allele was detected at two different loci, and (ii) a competition

during amplification step may occur, leading to the non-

amplification of some alleles (e.g. short allele dominance [36]),

therefore minimizing the number of detected additional alleles.

Polygyny is supported by the detection of eight males having sired

two different broods. Only twenty five percent of the 32 detected

fathers occurred simultaneously with the investigated females on

the same individual host. This suggests that the fathers and/or the

mothers regularly leave the host after mating. In line with this

hypothesis, a few inferred males have mated with females collected

on distinct host species, indicating that the crabs could move from

one to another host whatever the host species. Overall, these

results corroborate those of De Bruyn et al. [11], showing that

crabs move between hosts in the field, and Jossart et al. [22]

reporting a lack of genetic differentiation between crabs found on

the two host species. The model of Baeza & Thiel does not

consider the variance in mate numbers between genders. Our

results (from clutches) suggest a higher variance in females

(mean = 2.22; variance = 1.31; N = 18) than in males (mean = 1.25;

variance = 0.44; N = 32). Therefore, according to Shuster & Wade

(2003), the mating system of D. primitivus could be considered as

polyandrogyny rather than polygynandry. However, our study

probably underestimates the real values, especially for males,

because we lack data on the set of females they mated at a given

time.

Our data also indicate that the difference in brood size reported

by De Bruyn et al. [11] for D. primitivus collected on P. grandis and

M. ventricosa does not imply a difference in multiple paternity: the

number of mates is not related to the number of eggs occurring in

a brood/clutch, conversely to what was observed in some other

species where multiple paternity occurs (e.g. the shrimp Caridina

ensifera [18]).

We detected a significant paternity skew in 92% of the

multipaternal broods. This confirms that high skew could occur

in various taxa among decapod crustaceans [37,38]. The paternal

Table 3. Probabilities to detect multiple paternity (PrDM) for different number of eggs per clutch and either 2 or 3 fathers
contributing and different relative contribution.

Fathers’ contributions

50:50 90:10 33:33:33 80:10:10

2 fathers 3 fathers

Number of eggs genotyped per clutch 10 0.995 0.635 0.999 0.882

20 0.999 0.867 0.999 0.986

30 0.999 0.950 0.999 0.998

40 0.999 0.981 0.999 0.999

50 0.999 0.992 0.999 0.999

(e.g. 50:50 is an equal contribution of both fathers).
doi:10.1371/journal.pone.0090680.t003

Figure 1. Fathers’ contributions within each clutch (COLONY analyses). Fathers are shown by alternate shadings. Stripped bars correspond
to fathers sampled on the same host individual as the mother (see also Table 1). The values above bars correspond to the skewness (S) in paternity.
The stars indicate that paternal contributions deviated significantly from equality (G-test for goodness-of-fit, Bonferroni adjusted p-value
threshold = 0.004). M = M. ventricosa and P = P. grandis.
doi:10.1371/journal.pone.0090680.g001
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skew is probably higher than the estimates inferred from the brood

since additional alleles were detected in most of spermatheca

(64%). High skews in sperm usage could be explained by several

factors like sperm competition or cryptic female choice [39,40,41].

Our study was not designed to test the proximate causes for the

sperm use bias. Nevertheless, some explanations can be discussed

in the light of our data. First, cryptic female choice can be

associated with a negative relationship between reproductive

success of sires and their relatedness to mothers, allowing the

avoidance of genetic incompatibility or inbreeding [42]. Yet, we

found no correlation between genetic similarity of the two parents

and sire success, nor an advantage in brood size in polyandrous

females. Second, females of Dissodactylus sp. could produce more

than one clutch during a breeding period or during their entire life

[43,44]. They are able to store sperm, but are also potentially

receptive to mating before each new clutch. In pea-crabs, the

spermatheca forms a pouch with the oviduct opening at the basis

of the vagina where sperm intromission takes place [45].

Consequently, if several spermatophores are inserted successively,

the last male sperm would be: (i) in higher numbers than the

preceding stored sperm (e.g. due to sperm mortality), (ii) in

favorable position, at the basis of the spermatheca close to the

oviduct [6,46,47]. The importance of such ‘‘stratification’’ in

paternity insurance was notably proposed for the snow crab

Chionoecetes opilio [48,49] and the importance of position of stored

sperm has been noted in fertilization success of isopods [50].

Moreover, our results show that 83% (5/6) of fathers present on

the same host than female had the skewness of paternity in their

favor (in clutch or because some alleles in spermatheca were not

used). It is likely that this father was the last male that mated with

the female. Therefore, anatomic and genetic data provide

consistent arguments to suggest sperm precedence [39] for D.

primitivus.

Future researches should test, for contrasted conditions, which

factors particularly affect multiple paternity (e.g. predation

pressure off hosts). Spermathecae should be further examined to

characterize the degree of sperm stratification after short-term and

long-term sperm storage, in order to estimate sperm precedence

pattern. Moreover, a complementary experiment in aquarium

(where all mating individuals are known) could also be done in

order to quantify post-mating sexual selection and the sex

difference in the opportunity for selection [2,51].

Supporting Information

Table S1 Summary of the calculation of the mating
skew in multipaternal clutches. Mp = total number of

fathers. SSq = sum of squares of the relative contributions.

Me,p = effective number of fathers ( = 1/SSq). S = (Mp 2 Me,p)/

(Mp -1)

(DOCX)

Table S2 Estimate of the average number of offspring
produced per male (and variance). Total brood size of 203

was considered, because it is the average brood size calculated

from female data.

(DOCX)
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15. Ocampo EH, Nuñez JD, Cledón M, Baeza JA (2012) Host-specific reproductive
benefits, host selection behavior and host use pattern of the pinnotherid crab

Calyptrae otheresgarthi. J Exp Mar Biol Ecol 429: 36–46
16. Baeza JA, Ritson-Williams R, Fuentes MS (2013) Sexual and mating system in a

caridean shrimp symbiotic with the winged pearl oyster in the Coral Triangle.

J Zool 289: 172–181.
17. Angeloni L, Bradbury JW, Burton RS (2003) Multiple mating, paternity, and

body size in a simultaneous hermaphrodite, Aplysia californica. Behav Ecol 14(4):
554–560.

18. Yue GH, Chang A (2010) Molecular evidence for high frequency of multiple
paternity in a freshwater shrimp species Caridina ensifera. PLOS ONE 5(9):

e12721.

19. Avise JC, Tatarenkov A, Liu JX (2011) Multiple mating and clutch size in
invertebrate brooders versus pregnant vertebrates. Proc Natl Acad Sci USA

108(28): 11512–11517.
20. Telford M (1982) Echinoderm spine structure, feeding and host relationships of

four species of Dissodactylus (Brachyura: Pinnotheridae). Bull Mar Sci 32: 584–

594.
21. Hendler G, Miller JE, Pawson DL, Kier PM (1995) Sea stars, sea urchins, and

allies. Echinoderms of Florida and the Caribbean. Washington: Smithsonian
Institution Press. 390 p.

22. Jossart Q, David B, De Bruyn C, De Ridder C, Rigaud T, et al. (2013) No
evidence of host specialization in a parasitic pea-crab exploiting two echinoid

hosts. Mar Ecol Prog Ser 475: 167–176.

23. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple
extraction of DNA for PCR-based typing from forensic material. Biotechniques

10: 506–513.
24. Anderson CM, Aparicio GJ, Atangana AR, Beaulieu J, Bruford MW, et al.

(2010) Permanent Genetic Resources added to Molecular Ecology Resources

Database 1 December 2009-31 January 2010. Mol Ecol Notes 10: 576–579.

25. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, et al. (2011) Current
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