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In the previous work, we introduced a formulation joining two concepts: 1) the source-field technique and 2) the differential permeability method. It was shown that the resulting procedure produces accurate results for non-linear cases and it was favorably compared with the more classical approach considering the actual permeability. Here, we extend this formulation for vector hysteresis cases that are modeled by the Jiles-Atherton approach. It considers the magnetic anisotropy of the ferromagnetic sheets.

I. INTRODUCTION

M ODELING electrical devices possessing ferromagnetic sheets under variable magnetic fields may require, in certain cases, a high degree of accuracy. If the magnetic circuit does not have air gaps (as transformer yokes), hysteresis plays a relevant role on the device magnetic behavior. The problem becomes more complex if one wishes to consider the electrical sheets anisotropy [START_REF] Bastos | 3D modelling of a nonlinear anisotropic lamination[END_REF] and the electrical circuit coupling.

In [START_REF] Bastos | A new formulation using differential permeability based on the source-field method[END_REF], we introduced a formulation based on differential permeability coupled to the source-field method for solving non-linear problems. The source-field method has been previously developed and presented in several papers and it is also commonly called T-method [START_REF] Le Menach | Determination and utilization of the source field in 3D magnetostatic problems[END_REF]- [START_REF] Carpenter | Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies[END_REF]. When proposing [START_REF] Bastos | A new formulation using differential permeability based on the source-field method[END_REF], we pointed out that such an approach would allow solving hysteretic cases, which is now considered in this paper. The hysteresis is modeled by the Jiles-Atherton (JA) approach [START_REF] Leite | Inverse Jiles-Atherton vector hysteresis model[END_REF], [START_REF] Leite | Transformer inrush currents taking into account vector hysteresis[END_REF]. The work developed in [START_REF] Leite | Implementation of an anisotropric vector hysteresis model in a 3-D FE code[END_REF] differs from ours since it employs the magnetic vector potential and the inverse JA model. An interesting paper related to ours is proposed in [START_REF] Lin | A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis[END_REF]; it differs from this paper using formulations often applied for losses evaluation and the vector hysteresis was not considered. Although the majority of the concepts used in this paper (anisotropy, differential permeability tensor, JA technique, electric circuit coupling, and source-field method) are well known, assembling them all in a 3-D FE program is the original contribution of this paper. To demonstrate the effectiveness of the proposed method, the TEAM Workshop Problem 32 is solved.

II. FORMULATION

With the differential permeability method, we have, for nonlinear materials

B = μ d H (1)
where μ d is the differential permeability tensor. H and B are magnetic field and induction, respectively. For the proposed vector hysteresis modeling, we utilize a time step procedure considering the differential permeability as a tensor.

As the time evolutes from tt to t, the corresponding time steps are i -1 and i . The variations of H and B are

B = B i -B i-1 and H = H i -H i-1 . ( 2 
)
With the source-field method [START_REF] Bastos | A new formulation using differential permeability based on the source-field method[END_REF], [START_REF] Le Menach | Determination and utilization of the source field in 3D magnetostatic problems[END_REF], we have

H i = H i s -grad i (3)
where is the magnetic scalar potential and H s is the source field associated to the imposed current density as rot H s = J [START_REF] Bastos | A new formulation using differential permeability based on the source-field method[END_REF], [START_REF] Le Menach | Determination and utilization of the source field in 3D magnetostatic problems[END_REF]. H i-1 and B i-1 are known from the previous time step.

Considering

B i = B + B i-1 , (1) 
, ( 2) and (3), we have

B i = B i-1 + μ d H i s -grad i -H i-1 . ( 4 
)
The main equation on this development is

div B i = 0 ( 5 ) or div B i-1 + μ d H i s -grad i -H i-1 = 0. ( 6 
)
Applying the Galerkin method on (5), we have

V N div B i dv = 0 ( 7 
)
where N is the nodal shape function of a tetrahedron element and V is the domain volume. It can be written as

V N div B i dv = s(v) NB i • ds - V grad N • B i dv = 0.
The first term on the right-hand side is related to the classical boundary conditions for scalar potential [START_REF] Bastos | A new formulation using differential permeability based on the source-field method[END_REF]. The second one must be evaluated for the numerical implementation as

- V grad N • B i dv = 0 ( 8 )
or, using (4)

- V grad N • B i-1 + μ d H i s -grad i -μ d H i-1 dv = 0. ( 9 
)
Let us remember that the vectors N and K, already presented in [START_REF] Bastos | A new formulation using differential permeability based on the source-field method[END_REF], are related by H s = K I 0 [START_REF] Lin | A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis[END_REF] where I 0 is the current flowing in a coil conductor; K is the corresponding source field when this current is equal 1 A. Also, we will use the vector N expressed by curl H s = NI 0 .

With [START_REF] Lin | A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis[END_REF] in the equation above, we have curl K I 0 = NI 0 and curl K = N [START_REF] Bergqvist | A simple vector generalization of the Jiles-Atherton model of hysteresis[END_REF] where K corresponds to the magnetic field created by an unitary current in a coil wire. N and K are necessary to accomplish the coupling between the electric circuit and the magnetic device. Now, let us consider the electric circuit equation

V m = R m i m + d m dt ( 12 
)
where V m , R m , i m , and m are, respectively, the voltage, the resistance, the established current, and the magnetic flux linkage in a generic electric circuit m. From [START_REF] Bastos | A new formulation using differential permeability based on the source-field method[END_REF], it can be shown that the magnetic flux is given by

i = V b B i • K dv. ( 13 
)
For the time step i , we have

V m i = R m i m i + d dt V b B i • K dv.
Here, we apply the derivative time discretization as

t V m i = t R m i m i + V b B i • K dv (14) t V m i = t R m i m i + V b (B i -B i-1 ) • K dv. ( 15 
)
Using (4) we obtain

tV m i = t R m i m i + V b B i-1 + μ d H s i -grad i -H i-1 -B i-1 • Kdv tV m i = t R m i m i + V b μ d H s i -grad i -H i-1 • Kdv. (16) 
Using a simplified notation G = grad N and also considering that the numerical integration is performed, [START_REF] Wang | 3-D FEM analysis in electromagnetic system considering vector hysteresis and anisotropy[END_REF] becomes

tV m i = t R m i m i + K T μ d K i m i -K T μ d G i -K T μ d H i-1 . ( 17 
)
Using [START_REF] Lin | A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis[END_REF], equation ( 9) is

V -grad N • B i-1 + μ d (Ki m i -grad i )-μ d H i-1 dv = 0
and, with the adopted notations

-G T B i-1 -G T μ d K i m i + G T μ d G i +G T μ d H i-1 = 0. ( 18 
)
Arranging ( 17) and (18) in matrix form, we have

G T μ d G -G T μ d K -K T μ d G t R m + (K T μ d K ) i i i m = G T B i-1 -G T μ d H i-1 t V i m + K T μ d H i-1 . ( 19 
)
Since we are dealing with several terms and matrix products in (19), it seems worthy to provide an implementation information related to array dimensions of terms (19). First, for a tetrahedron elements, G = grad N is a (3, 4) matrix. K is a vector depending on the number of circuits. Let us suppose that there are two circuits and then K is a (3, 2) matrix. We observe that K is related to H, which is calculated with tetrahedron edge elements [START_REF] Bastos | A new formulation using differential permeability based on the source-field method[END_REF]. Therefore, K is obtained by the product of the edge shape functions w(3, 6) by the circulation of the source field (as defined in [START_REF] Bergqvist | A simple vector generalization of the Jiles-Atherton model of hysteresis[END_REF]) along the six edges. There are two sets of such circulations since there are two circuits in this example. R is related to the circuit resistances. Supposing also two circuits, R is (2, 1) matrix. Now, let us consider the terms of (19). The term dimensions are:

1 As remark, the first four matrices above are assembled in the first line of (19), since they are related to the tetrahedra. The last two ones are assembled in the second line of (19) related to the two electric circuits.

)

III. PERMEABILITY TENSOR BY THE JA MODEL

If the magnetic flux rotates in an electrical sheet, the vector relationship between field and induction plays an important role in the device modeling. If one wants to consider the saturation effect as well as the hysteresis losses with the rotating flux, it is imperative to employ a vector hysteresis model.

Recently, several models have been proposed. Bergqvist [START_REF] Bergqvist | A simple vector generalization of the Jiles-Atherton model of hysteresis[END_REF], based on the scalar JA hysteresis model [START_REF] Jiles | Theory of ferromagnetic hysteresis[END_REF], proposed a vector model whose independent variable is the vector magnetic field. Leite et al. [START_REF] Leite | Inverse Jiles-Atherton vector hysteresis model[END_REF] proposed some modifications in the vectorized model in order to improve its numerical performance. In this last work, the model main equations are as follows:

dM = 1 -F χ • ↔ α - ↔ c • ↔ ξ • ↔ α -1 • F χ + ↔ c • ↔ ξ dH (20) F χ = χ f χ f -1 • χ f (21) ↔ χ f = ↔ k -1 • (M an -M) (22) 
M an = M an (|H e |) H e |H e | . ( 23 
)
where M is the total magnetization, H is the magnetic field vector, 1 is the identity matrix, χ f is an auxiliary vector, M an is the anhystereric magnetization given by the Langevin equation vector form, H e is the effective magnetic field given by H e = H+ Using (20), one can obtain the differential permeability tensor by the equation

dB = μ 0 1 + 1 -F χ • ↔ α - ↔ c • ↔ ξ • ↔ α -1 • F χ + ↔ c • ↔ ξ dH.
Some advantages of this model are its relative mathematical simplicity, easy numerical implementation, small parameters set, and numerical robustness. Furthermore, the model can represent anisotropy and reduces itself to a scalar model if the magnetic flux is unidirectional. More details about the model characteristics and implementation can be found in [START_REF] Leite | Inverse Jiles-Atherton vector hysteresis model[END_REF] and [START_REF] Bergqvist | A simple vector generalization of the Jiles-Atherton model of hysteresis[END_REF].

IV. EXAMPLE

As an example, we present the case proposed by the TEAM Problem 32 [START_REF] Bottauscio | Description of TEAM Problem: 32 A Test Case for Validation of Magnetic Field Analysis with Vector Hysteresis[END_REF]. In this case, it is necessary to utilize a vector hysteresis modeling since rotating fields are present in some regions of the structure. In Fig. 1, there is a threelimbed ferromagnetic core. The core has five Fe-Si 0.48 mm thick sheets. Therefore, the depth of the device (2.4 mm in Oy-direction) is much smaller than Ozx dimensions. It creates an additional difficulty, since the mesh may have a poor quality factor unless it is very fine (which would affect the computational time). This case could be calculated as a 2-D case, although our calculations were performed with the 3-D formulation here proposed. This problem has four different variations but we are interested on the CASE3 (as denoted in [START_REF] Bottauscio | Description of TEAM Problem: 32 A Test Case for Validation of Magnetic Field Analysis with Vector Hysteresis[END_REF]), which is appropriated for checking vector hysteresis modeling. Two windings having 90 turns each are placed on the external limbs and the voltage sources are shifted 90°. Each coil has a total resistance (external resistances are connected to the windings) of 11.42 . The peak voltage is, for both, 14.5 V and the frequency is 10 Hz. The full description of the problem can be found in [START_REF] Bottauscio | Description of TEAM Problem: 32 A Test Case for Validation of Magnetic Field Analysis with Vector Hysteresis[END_REF].

We provided the experimental hysteresis data in the vertical and horizontal directions. For their simulation, they used Preisach modeling [START_REF] Mayergoyz | Mathematical Models of Hysteresis[END_REF]. Using an optimizing procedure, we found the JA parameters presented in Table I. The corresponding B(H ) curve for the rolling (vertical) direction is shown in Fig. 2. There is a very good agreement between experimental and simulated hysteresis loops. The same agreement is also found for the transverse direction. The magnetic field in Oy-direction is negligible and, for this direction, we use parameters identical to Ox ones.

Because many calculation attempts were necessary and each simulation needed several hours, we chose a relatively coarse mesh with 9450 tetrahedron elements and 2288 nodes. As a graphical result, the following Fig. 3 shows the magnetic induction at four different time steps. Fig. 3(a) shows the whole structure. The other figures present the magnetic induction vector around the point P shown in Fig. 1. The rotational behavior of fields is easily observed. Fig. 4 shows the experimental and measured currents on the two windings and the results present excellent agreement.

For local quantities, we present the magnetic induction on the point P in Fig. 1. In Fig. 5(a), the Oz-direction induction values from the experimental bench and from the simulation are presented. In the Fig. 5(b), we have similar results for the Ox-direction. And the B-loci obtained from the previous Fig. 5(a) and (b) is shown in the Fig. 5(c). We also included results obtained from our 2-D FE system intended to solve vector hysteresis cases [START_REF] Leite | Finite element three-phase transformer modeling taking into account a vector hysteresis model[END_REF]. There are some differences among these results. When comparisons, it must be noticed that the measured inductions are obtained through pick-up coils. These coils are 7.3 mm large in Ox-and Oz-directions, which represents a relatively large dimension. Therefore, measurements are obtained from magnetic fluxes, which are integral quantities and certainly smooth the measured values.

When considering convergence, two aspects must be seen: 1) for solving the linear system, the ICCG method is used; it normally converges well even though, in few time steps, the convergence is not reached; it is certainly related to the poor quality mesh, as already commented; 2) for the non-linearity related to B(H) material characteristics, at some time steps, the convergence is critical. To mitigate such difficulties, it is possible to apply some numerical techniques as variable time steps and under relaxation. The choice of the time step and the mesh coarseness play a considerable role on the convergence and the result accuracy. For one cycle 1200 time steps were applied.

Solutions for this TEAM problem have been seldom reported. In [START_REF] Wang | 3-D FEM analysis in electromagnetic system considering vector hysteresis and anisotropy[END_REF] results are shown. In this paper, we use current-driven windings (no coupling with the voltage sources) and the vector hysteresis phenomenon is considered only on parts of the yoke. In our simulation, the vector JA anisotropic model is used on the whole structure and the device is voltage fed. The numerical simulation is then simplified but it must be mentioned that, as in our simulation, their results present good accuracy. Considering the above analysis and in spite of some result differences, we estimate that our formulation is consistent.

V. CONCLUSION In this paper, we presented a formulation for solving vector hysteresis cases considering the coupling with electrical circuits. The inherent convergence difficulties were also discussed and the strategies to overcome them were applied with efficiency. The TEAM Workshop 32 was used for testing the proposed method and the results show a good agreement between measured and computed results.
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  • M, and ↔ ξ is a matrix containing the derivatives of M an with respect to H e [7]. The tensors ↔ α, ↔ c, and ↔ k are related to material parameters. Two additional tensors not shown in equations above ( ↔ M S and ↔ a) with parameters related to the Langevin function are also necessary [7]. μ d can be obtained from (20) with the aid of the constitutive law dB = μ 0 (dH + dM).
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 5 Fig. 5. Inductions at the point P. (a) O z magnetic induction at point P. (b) O x magnetic induction at point P. (c) B-loci at point P.
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 I OF THE JA MODEL Fig. 2. Experimental and calculated B(H ) curves for vertical direction.