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A volume integral formulation to compute eddy currents in non-magnetic conductive media is presented. The current distribution is 

approximated with facet finite elements. The formulation is general and leads to an equivalent lumped elements circuit. In order to 

ensure the solenoidality of the current distribution, an algorithm detecting the independent loops is then used for the resolution. The 

formulation is tested on TEAM workshop Problem 7. Even with coarse meshes, its accuracy is demonstrated.  

 
Index Terms — Eddy currents, Facet element, Generalized PEEC method, Integral equation method. 

 

I. INTRODUCTION 

HE PEEC method (Partial Element Equivalent Circuit) 

is a well-known integral equation technique leading to an 

equivalent circuit representation of a electromagnetic device. 

It is mainly used for the modeling of complex interconnect 

problems and can be favorably applied to devices where the 

air region is dominant [1]. However, the classical PEEC 

method does not enable easily the modeling of 3D conductive 

media. Moreover, it requires the generation of a structured 

mesh associated with uniform current density on each element. 

Thus, it use is still limited for general geometries.  

Previously, eddy currents integral formulations based on 

general Whitney elements have been proposed [12][13]. Our 

approach has the particularity of being based on the use of 

facet elements [2]. The reliability of such elements has already 

been shown for finite element magnetostatic formulations [3], 

for integral magnetostatic formulation [4] and also for steady 

conduction problems [5]. Different quantities have been 

approximated, such as the magnetization in [4] and the current 

distribution in [3][5]. 

This paper proposes a generalization of the classical 

inductive PEEC formulation using facet elements enabling the 

use of general mesh. A similar approach has been recently 

proposed by Alotto et al. but limited to the modeling of 

surface regions [6]. In our approach, the current density is 

linearly interpolated with first order facet elements. An 

equivalent electrical circuit representation, whose branches are 

the facets and the nodes of these branches are the centroids of 

elements, is proposed (i.e. an equivalent electrical circuit build 

on the dual mesh). The integral inductive PEEC formulation is 

then adapted to this configuration. The solenoidality of the 

current distribution is ensured thanks an independent loops 

search technique. 

II. FORMULATION 

A. PEEC Integral equation 

From Maxwell-Faradays equation, a magnetic vector A and 

a scalar electric potential U exist such as: 

 

Uj gradAE    (1) 

 

where E is the electric field and ω the pulsation.  

We consider the conductive and non-magnetic region ΩC 

representing a set on conductors. The electric field E in the 

conductor satisfies Ohm’s law  

 

Uj gradA
J
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 (2) 

 

with σ is the material conductivity and J is the current density. 

Without any magnetic material, we can write the magnetic 

vector potential A as 
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where μ0 is the vacuum permeability. By introducing this 

expression in (2), we get 
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The current density has to satisfy the several conditions. In the 

conductive region ΩC, 

 

div J = 0 (5) 

 

and on the boundary of ΩC, 

 

n.J = 0 (6) 

 
where n is the external normal. 

B. Facet Element Interpolation 

The current density is interpolates with first order facet 

elements such as 
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where wj is shape function and Ij is flux across the jth facet. 

Expressions for wj can be easily computed for different kind 

of element [2]. The main property of such element family is 

that the normal component of wj is conserved through each 

facet, so also ensuring the conservation of current. 

 

  
Fig. 1. Representation of shape functions of the faces {i, j, k} and {i, j, k, l} 

for the reference tetrahedral and reference hexahedra.    

 

Let us remember some the properties for these shape 

functions: 
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where sj is surface of facet j and ve is volume of element e 

which contains the facet j. The sign (  ) depends on the facet 

orientation. 

C. System Assembly Using Facet Elements 

Applying the Galerkin method to (4) by using wi as 

projection functions, a system of linear equations is obtained 
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Matrix [Zb] can be seen as the impedance matrix of the 

electrical equivalent circuit generated, If is vector of currents 

through the facets, [R] is matrix of the resistive terms, and [L] 

is the matrix of the mutual inductances. Let us notice that the 

resistive matrix [R] is sparse and similar to a matrix obtained 

during a classical FEM assembly. On the other hand, the 

inductive part [L] is fully dense and more representative of 

integral method-based assembly. To avoid integral singularity 

inaccuracies while the computation of [L], different Gauss 

points repartition are considered especially for the 

computation of the self inductance (i.e. Lii). 

Let us define Ue the average values of the voltage on each 

finite volume element Ωe and Uf its average value on each face 

Γf of the mesh. We have: 
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with ve is the volume of element e and sf is surface of facet f. 

Let us apply divergence theorem on equation (13), we get  
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where Г is the boundary of region ΩC. 

Let us now consider the computation of Ubi for an internal 

facet i (see Fig. 2.). The first term in (16) is null because the 

value of wi vanishes on all others facets of both adjacent 

elements sharing facet i. Thus, from (9) and (14), we can 

deduce that Ubi is the difference between the averaged 

voltages of both elements sharing i. 

Let us now consider Ubi for a border facet (i.e. belonging to 

the boundary of region ΩC). From (8) and (15) the value of the 

first term in (16) becomes equal to the averaged potential on 

the facet. The second term becomes equal to the volume 

averaged voltage on the only elements to whom facet i 

belongs. Of course, facet orientations have to be considered in 

order to properly compute the values of Ubi.  

 
Fig. 2. Primal and dual meshes, the black points are the centroid of elements, 

red ones are the centroid of the faces on the boundary. Both Ubi configurations 

are represented (internal and border facets). 

 

From previous considerations, an equivalent electrical 

circuit (10) can be generated. The branches of this circuit are 

represented by the facets of initial mesh. Each element of the 

mesh can then be seen as a node of this circuit. This electrical 

circuit is in fact an equivalent representation of the dual mesh. 

D. Resolution of the Electrical Circuit 

In order to ensure the solenoidality of J, we can use a 

similar technique to which used for classical structured PEEC 

method. In our approach, we have decided to use a circuit 

solver resolution based on the determination of independent 

loops. The general principle consist in find small topological 

loops (minimum number of branches), allowing a very quick 

research of independent loops. Furthermore, the choice to 
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maximize the number of small loops allows significantly 

improving the matrix condition number of the final system of 

equations. 

In addition, we can notice that the boundary condition (5) 

can be easily taken into account in the formulation, by simply 

suppressing the associated degree of freedom in the equivalent 

circuit. If the meshed conductor is electrically coupled with an 

external circuit, the electric coupling can naturally be imposed 

in the formulation without any difficulty.  

Fundamental circuit equations are expressed in the presence 

of external source voltages. 

 

   0 sb UUM  (16) 

 

with [M] is the branch-fundamental independent loop 

transition matrix where the value of each element can be  -1, 0 

or 1 and Us the vector of external voltage sources (most part of 

time equal to 0). We can write a new system of linear 

equations where unknowns Im are currents flowing in 

independent loops. 
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Once linear system has been solved, we obtain the currents 

flowing on each branch by applying the following equation. 
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E. Addition external source field 

In presence of an external source like (a coil for instance) in 

which the current density is imposed, equation (4) has to be 

adapted. 
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where A0 is the source magnetic vector potential created by 

the external source. Equation (10) becomes 
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Independent loops search technique and resolution is then 

applied to (20) as previously. 

III. NUMERICAL EXAMPLE 

In order to validate the proposed formulation and to show 

its performances, we consider the Problem 7 of the TEAM 

workshop benchmark problems [8]. The results will be 

compared to those obtained with FLUX [9], a commercial 

Finite Element Method (FEM) program. 

The geometry of the Problem 7 is presented in Fig. 3. The 

problem consists in an asymmetrical conductor with a hole 

and an exciting coil. The coil is placed 30mm above the plate 

and excited with 2472 Ampere-turns at 50Hz and 200Hz. The 

driving current reaches the maximum at a phase of 0 degrees. 

In this problem, we have to add an additional source magnetic 

vector potential representing the contribution of the coils in 

which the current distribution is known. We have 
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where, J0 is the current density vector of the coil and Ω0 is coil 

region. A0 is evaluated numerically thank a tetrahedral 

discretization of the coil and a Gauss point quadrature. 

 
Fig. 3. Geometry of TEAM problem 7: coils and conducting plate with 

hole (all dimension are in mm). 

 

We focus on the computed eddy current distribution and 

losses in the plate (Fig. 4(a), Fig. 4(b) and Tab. 1.). The results 

show that the relative error of the formulation in comparison 

with the 3D FEM associated to a very high mesh density is 

good (<5 %). Figure 5(a) and 5(b) present the convergence of 

the Joules losses value of two methods follows the number of 

elements in the plate at 50 Hz and 200 Hz. Results provided 

by our formulation are very encouraging, the convergence 

being reached with a very few number of elements in 

comparison with the FEM one. 

Another advantage of the new formulation is its capacity to 

treat any multiply connected problems thanks to the efficient 

determination of independent loops of the equivalent electrical 

circuit. This point is really valuable for the modeling of 

industrial problem, where the techniques of automatic cuts 

search can be poorly efficient [10].  

 

TABLE I 

RELATIVE ERROR OF OUR FORMULATIONS COMPARED TO THE 

FEM SOLUTION  

 

f = 50 Hz f = 200 Hz 

Joules 

Loss(W) 
Diff. 

Joules 

Loss(W) 
Diff. 

FEM 3D with  

2.000.000 elements 
4.70 Ref. 9.50 Ref. 

Integral formulation  

with 7000 elements 
4.78 1.7 % 9.70 2.1 % 
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(a) 

 
(b) 

Fig. 4. Eddy current distribution in the plate, (a) at 50 Hz, (b) at 200 Hz 
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(b) 

Fig. 5. Convergence of Joules losses value in the plate,  

(a) at 50 Hz, (b) at 200 Hz 

IV. CONCLUSION 

In this paper, we have presented an original eddy currents 

volume integral formulation using facet elements dedicated to 

the modeling of non magnetic conductors. The formulation 

has a small relative error in comparison with a 3D reference 

FEM with a high mesh density. Moreover, the convergence of 

the results is quickly reached and results with very coarse 

meshes remain acceptable.  

This new formulation seems very attractive because it 

enables an easy treatment of the multiply connected problems 

without cuts technique and without meshing the air. Moreover, 

the coupling with the classical PEEC formulation is natural, 

both formulation having same theoretical bases. It opens 

interesting perspective for the modeling for multiply 

connected volume/surface regions with direct electrical 

connections a complex wiring system. 

The obtained matrix is fully dense but this problem can be 

overcome by the use of a compression technique like Fast 

Multipole Method [11] enabling the save of memory and 

reducing the computation time. It remains to study the 

robustness of this approach in this context where 

convergences can sometimes be difficult to reach. 
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