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HANDLING CONVEXITY-LIKE CONSTRAINTS IN VARIATIONAL
PROBLEMS∗

QUENTIN MÉRIGOT† AND ÉDOUARD OUDET‡

Abstract. We provide a general framework to construct finite-dimensional approximations of
the space of convex functions, which also applies to the space of c-convex functions and to the
space of support functions of convex bodies. We give precise estimates of the distance between the
approximation space and the admissible set. This framework applies to the approximation of convex
functions by piecewise-linear functions on a mesh of the domain and by other finite-dimensional spaces
such as tensor-product splines. We show how these discretizations are well suited for the numerical
solution of problems of calculus of variations under convexity constraints. Our implementation
relies on proximal algorithms and can be easily parallelized, thus making it applicable to large-scale
problems in dimension two and three. We illustrate the versatility and the efficiency of our approach
on the numerical solution of three problems in calculus of variation: three-dimensional denoising,
the principal agent problem, and optimization within the class of convex bodies.
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1. Introduction. Several problems in the calculus of variations come with nat-
ural convexity constraints. In optimal transport, the Brenier theorem asserts that
every optimal transport plan can be written as the gradient of a convex function,
when the cost is the squared Euclidean distance. Jordan, Kinderlehrer, and Otto
showed [10] that some evolutionary PDEs such as the Fokker–Planck equation can
be reformulated as a gradient flow of a functional in the space of probability densi-
ties endowed with the natural distance constructed from optimal transport, namely,
the Wasserstein space. In the corresponding time-discretized schemes, each timestep
involves the solution of a convex optimization problem over the set of gradient of con-
vex functions. In a different context, the principal agent problem proposed by Rochet
and Choné [23] in economy also comes with natural convexity constraints. Despite
the possible applications, the numerical implementation of these variational problems
has been lagging behind, mainly because of a nondensity phenomenon discovered by
Choné and Le Meur [6].

Choné and Le Meur discovered that some convex functions cannot be approxi-
mated by piecewise-linear convex functions on a regular grid (such as the grid dis-
played in Figure 1). More precisely, they proved that piecewise-linear convex functions

on the regular grid automatically satisfy the inequality ∂2f
∂x∂y � 0 in the sense of dis-

tributions. Since there exist convex functions that do not satisfy this inequality, this
implies that the union of the spaces of piecewise-linear convex functions on the regular
grids (Gδ)δ>0 is not dense in the space of convex functions on the unit square. More-
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Fig. 1. Illustration of the nondensity result phenomena of Choné and Le Meur on the grid Gδ

(top left). We consider the convex function f(x, y) = max(0, x+y−1) on [0, 1]2 and its projection g
on the intersection HMε ∩Eδ , where Eδ is the space of piecewise-linear functions on Gδ and HMε is
the space of function satisfying the relaxed convexity constraints of Definition 2.1. The error |f − g|
is displayed for three different choices of grid size, and ε � δ. One can observe that the maximum
error ‖f − g‖∞ remains almost constant regardless of δ. (In all figures, the upper left and lower
right corners corresponds to the value 0.2.)

over, this difficulty is local, and it is likely that for any fixed sequence of meshes, one
can construct convex functions f that cannot be obtained as limits of piecewise-linear
convex functions on these meshes. This phenomenon makes it challenging to use P1

finite elements to approximate the solution of variational problems with convexity
constraints.

1.1. Related works. In this section, we briefly discuss approaches that have
been proposed in the last decade to tackle the problem discovered by Choné and
Le Meur.

Mesh versus grid constraints. Carlier, Lachand-Robert, and Maury proposed
in [5] to replace the space of P1 convex functions by the space of the space of convex
interpolates. For every fixed mesh, a piecewise-linear function is a convex interpolate if
it is obtained by linearly interpolating the restriction of a convex function to the node
of the mesh. Note that these functions are not necessarily convex, and the method
is therefore not interior. Density results are straightforward in this context but the
number of linear constraints which have to be imposed on node values is rather large.
The authors observe that in the case of a regular grid, one needs � m1.8 constraints
in order to describe the space of convex interpolates, where m stands for the number
of nodes of the mesh.
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Aguilera and Morin [1] proposed a finite-difference approximation of the space
of convex functions using discrete convex Hessians. They prove that it is possible to
impose convexity by requiring a linear number of nonlinear constraints with respect
to the number of nodes. The leading fully nonlinear optimization problems are solved
using semidefinite programming codes. Whereas convergence is proved in a rather
general setting, the practical efficiency of this approach is limited by the capability of
semidefinite solvers. In a similar spirit, Oberman [19] considers the space of functions
that satisfy local convexity constraints on a finite set of directions. By changing the
size of the stencil, the author proposed different discretizations which lead to exterior
or interior approximations. Estimates of the quality of the approximation are given
for smooth convex functions.

Higher-order approximation by convex tensor-product splines. An im-
portant number of publications have been dedicated in recent years to solving shape
preserving least square problems. For instance, different sufficient conditions have
been introduced to force the convexity of the approximating functions. Whereas this
problem is well understood in dimension one, it is still an active field of research in
the context of multivariate polynomials like Bézier or tensor-spline functions. We
refer the reader to Jüttler [11] and references therein for a detailed description of
recent results. In this article, Jüttler describes an interior discretization of convex
tensor-product splines. This approach is based on the so called “Blossoming theory”
which makes it possible to linearize constraints on the Hessian matrix by introducing
additional variables. Based on this framework, the author illustrates the method by
computing the L2 projection of some given function into the space of convex tensor-
product splines. Two major difficulties have to be pointed out. First, the density of
convex tensor splines in the space of convex functions is absolutely nontrivial, and one
may expect phenomena similar to those discovered by Choné and Le Meur. Second,
the proposed algorithm leads to a very large number of linear constraints.

Dual approaches. Lachand-Robert and Oudet [13] developed a strategy related
to the dual representation of a convex body by its support functions. They rely on a
simple projection approach that amounts to the computation of a convex hull, thus
avoiding the need to describe the constraints defining the set of support functions. To
the best of our knowledge, this article is the first one to attack the question of solving
problems of calculus of variations within convex bodies. The resulting algorithm
can be interpreted as a nonsmooth projected gradient descent and gave interesting
results on difficult problems such as Newton’s or Alexandrov’s problems. In a similar
geometric framework, Oudet studied in [21] approximations of convex bodies based
on Minkowski sums. It is well known in dimension two that every convex polygon can
be decomposed as a finite sum of segments and triangles. While this result cannot be
generalized to higher dimension, this approach still allows the generation of random
convex polytopes. This process was used by the author to study numerically two
problems of calculus of variations on the space of convex bodies with additional width
constraints.

Ekeland and Moreno-Bromberg [7] proposed a dual approach for parameterizing
the space of convex functions on a domain. Given a finite set of points S in the
domain, they parameterize convex functions by their value fs and their gradient vs at
those points. In order to ensure that these couples of values and gradients (fs, vs)s∈S

are induced by a convex function, they add for every pair of points in S the constraints
ft � fs + 〈t − s|vs〉. This discretization is interior, and it is easy to show that the
phenomenon of Choné and Le Meur does not occur for this type of approximation.
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However, the high number of constraints makes it difficult to solve large-scale problems
using this approach. Mirebeau [18] is currently investigating an adaptative version of
this method that would allow its application to larger problems.

1.2. Contributions. We provide a general framework to construct approxima-
tions of the space of convex functions on a bounded domain that satisfies a Lipschitz
bound. Our approximating space is a finite-dimensional polyhedron that is a subset of
a finite-dimensional functional space that satisfies a finite number of linear constraints.
The main theoretical contribution of this article is a bound on the (Hausdorff) distance
between the approximating polyhedron and the admissible set of convex functions,
which is summarized in Theorem 2.11. This bound implies in particular the density of
the discretized space of functions in the space of convex functions. Our discretization
is not specific to approximation by piecewise-linear functions on a triangulation of
the domain and can easily be extended to approximations of convex functions within
other finite-dimensional subspaces, such as the space of tensor-product splines. This
is illustrated numerically in section 6.

This type of discretization is well suited to the numerical solution of problems
of calculus of variations under convexity constraints. For instance, we show how to
compute the L2 projection onto the discretized space of convex functions in dimension
d = 2, 3 by combining a proximal algorithm [2] and an efficient projection operator on
the space of one-dimensional (1D) discrete convex functions. Because of the structure
of the problem, these 1D projection steps can be performed in parallel, thus making
our approach applicable to large-scale problems in higher dimension. We apply our
nonsmooth approach to a denoising problem in dimension three in section 5. Other
problems of calculus of variations under convexity constraints, such as the principal-
agent problem, can be solved using variants of this algorithm. This aspect is illustrated
in section 6.

Finally, we note in section 3 that the discretization of the space of convex func-
tions we propose can be generalized to other spaces of functions satisfying similar
constraints, such as the space of support functions of convex bodies. The proximal
algorithm can also be applied to this modified case, thus providing the first method
able to approximate the projection of a function on the sphere onto the space of sup-
port functions of convex bodies. Section 7 presents numerical computations of Lp

projections (for p = 1, 2,∞) of the support function of a unit regular simplex onto the
set of support functions of convex bodies with constant width. We believe that these
projection operators could be useful in the numerical study of a famous conjecture
due to Bonnesen and Fenchel [4] concerning Meissner’s convex bodies.

Notation. Given a metric space X , we denote C(X) the space of bounded con-
tinuous functions on X endowed with the norm of uniform convergence ‖.‖∞. Every
subset L of the space of affine forms on C(X) defines a convex subset HL of the space
of continuous functions by duality, denoted by

(1.1) HL := {g ∈ C(K); ∀� ∈ L, �(g) � 0}.

2. A relaxation framework for convexity. In this section, we concentrate on
the relaxation of the standard convexity constraints for clarity of exposition. Most of
the propositions presented below can be extended to the generalizations of convexity
presented in section 3. Let X be a bounded convex domain of Rd, and let H be the
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Fig. 2. (Left) The discretized convexity constraints are enforced on the discrete segments cpq
joining pairs of points of an ε-sampling of the boundary Uε ⊆ ∂X. (Right) A triangulation of the
domain X, which can be used to define a finite-dimensional subspace Eδ of continuous piecewise-
linear functions on X. Note that ε must be greater than δ. The relation between the parameters δ
and ε is studied in Theorems 2.4–2.11.

set of continuous convex functions on X . We define Lk as the set of linear forms � on
C(K) which can be written as

(2.1) �(g) = g

(
k∑

i=1

λixi

)
−
(

k∑
i=1

λig(xi)

)
,

where x1, . . . , xk are k distinct points chosen in X and where (λi)1�i�k belongs to the
(k−1)-dimensional simplex Δk−1. In other words, λ1, . . . , λk are nonnegative numbers
whose sum is equal to one. Since we are only considering continuous functions, HLk

and H coincide as soon as k � 2.
We introduce in Definition 2.1 below a discretization Mε of the set of convexity

constraints L2. Choné and Le Meur proved in [6] that the union of the spaces of
piecewise-linear convex functions on regular grids of the square is not dense in the
space of convex functions on this domain. This means that we need to be very
careful in order to apply the convexity constraints Mε to finite-dimensional spaces of
functions. If one considers the space Eδ of piecewise-linear functions on a triangulation
of the domain with edgelengths bounded by δ, then HMε ∩ Eδ = H ∩ Eδ as soon as
ε 
 δ. In this case, one can fall in the pitfall identified by Choné and Le Meur, as
illustrated in Figure 1. Our goal in this section is to show that it is possible to choose
ε as a function of δ so that HMε ∩ Eδ becomes dense in H as δ goes to zero. Before
stating our main theorem, we need to introduce some definitions.

Definition 2.1 (discretized convexity constraints). Given any triple of points
(x, y, z) in X such that z belongs to [x, y], we define a linear form �xyz by

(2.2) �xyz(g) := g(z)− ‖zy‖
‖xy‖g(x)−

‖xz‖
‖xy‖g(x).

Here and below, we set ‖xy‖ := ‖x− y‖ to emphasize the notion of distance between
x and y. By convention, when we write �xyz, we implicitly assume that z lies on the
segment [x, y]. Consider a subset Uε ⊆ ∂X such that for every point x in ∂X there
exists a point xε in Uε with ‖x− xε‖ � ε (see Figure 2). Given any pair of distinct
points (p, q) in Uε, we let cpq be the discrete segment defined by

cpq :=

{
p+ εi

(q − p)

‖q − p‖ ; i ∈ N, 0 � i � ‖q − p‖ /ε
}
.
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Finally, we define the following discretized set of constraints:

(2.3) Mε := {�xyz; x, y, z ∈ cpq for some p, q ∈ Uε and z ∈ [x, y]} .

Definition 2.2 (interpolation operator). A (linear) interpolation operator is a
continuous linear map Iδ from the space C(X) to a finite-dimensional linear subspace
Eδ ⊆ C(X), whose restriction to Eδ is the identity map. We assume that the space
Eδ contains the affine functions on X and that the linear interpolation operator Iδ
satisfies these properties:

Lip(Iδf) � CILipf,(L1)

‖f − Iδf‖∞ � δLip(f),(L2)

‖f − Iδf‖∞ � 1

2
δ2Lip(∇f).(L3)

In practice, we consider families of linear interpolation operators parameterized by δ,
and we assume that CI � 1 is constant for the whole family.

Example. Consider a triangulation of a polyhedral domain X such that each
triangle has diameter at most δ. Define Eδ as the space of functions that are linear
on the triangles of the mesh and Iδ(f) as the linear interpolation of f on the mesh.
Then (Eδ, Iδ) is an interpolation operator and satisfies (L1)–(L3). Other interpolation
operators can be derived from higher-order finite elements, tensor-product splines, etc.

Definition 2.3 (superior limit of sets). The superior limit of a sequence of
subsets (An) of C(X) is defined by

limn→∞An := {f ∈ C(X); ∃fn ∈ An, s.t. lim
n→∞ fn = f}.

The following theorem shows that the nondensity phenomenom identified by
Choné and Le Meur doesn’t occur when ε is chosen large enough, as a function of δ.
This theorem is a corollary of the more quantitative Theorem 2.11. The remainder of
this section is devoted to the proof of Theorem 2.11.

Theorem 2.4. Let X be a bounded convex domain X and (Iδ)δ>0 be a family of
linear interpolation operators. Let f be a function from R+ to R+ s.t.

lim
δ→0

f(δ) = 0, lim
δ→0

δ/f(δ)2 = 0.

We let Bγ
Lip denote the set of γ-Lipschitz functions on X. Then,

(2.4) H ∩ B
γ/CI

Lip ⊆
[
limδ→0HMf(δ)

∩ Bγ
Lip

]
⊆ H ∩ Bγ

Lip.

2.1. Relaxation of convexity constraints. The first step needed to prove
Theorem 2.4 is to show that every function that belongs to the space HMε is close to
a convex function on X for the norm ‖.‖∞. This result follows from an explicit upper
bound on the distance between any function in HMε and its convex envelope.

Definition 2.5 (convex envelope). Given a function g on X, we define its
convex envelope g by the following formula:

(2.5) g(x) := min

{
d+1∑
i=1

λig(xi); xi ∈ X,λ ∈ Δd and
∑
i

λixi = x

}
,
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where Δd denotes the d-simplex, i.e., λ ∈ R
d+1
+ and

∑
λi = 1. The function g is

convex, and by construction its graph lies below the graph of g.
Proposition 2.6. For any function g in the space HMε , the distance between g

and its convex envelope g is bounded by ‖g − g‖∞ � const(d)Lip(g)ε.
This proposition follows from a more general result concerning a certain type of

relaxation of convexity constraints, which we call α-relaxation.
Definition 2.7 (α-Relaxation). Let M,L be two sets of affine forms on the

space C(X). The set M is called an α-relaxation of L, where α is a function from
C(X) to R+ ∪ {+∞}, if the following inequality holds:

(2.6) ∀� ∈ L, ∀g ∈ C(K), ∃�g ∈M, |�(g)− �g(g)| � α(g).

Proposition 2.8. Consider an α-relaxation M of L2. If g lies in HM , the
distance between g and its convex envelope g is bounded by ‖g − g‖∞ � dα(g).

Proof. Let us show first that, assuming that g is in HM , the following inequality
holds for any form � in Lk:

(2.7) �(g) � kα(g).

For k = 2, this follows at once from our hypothesis. Indeed, there must exist a linear
form �g in M that satisfies (2.6) so that �(g) � �g(g) + α(g). Since g lies in HM ,
�g(g) is nonpositive and we obtain (2.7). The case k > 2 is proved by induction.
Consider λ in the simplex Δk−1 and points x1, . . . , xk in X . We assume λ1 < 1 and
we let μi = λi/(1− λ1) for any i � 2. The vector μ = (μ2, . . . , μk) lies in Δk−2, and
therefore y =

∑
i�2 μixi belongs to X . Applying the inductive hypothesis (2.7) twice,

we obtain

g (λ1x1 + (1− λ1)y)− (λ1g(x1) + (1 − λ1)g (y)) � α(g),

g(y)−
(

k∑
i=2

μig(xi)

)
� (k − 1)α(g).

The sum of the first inequality and (1 − λ1) times the second one gives (2.7). Now,
consider the convex envelope g of g. Given any family of points (xi) and coefficients
(λi) such that

∑
λixi = x, we consider the form �(f) := f(x)−∑i λif(xi). Applying

(2.7) to � gives

g(x)− dα(g) �
∑

λig(xi)

Taking the minimum over the (xi), (λi) such that
∑
λixi = x, we obtain the desired

inequality |g(x)− g(x)| � dα(g).
In order to deduce Proposition 2.6 from Proposition 2.8, we should take α(g)

proportional to Lip(g). We use a technical lemma that gives an upper bound on the
difference between two linear forms corresponding to convexity constraints in term of
Lip.

Lemma 2.9. Let x, y, z and x′, y′, z′ be six points in X. Assume the following:
(i) max(‖x− x′‖ , ‖y − y′‖ , ‖z − z′‖) � η;
(ii) z ∈ [x, y], z′ ∈ [x′, y′].

Then, |�xyz(g)− �x′y′z′(g)| � 6ηLip(g).
Proof. We define λ by the relation z = λx+ (1− λ)y, and λ′ is defined similarly.

We also define �i(g) := g(z)− (λ′g(x) + (1 − λ′)g(y)). Then,

|�xyz(g)− �x′y′z′(g)| � |�x′y′z(g)− �i(g)|+ |�i(g)− �xyz(g)| .
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The first term is easily bounded by 2ηLip(g), while the second term is bounded by
|λ− λ′|Lip(g) ‖xy‖.

|λ− λ′| =
∣∣∣∣‖zy‖‖xy‖ − ‖z′y′‖

‖x′y′‖
∣∣∣∣

�
∣∣∣∣‖zy‖ − ‖z′y′‖

‖xy‖
∣∣∣∣+
∣∣∣∣‖z′y′‖‖x′y′‖ · ‖x

′y′‖ − ‖xy‖
‖xy‖

∣∣∣∣ � 4η/ ‖xy‖ .

Overall, we get the desired upper bound.

Proof of Proposition 2.8. Our goal is to show that Mε is an α-relaxation of L2.
Consider three points x, y, z in X such that z lies inside the segment [x, y]. The
straight line (x, y) intersects the boundary of X in two points a and b. By hypothesis,
there exist two points p and q in Uε such that the distances ‖a− p‖ and ‖b − q‖ are
bounded by ε. The maximum distance between the segments [a, b] and [p, q] is then
also bounded by ε and the maximum distance between the segment [a, b] and the
finite set cpq by 2ε. This means that there exist three points xε, yε, and zε in cpq
such that max(‖x− xε‖ , ‖y − yε‖ , ‖y − yε‖) � 2ε. Using Lemma 2.9, we deduce that
‖�xyz(g)− �xεyεzε(g)‖ � α(g) := 12εLip(g). This implies that Mε is an α-relaxation
of L2, and the statement follows from Proposition 2.8.

2.2. Hausdorff approximation. In this section, we use the estimation of the
previous paragraph to prove a quantitative version of Theorem 2.4, using the notion
of directed Hausdorff distance.

Definition 2.10 (Hausdorff distances). The directed or half-Hausdorff distance
between two subsets A,B of a C(X) is denoted hH(A|B):

(2.8) hH(A|B) = min {r � 0; ∀f ∈ A, ∃g ∈ B, ‖f − g‖∞ � r} .

Note that this function is not symmetric in its argument.

Theorem 2.11. Let X be a bounded convex domain of Rd and Iδ : C(X) → Eδ

be interpolation operator satisfying (L1)–(L3). We let Bγ
Lip be the set of γ-Lipschitz

functions on X. Then, assuming γ � 2CI diam(X),

hH(B
γ
Lip ∩ Eδ ∩HMε |Bγ

Lip ∩H) � const(d)γε,(2.9)

hH(B
γ/CI

Lip ∩H |Bγ
Lip ∩ Eδ ∩HMε) � const

γ2δ

ε2
diam(X).(2.10)

Let Bκ
C1,1 be the set of functions with κ-Lipschitz gradients (κ � 1). Then,

(2.11) hH(B
κ
C1,1 ∩H |Eδ ∩HMε) � const ·κ2 diam(X)2

δ2

ε2
.

Choice of the parameter ε. The previous theorem has implications on how to
choose ε as a function of δ in order to obtain theoretical convergence results. In
practice, the estimations given by the items (i) and (ii) below seem to be rather
pessimistic, and in applications we always choose ε to be a small constant times δ.

(i) If one chooses ε = f(δ), where f is a function from R+ to R+ such that
limδ→0 f(δ) = 0 and limδ→0 δ/f(δ)

2 = 0, the upper bounds in (2.9)–(2.10)
converge to zero when δ does. This implies the convergence result stated in
Theorem 2.4.
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(ii) We can choose ε so as to equate the two upper bound in (2.9)–(2.10), i.e.,
ε � δ1/3. This suggests that the best rate of convergence in Hausdorff distance
that one can expect from this analysis, in order to recover all convex functions
H ∩ Bγ

Lip, is in O(δ1/3).

(iii) On the other hand, (2.11) shows that convex and C1,1 functions are easier
to approximate by discrete convex functions. In particular, if f is merely a
superlinear function, i.e., limδ→0 f(δ) = 0 and limδ→0 δ/f(δ) = 0, then, with
ε = f(δ), the upper bounds of both (2.9) and (2.11) converge to zero.

The following easy lemma shows that the space HMε ∩Eδ has a nonempty interior
for the topology induced by the finite-dimensional vector space Eδ as soon as δ < ε.
This very simple fact is the key to the proof of Theorem 2.11.

Lemma 2.12. Consider the function s(x) := ‖x− x0‖2 on X, where x0 is a point
in X, and the interpolating function sδ := Iδs. Then,

max
�∈Mε

�(sδ) � δ2 − ε2.

Proof. Consider three points x < z < y on the real line such that |x− z| � ε and
|y − z| � ε and z = λx+ (1 − λ)y. Then,

z2 − λx2 − (1− λ)y2 = z2 − λ(z + (x− z))2 − (1 − λ)(z + (y − z))2

= −[λ(x− z)2 + (1− λ)(y − z)2] � −ε2.
Since the gradient of s is 2-Lipschitz, using (L3) we get ‖s− sδ‖∞ � δ2. Combining
with the previous inequality, this implies �(sδ) � δ2 − ε2 for every linear form �
in Mε.

Proof of Theorem 2.11. Let g be a function in the intersection HMε ∩Bγ
Lip. Then,

Proposition 2.8 implies that its convex envelope g satisfies ‖g − g‖∞ � const(d)Lip(g)ε.
The Lipschitz constant of a function is not increased by taking its convex envelope,
and thus g belongs to H ∩ Bγ

Lip. This implies the upper bound given in (2.9).

On the other hand, given a convex function f in H ∩ B
γ/CI

Lip , we consider the
function g := Iδf defined by the interpolation operator. By property (L1) the function
g belongs to Bγ

Lip, and by property (L2) one has for any linear form � in L2,

�(g) = g(λx+ (1− λ)y)− (λg(x) + (1− λ)g(y))

� f(λx+ (1− λ)y)− (λf(x) + (1− λ)f(y)) + 2δγ � 2δγ.

For η < 1, we let gη := (1 − η)g + ηsδ. Assuming δ � ε/2, the previous inequality
implies that for any linear form � in Mε,

�(gη) � (1− η)2δγ + η(δ2 − ε2) � 2δγ − ηε2/2.

Consequently, assuming 4δγ � ηε2 the inequality �(gη) � 0 holds for any linear form
� in Mε, and g belongs to HMε . Moreover, using the fact that Lip is a seminorm, we
have

Lip(gη) � (1 − η)Lip(g) + ηLip(sδ)

� (1 − η)γ + 2CIη diam(X).(2.12)

In the second inequality, we used property (L1) and Lip(s) � 2 diam(X). By (2.12),
the function gη belongs to Bγ

Lip provided that γ � 2CI diam(X). From now on, we
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fix η = 4δγ/ε2 and let h = gη, which by the discussion above belongs to HMε ∩ Bγ
Lip.

The distance between f and h is bounded by

‖f − h‖∞ � ‖f − g‖∞ + η(‖g‖∞ + ‖sδ‖∞).

Since the space Eδ contains constant functions, we can assume that ‖g‖∞ is bounded
by Lip(g) diam(X) � γ diam(X). Assuming ε � diam(X),

‖f − h‖∞ � γδ

[
1 +

4

ε2
(
γ diam(X) + diam(X)2

)]
� 10

γ2δ

ε2
diam(X),

thus implying (2.10)
The proof of (2.11) is very similar. Given a convex function f in the intersection

H ∩ Bκ
C1,1 , we consider the function g := Iδf defined by the interpolation operator.

Using (L3) one has for any linear form � in L2,

�(g) = g(λx+ (1− λ)y)− (λg(x) + (1− λ)g(y))

� f(λx+ (1− λ)y)− (λf(x) + (1− λ)f(y)) + δ2κ � δ2κ.

For η < 1, we set gη := (1 − η)g + ηsδ. Assuming δ � ε/2, the previous inequality
implies that for any linear form � in Mε,

�(gη) � (1− η)δ2κ+ η(δ2 − ε2) � δ2κ− ηε2/2.

Hence, the function h := gη belongs to HMε , where η := 2κδ2/ε2. Using the fact that
Eδ contains an affine function, we can assume g(x0) = 0, ∇g(x0) = 0 for some point
x0 in X , so that ‖g‖∞ � κ diam(X)2. Combining this with property (L3), we get the
following upper bound, which implies (2.11):

‖f − h‖∞ � ‖f − g‖∞ + η(‖g‖∞ + ‖sδ‖∞)

� const ·κδ2
[
1 +

κ diam(X)2 + diam(X)2

ε2

]
.

3. Generalization to convexity-like constraints. In section 3.1 we show
how to extend the relaxation of convexity constraints presented above to the con-
straints arising in the definition of the space of support function of convex bodies.
We show in section 3.2 that both types of constraints fit in the general setting of
c-convexity constraints, where c satisfies the so-called nonnegative cross-curvature
condition.

3.1. Support functions. A classical theorem of convex geometry, stated as
Theorem 1.7.1 in [24], for instance, asserts that any compact convex body in R

d is
uniquely determined by its support function. The support of a convex body K is
defined by the following formula:

hK : x ∈ R
d �→ max

p∈K
〈x|p〉.

This function is is positively 1-homogeneous and is therefore completely determined
by its restriction hK on the unit sphere. We consider the space Hs ⊆ C(Sd−1) of
support functions of compact convex sets. This space coincides with the space of
bounded functions on the sphere whose 1-homogeneous extensions to the whole space
R

d are convex.
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Lemma 3.1. A bounded function g on the unit sphere is the support function
of a bounded convex set if and only if for every x1, . . . , xk in the sphere, and every
(λ1, . . . , λk) ∈ Δk−1,

(3.1) ‖x‖ g
(

x

‖x‖
)

�
∑
i

λig(xi), where x :=
∑
i

λixi.

Moreover, g is the support function of a convex set if it satisfies the inequalities for
k = 2 only.

Following this lemma, we define Ls
k as the space of all linear forms that can be

written as

(3.2) �(g) :=

∥∥∥∥∥
∑
i

λixi

∥∥∥∥∥ g
( ∑

i λixi
‖∑i λixi‖

)
−
∑
i

λig(xi),

where x1, . . . , xk are points on the sphere Sd−1, and (λ1, . . . , λk) lies in Δk−1. With
this notation at hand, we have another characterization of the space of support func-
tions: Hs coincides with the spaces HLs

k
for any k � 2.

3.1.1. Discretization of the constraints. The discretization of the set Ls
2

of constraints satisfied by support functions follows closely the discretization of the
convexity constraints described earlier. Consider three points x, y, and z such that x
and y are not antipodal and such that z belongs to the minimizing geodesic between
x and y. We let z′ be the radial projection of z on the extrinsic segment [xy], i.e.,
such that z′/ ‖z′‖ = z. Finally, we let λ = ‖zy‖ / ‖xy‖ and define

�xyz(g) := ‖z′‖ g(z)− λg(x)− (1− λ)g(y).

As before, we discard the constraint �xyz if z does not lie on the minimizing geodesic
arc between x and y. Let Uε be a subset of the sphere that satisfies the sampling
condition

(3.3) ∀u ∈ Sd−1, ∃(σ, v) ∈ {±1} × Uε s.t. ‖u− σv‖ � ε.

Then, for every vector u in Uε we construct an ε-sampling cu of the great circle
orthogonal to u that is also ε

2 -sparse, i.e., ‖x− y‖ � ε
2 for any pair of distinct points

x, y in cu. The space of constraints we consider is the following:

M s
ε = {�xyz; x, y, z ∈ cu for some u ∈ Uε} .

The proof of the following statement follows the proof of Proposition 2.6 and even
turns out to be slightly simpler as one does not need to take care of the boundary of
the domain.

Proposition 3.2. For any function h in the space HMs
ε
, there exists a bounded

convex set K such that ‖h− hK‖∞ � const(d)Lip(g)ε.
It is possible to define a notion of interpolation operator on the sphere as in

Definition 2.2 and to obtain Hausdorff approximation results similar to those presented
in Theorem 2.4. The statement and proofs of the theorem being very similar, we do
not repeat them. However, we show that the indicator function of the unit ball, i.e.,
the constant function equal to one, belongs to the interior of the set HMs

ε
. This is the

analogue of Lemma 2.12, which was the crucial point of the proof of convergence for
the usual convexity.
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Lemma 3.3. With s(x) := 1, one has max�∈Ms
ε
�(s) � − const ·ε2.

Proof. For every � in M s
ε , there exist three (distinct) points x, y, z in cu for

some u in Uε. Let z′ denote the radial projection of z on the segment [x, y]. Then,
�xyz(s) = ‖z′‖−1. By construction, ‖x− z‖ and ‖y − z‖ are at least ε/2, and therefore
‖z′‖ � 1− const ·ε2, thus proving the lemma.

3.1.2. Support function as c-convex functions. Oliker [20] and Bertrand
[3] introduced another characterization of support functions of convex sets, inspired
by optimal transportation theory. They show that the logarithm of support func-
tions coincides with c-convex functions on the sphere for the cost function c(x, y) =
− log(max(〈x|y〉, 0)). (See section 3.2 for a definition of c-convexity.)

Lemma 3.4. The 1-homogeneous extension of a bounded positive function h on
Sd−1 is convex if and only if the function ϕ := log(h) can be written as

ϕ(x) = sup
y∈Sd−1

−ψ(y)− c(x, y),

where c(x, y) = − log(max(〈x|y〉, 0)) and ψ : Sd−1 → R.
Proof. We show only the direct implication; the reverse implication can be found

in [3]. By assumption h = hK , where K is a bounded convex set that contains the
origin in its interior, and let ρK be the radial function ofK, i.e., ρK(y) := max{r; ry ∈
K}. Then,

hK(x) = max
p∈K

〈x|p〉 = max
y∈Sd−1

ρK(y)〈x|y〉.

Since hK > 0, the maximum in the right-hand side is attained for a point y such that
〈x|y〉 > 0. Taking the logarithm of this expression, we get

ϕ(x) = max
y∈Sd−1

log(ρK(y))− c(x, y),

thus concluding the proof of the direct implication.

3.2. c-convex functions. In this paragraph, we show how the discretizations
of the spaces of convex and support functions presented above can be extended to
c-convex functions. This extension is motivated by a generalization of the principal-
agent problem proposed by Figalli, Kim, and McCann [8]. Thanks to the similarity
between the standard convexity constraints and those arising in their setting, one
could hope to perform numerical computations using the same type of discretization
as those presented in section 2.

The authors of [8] prove that the set of c-convex functions is convex if and only
if c satisfies the so-called nonnegative cross-curvature condition. Under the same
assumption, we identify the linear inequalities that define this convex set of functions.
Note that the numerical implementation of this section is left for future work.

Given a cost function c : X ×Y → R, where X and Y are two open and bounded
subsets of Rd, the c-transform and c∗-transform of lower semicontinuous functions
ϕ : X → R and ψ : Y → R are defined by

ϕc∗(y) := sup
x∈Y

−c(x, y)− ϕ(x),

ψc(x) := sup
y∈Y

−c(x, y)− ψ(y).

A function is called c-convex if it is the c∗-transform of a lower semicontinuous function
ψ : Y → R. The space of c-convex functions on X is denoted Hc. We will need the
following usual assumptions on the cost function c:
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(A0) c ∈ C4(X × Y ), where X,Y ⊆ R
n are bounded open domains.

(A1) For every point y0 in Y and x0 in X , the maps

x ∈ X �→ −∇yc(x, y0),

y ∈ Y �→ −∇xc(x0, y)

are diffeomorphisms onto their range (bi-twist).
(A2) For every point y0 in Y and x0 in X , the sets Xy0 := −∇yc(X, y0) and

Yx0 := −∇xc(x0, Y ) are convex (bi-convexity).
These conditions allow one to define the c-exponential map. Given a point y0 in the
space Y , the c-exponential map expcy0

: Xy0 → X is defined as the inverse of the map
−∇yc(., y0), i.e., it is the unique solution of

(3.4) expcy0
(−∇yc(x, y0)) = x.

The following formulation of the nonnegative cross-curvature condition is slightly non-
standard, but it agrees with the usual formulation for smooth costs under conditions
(A0)–(A2), thanks to Lemma 4.3 in [8].

(A3) For every pair of points (y0, y) in Y the following map is convex:

(3.5) v ∈ Xy0 �→ c(expcy0
v, y0)− c(expcy0

v, y).

The main theorem of [8] gives a necessary and sufficient condition for the space Hc

of c-convex functions to be convex.
Theorem 3.5. Assuming (A0)–(A2), the space of c-convex functions Hc is itself

convex if and only if c satisfies (A3).
The proof that (A0)–(A3) implies the convexity of Hc given in [8] is direct but

nonconstructive, as the authors show that the average of two functions ϕ0 and ϕ1 in
Hc also belongs to Hc. The following proposition provides a set of linear inequality
constraints that are both necessary and sufficient for a function to be c-convex.

Proposition 3.6. Assuming the cost function satisfies (A0)–(A3), a function
ϕ : X → R is c-convex if and only if it satisfies the following constraints:

(i) for every y in Y , the map ϕy : v ∈ Xy �→ ϕ(expcy v) + c(expcy v, y) is convex.
(ii) for every x in X, the subdifferential ∂ϕ(x) is included in Yx.
Note that the first set of constraints (i) can be discretized in an analogous way

to the previous sections. On the other hand, the second constraint concerns the
subdifferential of ϕ in the sense of semiconvex functions. It is not obvious how to
handle this constraint numerically, except in the trivial case where Yx coincides with
the whole space R

d for any x in X .
Proof. Suppose first that ϕ is c-convex. Then, there exists a function ψ such that

ϕ(x) = ψc∗ and one has

ϕy(v) = sup
z
[−ψ(z)− c(expcy v, z)] + c(expcy v, y).

Equation (3.5) implies that ϕy is convex as a maximum of convex functions.
Conversely, suppose that a map ϕ : X → R is such that the maps ϕy are convex

for any point y in Y , and let us show that ϕ is c-convex. Using the definition of ϕy,
and the definition of the c-exponential (3.4), one has

ϕ(x) = ϕy(−∇yc(x, y))− c(x, y)
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for any pair of points (x, y) in X × Y . This formula and the convexity of ϕy imply
in particular that the map ϕ is semiconvex. Consequently, for every point x in X ,
the subdifferential ∂ϕ(x) is nonempty, and there must exist a point y in Y such that
v := −∇xc(x, y) belongs to ∂ϕ(x). Hence, x is a critical point of the map ϕ− c(., y),
and therefore v is a critical point of ϕy . By convexity, v is also a global minimum of
ϕy, i.e., for every w in Xy,

ϕ(expc
y w) + c(expcy w, y) � ϕ(x) + c(x, y).

Letting x′ = expcy w, we get ϕ(x′) � ϕ(x) + c(x, y) − c(x′, y). The function ϕ(x) +
c(x, y)− c(., y) is thus supporting ϕ at x. Since ϕ admits such a supporting function
at every point x in X , it is a c-convex function.

4. Numerical implementation. In this section, we give some details on how
to apply the relaxed convexity constraints presented in section 2 to the numerical
solution of problems of calculus of variation with (usual) convexity constraints. Our
goal is to minimize a convex functional F over the set of convex functions H. Our
algorithm assumes that F is easily proximable (see Definition 4.1). For any convex set
K, we denote iK the convex indicator function of K, i.e., the function that vanishes
on K, and take value +∞ outside of K. The constrained minimization problem can
then be reformulated as

(4.1) min
g∈C(X)

F(g) + iH(g).

The method that we present in this paragraph can be applied with minor modifica-
tions to support functions. Its extension to the other types of convexity constraints
presented in section 3 will be the object of future work.

4.1. Discrete formulation. We are given a finite-dimensional subspace E of
C(X) and a linear parameterization P : RN → E of this space. This subspace E and
its parameterization play a similar role to the interpolation operator in the theoretical
section. For instance, we can let E be the space of piecewise-linear functions on a
triangulation of X and let P be the parameterization of this space by the values
of the function at the vertices of the triangulation. For every point x in X , this
parametrization induces a linear evaluation map Px : RN → R, defined by Pxξ :=
(Pξ)(x). By convention, if x does not lie in X , then Pxξ = +∞. The convexity
constraints in (4.1) are discretized using Definition 2.1:

(4.2) min
ξ∈RN

F(Pξ) + iHMε
(Pξ).

We now show how to rewrite the indicator function of the discretized convexity con-
straints HMε as a sum of indicator functions. This allows us to exploit this particular
structure to deduce an efficient algorithm.

Let Uε ⊆ ∂X be a finite subset such that every point of ∂X is at a distance
at most ε from a point of Uε. Given a pair of points p �= q in Uε, we consider
the discrete segment cpq := {p+ εi(q − p)/ ‖q − p‖ ; i ∈ N, 0 � i � ‖q − p‖ /ε} . These
geometric constructions are illustrated in Figure 2. The evaluation of a function Pξ
on a discrete segment cpq is a vector indexed by N, which takes finite values only for
indices in {0, . . . , |cpq| − 1}:

Ppqξ =

(
Pξ
(
p+ εi

(q − p)

‖q − p‖
))

i∈N

.
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Define H1 as the cone of vectors (fi)i∈N that satisfy the discrete convexity conditions
fi � 1

2 (fi−1 + fi+1) for i � 1. The relaxed problem (4.2) is then equivalent to the
following minimization problem:

(4.3) min
ξ∈RN

F(Pξ) +
∑

(p,q)∈U2
ε

p�=q

iH1(Ppqξ).

Remark (number of constraints). In numerical applications, we set ε = cδ, where
c is a small constant, usually in the range (1, 3]. For a fixed convex domain X of R2,
there are O(1/ε) constraints per discrete segment and O(1/ε2) such discrete segments.
The total number of constraints is therefore C := O(1/ε3) = O(1/δ3). Moreover, a
triangulation of X with maximum edgelength δ has at least N = O(1/δ2) points.
This implies that the dependence of the number of constraints as a function of the
number of points is given by C = O(N3/2). This is slightly lower than the exponent
O(N1.8) found in [5]. Moreover, as shown below, the structure of the constraints in
(4.3) is favorable for optimization.

4.2. Proximal methods. When the functional F is linear, (4.3) is a standard
linear programming problem. Similarly, when F is quadratic and convex, this prob-
lem is a quadratic programming problem with linear constraints. Below, we show
how to exploit the 1D structure of the constraints so as to propose an efficient and
easy-to-implement algorithm based on a proximal algorithm. This algorithm allows
us to perform the optimization when F is a more general function. The version
of the algorithm that we describe below is able to handle functions that are easily
proximable (see Definition 4.1). Note that it would also be possible to handle func-
tions F whose gradient is Lipschitz using the generalized forward-backward splitting
algorithm of [22].

Definition 4.1 (proximal operator). The proximal operator associated to a
convex function f : RN → R is defined as follows:

(4.4) proxγ f(y) = arg min
x∈RN

f(x) +
1

γ
‖x− y‖2 .

The function is called easily proximable if there exists an efficient algorithm able to
compute its proximal operator. For instance, when f is the indicator function iK of
a convex set, proxγ f coincides with the projection operator on K, regardless of the
value of γ.

The simultaneous-direction method of multipliers (SDMM) algorithm is designed
to solve convex optimization problems of the following type:

min
x∈RN

g1(L1x) + . . . gm(Lmx),

where the (Li)1�i�m are matrices of dimensions N1×N, . . . , Nm×N and the function
(gi)1�i�m are convex and easily proximable. Moreover, it assumes that the matrix
Q :=

∑m
i=1 L

T
i Li is invertible, where LT

i stands for the transpose of the matrix Li.
A summary of the SDMM algorithm is given in Algorithm 1. More details and
variants of this algorithm can be found in [2]. Note that when applied to (4.3),
every iteration of the outer loop of the SDMM algorithm involves the computation of
several projection on the cone of 1D discrete functions H1. These projections can be
computed independently, thus allowing an easy parallelization of the optimization.
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Algorithm 1. SDMM.

Input γ > 0
Initialization (y1,0, z1,0) ∈ R

2N1 , . . . , (ym,0, zm,0) ∈ R
2Nm

For n = 0, 1, . . .
xn = Q−1

∑m
i=1 L

T
i (yi,n − zi,n)

For i = 1, . . . ,m
si,n = Lixn
yi,n+1 = proxγ gi(si,n + zi,n)
zi,n+1 = zi,n + si,n − yi,n+1

4.3. Hinge algorithm. In the algorithm above, we need to compute the �2

projection of a vector (fi) on the cone of discrete 1D convex functions H1. In practice,
(fi) is supported on a finite set {0, . . . , n}, and one needs to compute the �2 projection
of this vector onto the convex cone

Hn
1 = {g : {0, . . . , n} → R; ∀i ∈ {1, . . . , n− 1}, 2gi � gi−1 + gi+1}.

This problem is classical, and several efficient algorithms have been proposed to solve
it. Since the number of conic constraints is lower than the dimension of the ambient
space (n+1), the number of extreme rays of the polyhedral cone Hn

1 is bounded by n.
In this case the extreme rays coincide with the edges of the cone. Moreover, as noted
by Meyer [17], these extreme rays can be computed explicitly. This remark allows one
to parameterize the cone Hn

1 by the space R×R
n
+, thus recasting the projection onto

Hn
1 into a much simpler nonnegative least squares problem. To solve this problem,

we use the simple and efficient exact active set algorithm proposed by Meyer [17]. In
our implementation, we reuse the active set from one proximal computation to the
next one. This improves the computation time by up to an order of magnitude.

5. Application I: Denoising. Our first numerical application focuses on the
L2 projection onto the set of convex functions on a convex domain. We illustrate the
efficiency of our relaxed approach in the context of denoising. Let u∗ be a convex
function on a domain X in R

d. We approximate this function by a piecewise-linear
function on a mesh, and the values of the function at the node of the mesh are
additively perturbed by Gaussian noise: u0(p) = u∗(p) + cN (0, 1), where N (0, 1)
stands for the standard normal distribution and c is a small constant. Our goal
is then to solve the following projection problem in order to estimate the original
function u∗:

min
u∈H

‖u− u0‖L2(X) .

As described in previous sections, our discretization of the space of convex func-
tions is not interior. However, thanks to Theorem 2.11, we obtain a converging
discretization process that uses fewer constraints than previously proposed interior
approaches. More explicitly, we illustrate below our method on the following three-

dimensional denoising setting. Let u0(x, y, z) =
x2

3 + y2

4 + z2

8 , X = [−1, 1]3 and set
c = 1

40 . We carried our computation on a regular grid made of 803 points and we
look for an approximation in the space of piecewise-linear functions. The parameter
used to discretize the convexity constraints is set to ε = 0.02. Figure 3 displays the
result of the SDMM algorithm after 104 iterations. This computation took less than
5 minutes on a standard computer.
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Fig. 3. Denoising a convex graph by 1D projections.

Fig. 4. Denoising the support function of a convex body. Left: the perturbed support function
of the icosaedron. Right: its projection into the set of support functions.

To illustrate the versatility of the method, we performed the same denoising
experience in the context of support functions, using the discretization explained in
section 3. As in the previous example, we consider a support function perturbed by
additive Gaussian noise h0(p) = h∗(p) + cN (0, 1). In the numerical application, h∗

is the support function of the unit isocaedron and c = 0.05, as shown on the left
of Figure 4. Our goal is to compute the projection of h0 to the space of support
functions:

min
h∈Hs

‖h− h0‖2L2(Sd−1) .

In order to relax the constraint Hs, we imposed 1D constraints on a family of 2000
great circles of Sd−1 uniformly distributed and a step discretization of every circular
arc equal to 0.02. We obtained a very satisfactory reconstruction of hi after 104

iterations of the SDMM algorithm, as displayed on the right of Figure 4.

6. Application II: Principal-agent problem. The principal-agent problem
formalizes how a monopolist selling products can determine a set of prices for its
products so as to maximize its revenue, given a distribution of customer—the agents.
We describe the simplest geometric version of this problem in the next paragraph.
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Various instances of this problem are then used as numerical benchmarks for our
relaxed convexity constraints.

6.1. Geometric principal agent problem. Let X be a bounded convex do-
main of Rd, a distribution of agent ρ : X → R, and a finite subset K ⊆ X . The
monopolist or principal needs to determine a price menu π for pickup or deliveries, so
as to maximize its revenue. The principal has to take into account the two following
constraints: (i) the agents will try to maximize their utility and (ii) there is a finite
subset K ⊆ X of facilities that compete with the principal and force him to set its
price π(y) to zero at any y in K. For a given price menu π, the utility of a location y

for an agent located at a position x in X is given by uπ(x, y) = − 1
2 ‖x− y‖2 − π(y).

The fact that each agent tries to maximize his utility means that he will choose a
location that balances closeness and price. The maximum utility for an agent x is
given by

uπ(x) := max
y∈X

u(x, y) = −1

2
‖x‖2 +max

y∈X

[
〈x|y〉 − 1

2
‖y‖2 − π(y)

]
.

Let us denote uπ(x) the convex function uπ(x)+
1
2 ‖x‖2. This function is differentiable

for almost every point x in X , and at such a point the gradient ∇uπ(x) agrees with
the best location for x, i.e., ∇uπ(x) = argmaxy u(x, y). This implies the following
equality:

uπ(x) = 〈x|∇uπ(x)〉 − 1

2
‖∇uπ(x)‖2 − π(∇uπ(x)).

Our final assumption is that the cost of a location for the principal is constant.
Our previous discussion implied that the total revenue of the principal, given a price
menu π, is computed by the following formula:

R(π) =

∫
X

π(∇uπ(x))ρ(x)dx

= −
∫
X

[
uπ(x)− 〈x|∇uπ(x)〉 + 1

2
‖∇uπ(x)‖2

]
ρ(x)dx.(6.1)

Changing the unknown from π to v := uπ, the assumption that the price vanishes on
the set K translates as uπ � maxy∈K − 1

2 ‖· − y‖2 or equivalently

v(x) = uπ(x) � max
y∈K

〈x|y〉 − 1

2
‖y‖2 .

Thus, we reformulate the principal’s problem in term of v as the minimization of the
following functional:

(6.2) L(v) :=

∫
X

[
v(x) +

1

2
‖∇v(x) − x‖2

]
ρ(x)dx,

where the maximum is taken over the set of convex functions v : X → R that satisfy
the lower bound v � maxy∈K〈.|y〉 − 1

2 ‖y‖2.
6.2. Numerical results. We present three numerical experiments. The first

one concerns a linear variant of the principal-agent problem. The second and third
concern the geometric principal-agent problem presented above: we maximize the
functional L of (6.2) over the space of nonnegative convex functions, with X = B(0, 1)
and X = [1, 2]2, respectively, ρ constant, and K = {(0, 0)}.
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Table 1

Convergence of numerical approximations for the linear principal-agent.

# points ε |M −Mopt| ‖u− uopt‖∞ CPU

900 0.06 8 · 10−5 1.15 · 10−2 11s
3600 0.03 8 · 10−5 1.00 · 10−2 28s
8100 0.02 4.3 · 10−5 8.46 · 10−3 87s

Table 2

Convergence of numerical approximations for the geometric principal-agent problem (radial case).

# points ε |L− Lopt| ‖u− uopt‖∞ CPU

30× 30 0.06 1.3 · 10−3 2 · 10−3 11s
60× 60 0.03 9.8 · 10−4 1.6 · 10−3 251s
90× 90 0.02 9.7 · 10−4 1.1 · 10−3 500s

6.2.1. Linear principal agent. As a first benchmark, we consider a variant
of the principal-agent problem where the minimized functional is linear in the utility
function u [15]. The goal is to minimize the functional

M(u) :=

∫
X

(u(x) − 〈∇u|x〉)ρ(x)dx,

where X = [0, 1]2 and ρ = 1, over the set of convex functions whose gradient is
included in [0, 1]2. The solution to this problem is known explicitly:

uopt(x1, x2) = max{0, x1 − a, x2 − a, x1 + x2 − b},

where a = 2/3 and b = (4−√
2)/3. We solve the linear principal-agent problem on a

regular grid meshing [0, 1]2 and compare it to the exact solution on the grid points.
Table 1 displays the numerical results for various grid sizes and choices of ε.

6.2.2. Geometric principal agent, radial case. In order to evaluate the accu-
racy of our algorithm, we first solve the (nonlinear) geometric principal-agent problem
on the unit disk with K = {(0, 0)} and ρ constant. The optimal profile is radial in
this setting, and one can obtain a very accurate description of the optimal radial com-
ponent by solving a standard convex quadratic programming problem. In parallel, we
compute an approximation of the two-dimensional solution on an unstructured mesh
of the disk. On the left of Figure 5, we show that our solution matches the line of
the 1D profile after 103 iterations of the SDMM algorithm for δ = 0.12 and ε = 1/50.
Table 2 shows the speed of convergence of our method, in terms of both computation
time and accuracy, with 103 iterations.

6.2.3. Geometric principal agent, Rochet–Choné case. We recover nu-
merically the so-called bunching phenomena predicted by Rochet and Choné [23]
when X = [1, 2]2, ρ is constant, and K = {(0, 0)}, thus confirming numerical results
from [7, 18, 1]. On the right of Figure 5, we show the numerical solution defined on
a regular mesh of the square of size 60 × 60 with ε = 0.02. In this computation, the
interpolation operator is constructed using P3 finite elements, so as to illustrate the
flexibility of our method.

7. Application III: Closest convex set with constant width. A convex
compact set K of Rd has constant width α > 0 if all its projections on every straight
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Fig. 5. (Left) Numerical approximation to the principal-agent problem on X = B(0, 1) with
δ = 1/60 and ε = 1/50. The profile of the 1D solution is reported as a bold line on the graph. (Right)
Numerical approximation to the principal-agent problem with X = [1, 2]2 by P3 finite elements.

line are segments of length α. This property is equivalent to the following constraints
on the support function of K:

(7.1) ∀ν ∈ Sd−1, hK(ν) + hK(−ν) = α.

Surprisingly, balls are not the only bodies having this property. In dimension two, for
instance, Reuleaux’s triangles, which are obtained by intersecting three disks of radius
α centered at the vertices of an equilateral triangle, have constant width α. Moreover,
Reuleaux’s triangles have been proved by Lebesgue and Blaschke to minimize the area
among two-dimensional bodies with prescribed constant width.

In dimension three, this problem is more difficult. Indeed the mere existence
of nontrivial three-dimensional bodies of constant width is not so easy to establish.
In particular, no finite intersection of balls has constant width, except balls them-
selves [14]. As a consequence and in contrast to the two-dimensional case, the inter-
section of four balls centered at the vertices of a regular simplex is not of constant
width. In 1912, Meissner described in [16] a process to turn this spherical body into
an asymmetric bodies with constant width by smoothing three of its circular edges.
This famous body is called the “Meissner tetrahedron” in the literature [12]. It is
suspected to minimize the volume among three-dimensional bodies with the same
constant width. Let us point out that Meissner construction is not canonical in the
sense that it requires the choice of the set of three edges that have to be smoothed.
As a consequence, there actually exist two kinds of Meissner tetrahedron having the
same measure.

In these two constructions, the regular simplex seems to play a crucial role in
the optimality. (See also [9] for a more rigorous justification of this intuition.) It
is therefore natural to search for the body with constant width that is the closest
to a regular simplex. In a Hilbert space, the projection on a convex set is uniquely
defined. Thus, the Meissner tetrahedra cannot be obtained as projections of a regular
simplex to the convex set Hs ∩ W with respect to the L2 norm between support
functions. Such an obstruction does not hold for the L1 and L∞ norms, which are
not strictly convex. We illustrate below that our relaxed approach can be used to
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Table 3

Numerical results for the projections of hS .

Surface Volume Width Relative width error
L1 projection of hS 2.6616 0.36432 0.951 ¡ 0.001
L2 projection of hS 2.5191 0.34312 0.920 ¡ 0.003
L∞ projection of hS 2.1351 0.28081 0.835 ¡ 0.001

Fig. 6. Reconstruction of the convex bodies associated to the L1, L2, and L∞ projection of hS
without prescribing the width value.

numerically investigate these questions. The optimization problem that we have to
approximate is

min
h∈Hs∩W

‖h0 − h‖Lp(S2) , 1 � p � ∞,

where W is the set of functions of S2 which satisfy the width constraints (7.1).

As explained in section 3, we relax the constraint of being a support function by
imposing convexity-like conditions on a finite family of great circles of the sphere. In
the experiments presented below the number of vertices in our mesh of S2 is 5000.
We choose a family of 2000 great circles of S2 uniformly distributed (with respect to
their normal direction) and a step discretization of every circular arc equal to 0.02.
Finally, the constant width constraint W is approximated by imposing that antipodal
values of the mesh must satisfy a set of linear equality constraints, which can be easily
implemented in the proximal framework depicted in section 4.2. Note that in this first
experience, the value of the width constraint is not imposed.

We present in Table 3 and Figure 6 our numerical description of the projections of
the support function of a regular simplex in the set of support functions of constant
width bodies for the L1, L2, and L∞ norms. One can observe that the resulting
support functions describe a body with constant width within an error of magnitude
0.1%. In other words the gap between the minimal width and the diameter is relatively
less than 0.001. In the L1 case we obtain a convex body whose surface area and volume
are close to those of a Meissner body of the same width, within a relative error of
less than 0.01. We also performed the same experiment starting from the support
functions of others platonic solids. For any of these other solids, and when the value
of the width is not imposed, the closest body with constant seems to always be a ball.
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