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HANDLING CONVEXITY-LIKE CONSTRAINTS IN

VARIATIONAL PROBLEMS

QUENTIN MÉRIGOT AND ÉDOUARD OUDET

Abstract. We provide a general framework to construct finite dimensional ap-
proximations of the space of convex functions, which also applies to the space
of c-convex functions and to the space of support functions of convex bodies.
We give precise estimates of the distance between the approximation space and
the admissible set. This framework applies to the approximation of convex
functions by piecewise linear functions on a mesh of the domain and by other
finite-dimensional spaces such as tensor-product splines. We show how these dis-
cretizations are well suited for the numerical solution of problems of calculus of
variations under convexity constraints. Our implementation relies on proximal
algorithms, and can be easily parallelized, thus making it applicable to large
scale problems in dimension two and three. We illustrate the versatility and the
efficiency of our approach on the numerical solution of three problems in calculus
of variation : 3D denoising, the principal agent problem, and optimization within
the class of convex bodies.

1. Introduction

Several problems in the calculus of variations come with natural convexity con-
straints. In optimal transport, Brenier theorem asserts that every optimal transport
plan can be written as the gradient of a convex function, when the cost is the squared
Euclidean distance. Jordan, Kinderlehrer and Otto showed [9] that some evolution-
ary PDEs such as the Fokker-Planck equation can be reformulated as a gradient
flow of a functional in the space of probability densities endowed with the natu-
ral distance constructed from optimal transport, namely the Wasserstein space. In
the corresponding time-discretized schemes, each timestep involves the solution of
a convex optimization problem over the set of gradient of convex functions. In a
different context, the principal agent problem proposed by Rochet and Choné [22]
in economy also comes with natural convexity constraints. Despite the possible
applications, the numerical implementation of these variational problems has been
lagging behind, mainly because of a non-density phenomenon discovered by Choné
and Le Meur [5].

Choné and Le Meur discovered that some convex functions cannot be approx-
imated by piecewise-linear convex functions on a regular grid (such as the grid
displayed in Figure 1). More precisely, they proved that piecewise-linear convex

functions on the regular grid automatically satisfy the inequality ∂2f
∂x∂y > 0 in a

the sense of distributions. Since there exists convex functions that do not satisfy
this inequality, this implies that the union of the spaces of piecewise-linear convex
functions on the regular grids (Gδ)δ>0 is not dense in the space of convex func-
tions on the unit square. Moreover, this difficulty is local, and it is likely that for
any fixed sequence of meshes, one can construct convex functions f that cannot be
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Figure 1. Illustration of the non-density result phenomena of
Choné and Le Meur on the grid Gδ (top left). We consider the con-
vex function f(x, y) = max(0, x+ y− 1) on [0, 1]2 and its projection
g on the intersection HMε ∩ Eδ, where Eδ is the space of piecewise
linear functions on Gδ and HMε is the space of function satisfying the
relaxed convexity constraints of Definition 2.1. The error |f − g| is
displayed for three different choices of grid size, and ε≪ δ. One can
observe that the maximum error ‖f − g‖∞ remains almost constant
regardless of δ. (In all figures, the upper left and lower right corners
corresponds to the value 0.2.)

obtained as limits of piecewise-linear convex functions on these meshes. This phe-
nomenon makes it challenging to use P1 finite elements to approximate the solution
of variational problems with convexity constraints.

1.1. Related works. In this section, we briefly discuss approaches that have been
proposed in the last decade to tackle the problem discovered by Choné and Le Meur.

Mesh versus grid constraints. Carlier, Lachand-Robert and Maury proposed in [4]
to replace the space of P1 convex functions by the space of the space of convex
interpolates. For every fixed mesh, a piecewise linear function is a convex interpolate
if it is obtained by linearly interpolating the restriction of a convex function to the
node of the mesh. Note that these functions are not necessarily convex, and the
method is therefore not interior. Density results are straightforward in this context
but the number of linear constraints which have to be imposed on nodes values
is rather large. The authors observe that in the case of a regular grid, one needs
≃ m1.8 constraints in order to describe the space of convex interpolates, where m
stands for the number of nodes of the mesh.

Aguilera and Morin [1] proposed a finite-difference approximation of the space of
convex functions using discrete convex Hessians. They prove that it is possible to
impose convexity by requiring a linear number of nonlinear constraints with respect
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to the number of nodes. The leading fully nonlinear optimization problems are
solved using semidefinite programming codes. Whereas, convergence is proved in
a rather general setting, the practical efficiency of this approach is limited by the
capability of semidefinite solvers. In a similar spirit, Oberman [18] considers the
space of function that satisfy local convexity constraints on a finite set of directions.
By changing the size of the stencil, the author proposed different discretizations
which lead to exterior or interior approximations. Estimates of the quality of the
approximation are given for smooth convex functions.

Higher order approximation by convex tensor-product splines. An important number
of publications have been dedicated in recent years to solve shape preserving least
square problems. For instance, different sufficient conditions have been introduced
to force the convexity of the approximating functions. Whereas this problem is well
understood in dimension one, it is still an active field of research in the context of
multivariate polynomials like Bézier or tensor spline functions. We refer the reader
to Jüttler [10] and references therein for a detailed description of recent results.
In this article, Jüttler describes an interior discretization of convex tensor-product
splines. This approach is based on the so called “Blossoming theory” which makes
it possible to linearize constraints on the Hessian matrix by introducing additional
variables. Based on this framework, the author illustrates the method by computing
the L2 projection of some given function into the space of convex tensor-product
splines. Two major difficulties have to be pointed out. First, the density of convex
tensor splines in the space of convex functions is absolutely non trivial, and one may
expect phenomena similar to those discovered by Choné and Le Meur. Second, the
proposed algorithm leads to a very large number of linear constraints.

Dual approaches. Lachand-Robert and Oudet [12] developed a strategy related to
the dual representation of a convex body by its support functions. They rely on a
simple projection approach that amounts to the computation of a convex hull, thus
avoiding the need to describe the constraints defining the set of support functions.
To the best of our knowledge, this article is the first one to attack the question
of solving problems of calculus of variations within convex bodies. The resulting
algorithm can be interpreted as a non-smooth projected gradient descent, and gave
interesting results on difficult problems such as Newton’s or Alexandrov’s problems.
In a similar geometric framework, Oudet studied in [20] approximations of convex
bodies based on Minkowski sums. It is well known in dimension two that every
convex polygon can be decomposed as a finite sum of segments and triangles. While
this result cannot be generalized to higher dimension, this approach still allows the
generation of random convex polytopes. This process was used by the author to
study numerically two problems of calculus of variations on the space of convex
bodies with additional width constraints.

Ekeland and Moreno-Bromberg [6] proposed a dual approach for parameterizing
the space of convex functions on a domain. Given a finite set of points S in the
domain, they parameterize convex functions by their value fs and their gradient
vs at those points. In order to ensure that these couples of values and gradients
(fs, vs)s∈S are induced by a convex function, they add for every pair of points in S
the constraints ft > fs + 〈t− s|vs〉. This discretization is interior, and it is easy to
show that the phenomenon of Choné and Le Meur does not occur for this type of
approximation. However, the high number of constraints makes it difficult to solve
large-scale problems using this approach. Mirebeau [17] is currently investigating
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an adaptative version of this method that would allow its application to larger
problems.

1.2. Contributions. We provide a general framework to construct approximations
of the space of convex functions on a bounded domain that satisfies a Lipschitz
bound. Our approximating space is a finite-dimensional polyhedron, that is a sub-
set of a finite-dimensional functional space that satisfies a finite number of linear
constraints. The main theoretical contribution of this article is a bound on the
(Hausdorff) distance between the approximating polyhedron and the admissible set
of convex functions, which is summarized in Theorem 2.5. This bound implies in
particular the density of the discretized space of functions in the space of convex
functions. Our discretization is not specific to approximation by piecewise linear
functions on a triangulation of the domain, and can easily be extended to approxi-
mations of convex functions within other finite-dimensional subspaces, such as the
space of tensor product splines. This is illustrated numerically in Section 6.

This type of discretization is well suited to the numerical solution of problems
of calculus of variations under convexity constraints. For instance, we show how
to compute the L2 projection onto the discretized space of convex functions in
dimension d = 2, 3 by combining a proximal algorithm [2] and an efficient projection
operator on the space of 1D discrete convex functions. Because of the structure of
the problem, these 1D projection steps can be performed in parallel, thus making
our approach applicable to large scale problems in higher dimension. We apply
our non-smooth approach to a denoising problem in dimension three in Section 5.
Other problems of calculus of variations under convexity constraints, such as the
principal-agent problem, can be solved using variants of this algorithm. This aspect
is illustrated in Section 6.

Finally, we note in Section 3 that the discretization of the space of convex func-
tions we propose can be generalized to other spaces of functions satisfying similar
constraints, such as the space of support functions of convex bodies. The proximal
algorithm can also be applied to this modified case, thus providing the first method
able to approximate the projection of a function on the sphere onto the space of
support functions of convex bodies. Section 7 presents numerical computations of
Lp projections (for p = 1, 2,∞) of the support function of a unit regular simplex
onto the set of support functions of convex bodies with constant width. We believe
that these projection operators could be useful in the numerical study of a famous
conjecture due to Bonnesen and Fenchel (1934) concerning Meissner’s convex bodies.

Acknowledgements. The first named author would like to thank Robert McCann
for introducing him to the principal-agent problem and Young-Heon Kim for inter-
esting discussions. The authors would like to acknowledge the support of the French
Agence National de la Recherche under references ANR-11-BS01-014-01 (TOMMI)
and ANR-12-BS01-0007 (Optiform).

Notation. Given a metric space X, we denote C(X) the space of bounded contin-
uous functions on X endowed with the norm of uniform convergence ‖.‖∞. Every
subset L of the space of affine forms on C(X) defines a convex subset HL of the
space of continuous functions by duality, denoted by:

HL := {g ∈ C(K); ∀ℓ ∈ L, ℓ(g) 6 0}. (1.1)
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Figure 2. (Left) The discretized convexity constraints are enforced
on the discrete segments cpq joining pairs of points of an ε-sampling
of the boundary Uε ⊆ ∂X. (Right) A triangulation of the domain
X, which can be used to define a finite-dimensional subspace Eδ

of continuous piecewise-linear functions on X. Note that ε must
be greater than δ. The relation between the parameters δ and ε is
studied in Theorems 2.1–2.5.

2. A relaxation framework for convexity

In this section, we concentrate on the relaxation of the standard convexity con-
straints for clarity of exposition. Most of the propositions presented below can be
extended to the the generalizations of convexity presented in Section 3. Let X be a
bounded convex domain of Rd, and let H be the set of continuous convex functions
on X. We define Lk as the set of linear forms ℓ on C(K) which can be written as

ℓ(g) = g

(

k
∑

i=1

λixi

)

−
(

k
∑

i=1

λig(xi)

)

, (2.2)

where x1, . . . , xk are k distinct points chosen in X, and where (λi)16i6k belongs to
the (k − 1)-dimensional simplex ∆k−1. In other words, λ1, . . . , λk are non-negative
numbers whose sum is equal to one. Since we are only considering continuous
functions, HLk

and H coincide as soon as k > 2.
We introduce in Definition 2.1 below a discretization Mε of the set of convexity

constraints L2. Choné and Le Meur proved in [5] that the union of the spaces
of piecewise-linear convex functions on regular grids of the square is not dense in
the space of convex functions on this domain. This means that we need to be
very careful in order to apply the convexity constraints Mε to finite-dimensional
spaces of functions. If one considers the space Eδ of piecewise-linear functions on a
triangulation of the domain with edgelengths bounded by δ, then HMε∩Eδ = H∩Eδ

as soon as ε≪ δ. In this case, one can fall in the pitfall identified by Choné and Le
Meur, as illustrated in Figure 1. Our goal in this section is to show that it is possible
to choose ε as a function of δ so that HMε ∩ Eδ becomes dense in H as δ goes to
zero. Before stating our main theorem, we need to introduce some definitions.

Definition 2.1 (Discretized convexity constraints). Given any triple of points (x, y, z)
in X such that z belongs to [x, y], we define a linear form ℓxyz by

ℓxyz(g) := g(z) − ‖zy‖
‖xy‖g(x) −

‖xz‖
‖xy‖g(x). (2.3)
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Here and below, we set ‖xy‖ := ‖x− y‖ to emphasize the notion of distance between
x and y. By convention, when we write ℓxyz, we implicitly assume that z lies on the
segment [x, y]. Consider a subset Uε ⊆ ∂X such that for every point x in ∂X there
exists a point xε in Uε with ‖x− xε‖ 6 ε (see Figure 2). Given any pair of distinct
points (p, q) in Uε, we let cpq be the discrete segment defined by

cpq :=

{

p+ εi
(q − p)

‖q − p‖ ; i ∈ N, 0 6 i 6 ‖q − p‖ /ε
}

.

Finally, we define the following discretized set of constraints

Mε := {ℓxyz; x, y, z ∈ cpq for some p, q ∈ Uε and z ∈ [x, y]} . (2.4)

Definition 2.2 (Interpolation operator). A (linear) interpolation operator is a con-
tinuous linear map Iδ from the space C(X) to a finite-dimensional linear subspace
Eδ ⊆ C(X), whose restriction to Eδ is the identity map. We assume that the space
Eδ contains the affine functions on X, and that the linear interpolation operator Iδ
satisfies these properties:

Lip(Iδf) 6 CILipf (L1)

‖f − Iδf‖∞ 6 δLip(f), (L2)

‖f − Iδf‖∞ 6
1

2
δ2Lip(∇f), (L3)

In practice, we consider families of linear interpolation operators parameterized by
δ, and we assume that CI > 1 is constant for the whole family.

Example 2.1. Consider a triangulation of a polyhedral domain X, such that each
triangle has diameter at most δ. Define Eδ as the space of functions that are linear
on the triangles of the mesh, and Iδ(f) as the linear interpolation of f on the
mesh. Then (Eδ, Iδ) is an interpolation operator and satisfies (L1)–(L3). Other
interpolation operators can be derived from higher-order finite elements, tensor-
product splines, etc.

Definition 2.3 (Superior limit of sets). The superior limit of a sequence of subsets
(An) of C(X) is defined by

limn→∞An := {f ∈ C(X);∃fn ∈ An, s.t. lim
n→∞

fn = f}.

The following theorem shows that the non-density phenomenom identified by
Choné and Le Meur doesn’t occur when ε is chosen large enough, as a function of δ.
This theorem is a corollary of the more quantitative Theorem 2.5. The remainder
of this section is devoted to the proof of Theorem 2.5.

Theorem 2.1. Let X be a bounded convex domain X and (Iδ)δ>0 be a family of
linear interpolation operators. Let f be a function from R+ to R+ s.t.

lim
δ→0

f(δ) = 0 lim
δ→0

δ/f(δ)2 = 0.

We let Bγ
Lip denotes the set of γ-Lipschitz functions on X. Then,

H ∩ B
γ/CI

Lip ⊆
[

limδ→0HMf(δ)
∩ Bγ

Lip

]

⊆ H ∩ Bγ
Lip. (2.5)
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2.1. Relaxation of convexity constraints. The first step needed to prove The-
orem 2.1 is to show that every function that belong to the space HMε is close to a
convex function on X for the norm ‖.‖∞. This result follows from an explicit upper
bound on the distance between any function in HMε and its convex envelope.

Definition 2.4 (Convex envelope). Given a function g on X, we define its convex
envelope g by the following formula:

g(x) := min

{

d+1
∑

i=1

λig(xi); xi ∈ X,λ ∈ ∆d and
∑

i

λixi = x

}

, (2.6)

where ∆d denotes the d-simplex, i.e. λ ∈ R
d+1
+ and

∑

λi = 1. The function g is
convex and by construction, its graph lies below the graph of g.

Proposition 2.2. For any function g in the space HMε, the distance between g and
its convex envelope g is bounded by ‖g − g‖∞ 6 const(d)Lip(g)ε.

This proposition follows from a more general result concerning a certain type of
relaxation of convexity constraints, which we call α-relaxation.

Definition 2.5 (α-Relaxation). Let M,L be two sets of affine forms on the space
C(X). The set M is called an α-relaxation of L, where α is a function from C(X)
to R+ ∪ {+∞}, if the following inequality holds:

∀ℓ ∈ L,∀g ∈ C(K), ∃ℓg ∈M, |ℓ(g)− ℓg(g)| 6 α(g). (2.7)

Proposition 2.3. Consider an α-relaxation M of L2. If g lies in HM , the distance
between g and its convex envelope g is bounded by ‖g − g‖∞ 6 dα(g).

Proof. Let us show first that, assuming that g is in HM , the following inequality
holds for any form ℓ in Lk:

ℓ(g) 6 kα(g). (2.8)

For k = 2, this follows at once from our hypothesis. Indeed, there must exist a linear
form ℓg in M that satisfies (2.7), so that ℓ(g) 6 ℓg(g) + α(g). Since g lies in HM ,
ℓg(g) is non-positive and we obtain (2.8). The case k > 2 is proved by induction.

Consider λ in the simplex ∆k−1 and points x1, . . . , xk in X. We assume λ1 < 1 and
we let µi = λi/(1 − λ1) for any i > 2. The vector µ = (µ2, . . . , µk) lies in ∆k−2,
and therefore y =

∑

i>2 µixi belongs to X. Applying the inductive hypothesis (2.8)
twice, we obtain:

g (λ1x1 + (1− λ1)y)− (λ1g(x1) + (1− λ1)g (y)) 6 α(g),

g(y)−
(

k
∑

i=2

µig(xi)

)

6 (k − 1)α(g).

The sum of the first inequality and (1− λ1) times the second one gives (2.8). Now,
consider the convex envelope g of g. Given any family of points (xi) and coefficients
(λi) such that

∑

λixi = x, we consider the form ℓ(f) := f(x)−∑i λif(xi). Applying
equation (2.8) to ℓ gives

g(x) − dα(g) 6
∑

λig(xi)

Taking the minimum over the (xi), (λi) such that
∑

λixi = x, we obtain the desired
inequality |g(x)− g(x)| 6 dα(g). �
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In order to deduce Proposition 2.2 from Proposition 2.3, we should take α(g)
proportional to Lip(g). We use a technical lemma that gives an upper bound on the
difference between two linear forms corresponding to convexity constraints in term
of Lip.

Lemma 2.4. Let x, y, z and x′, y′, z′ be six points in X. Assume the following

(i) max(‖x− x′‖ , ‖y − y′‖ , ‖z − z′‖) 6 η;
(ii) z ∈ [x, y], z′ ∈ [x′, y′].

Then,
∣

∣ℓxyz(g)− ℓx′y′z′(g)
∣

∣ 6 6ηLip(g).

Proof. We define λ by the relation z = λx + (1 − λ)y, and λ′ is defined similarly.
We also define ℓi(g) := g(z) − (λ′g(x) + (1− λ′)g(y)). Then,

∣

∣ℓxyz(g) − ℓx′y′z′(g)
∣

∣ 6
∣

∣ℓx′y′z(g) − ℓi(g)
∣

∣+ |ℓi(g)− ℓxyz(g)|
The first term is easily bounded by 2ηLip(g), while the second term is bounded by
|λ− λ′|Lip(g) ‖xy‖.

∣

∣λ− λ′
∣

∣ =

∣

∣

∣

∣

‖zy‖
‖xy‖ − ‖z′y′‖

‖x′y′‖

∣

∣

∣

∣

6

∣

∣

∣

∣

‖zy‖ − ‖z′y′‖
‖xy‖

∣

∣

∣

∣

+

∣

∣

∣

∣

‖z′y′‖
‖x′y′‖ · ‖x

′y′‖ − ‖xy‖
‖xy‖

∣

∣

∣

∣

6 4η/ ‖xy‖

Overall, we get the desired upper bound. �

Proof of Proposition 2.3. Our goal is to show that Mε is an α-relaxation of L2.
Consider three points x, y, z in X such that z lies inside the segment [x, y]. The
straight line (x, y) intersects the boundary ofX in two points a and b. By hypothesis,
there exists two points p and q in Uε such that the distances ‖a− p‖ and ‖b− q‖
are bounded by ε. The maximum distance between the segments [a, b] and [p, q]
is then also bounded by ε and the maximum distance between the segment [a, b]
and the finite set cpq by 2ε. This means that there exists three points xε, yε and
zε in cpq such that max(‖x− xε‖ , ‖y − yε‖ , ‖y − yε‖) 6 2ε. Using Lemma 2.4, we
deduce that ‖ℓxyz(g) − ℓxεyεzε(g)‖ 6 α(g) := 12εLip(g). This implies that Mε is an
α-relaxation of L2, and the statement follows from Proposition 2.3. �

2.2. Hausdorff approximation. In this section, we use the estimation of the pre-
vious paragraph to prove a quantitative version of Theorem 2.1, using the notion of
directed Hausdorff distance.

Definition 2.6 (Hausdorff distances). The directed or half-Hausdorff distance be-
tween two subsets A,B of a C(X) is denoted hH(A|B):

hH(A|B) = min {r > 0;∀f ∈ A, ∃g ∈ B, ‖f − g‖∞ 6 r} . (2.9)

Note that this function is not symmetric in its argument.

Theorem 2.5. Let X be a bounded convex domain of Rd and Iδ : C(X) → Eδ be
interpolation operator satisfying (L1)–(L3). We let Bγ

Lip be the set of γ-Lipschitz

functions on X. Then, assuming γ > 2CI diam(X),

hH(B
γ
Lip ∩ Eδ ∩HMε |Bγ

Lip ∩H) 6 const(d)γε. (2.10)

hH(B
γ/CI

Lip ∩H |Bγ
Lip ∩ Eδ ∩HMε) 6 const

γ2δ

ε2
diam(X), (2.11)
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Let Bκ
C1,1 be the set of functions with κ-Lipschitz gradients (κ > 1). Then,

hH(B
κ
C1,1 ∩H |Eδ ∩HMε) 6 const · κ2 diam(X)2

δ2

ε2
(2.12)

Remark 2.1 (Choice of the parameter ε). The previous theorem has implications
on how to choose ε as a function of δ in order to obtain theoretical convergence
results. In practice, the estimations given by the items (i) and (ii) below seem to
be rather pessimistic, and in applications we always choose ε to be a small constant
times δ.

(i) If one chooses ε = f(δ), where f is a function from R+ to R+ such that
limδ→0 f(δ) = 0 and limδ→0 δ/f(δ)

2 = 0, the upper bounds in Equations (2.10)–
(2.11) converges to zero when δ does. This implies the convergence result
stated in Theorem 2.1.

(ii) We can choose ε so as to equate the two upper bound in Equations (2.10)–
(2.11), i.e. ε ≃ δ1/3. This suggests that the best rate of convergence in
Hausdorff distance that one can expect from this analysis, in order to recover
all convex functions H ∩ Bγ

Lip, is in O(δ1/3).

(iii) On the other hand, Equation (2.12) shows that convex and C1,1 functions
are easier to approximate by discrete convex functions. In particular, if f is
merely a superlinear function, i.e. limδ→0 f(δ) = 0 and limδ→0 δ/f(δ) = 0,
then, with ε = f(δ), the upper bounds of both Equation (2.10) and (2.12)
converge to zero.

The following easy lemma shows that the space HMε ∩Eδ has non-empty interior
for the topology induced by the finite-dimensional vector space Eδ as soon as δ < ε.
This very simple fact is the key to the proof of Theorem 2.5.

Lemma 2.6. Consider the function s(x) := ‖x− x0‖2 on X, where x0 is a point in
X, and the interpolating function sδ := Iδs. Then,

max
ℓ∈Mε

ℓ(sδ) 6 δ2 − ε2.

Proof. Consider three points x < z < y on the real line, such that |x− z| > ε and
|y − z| > ε and z = λx+ (1− λ)y. Then,

z2 − λx2 − (1− λ)y2 = z2 − λ(z + (x− z))2 − (1− λ)(z + (y − z))2

= −[λ(x− z)2 + (1− λ)(y − z)2] 6 −ε2

Since the gradient of s is 2-Lipschitz, using (L3) we get ‖s− sδ‖∞ 6 δ2. Combining
with the previous inequality, this implies ℓ(sδ) 6 δ2 − ε2 for every linear form ℓ in
Mε. �

Proof of Theorem 2.5. Let g be a function in the intersection HMε ∩ Bγ
Lip. Then,

Proposition 2.3 implies that its convex envelop g satisfies ‖g − g‖∞ 6 const(d)Lip(g)ε.
The Lipschitz constant of a function is not increased by taking its convex envelope,
and thus g belongs to H ∩ Bγ

Lip. This implies the upper bound given in Equa-

tion (2.10).

On the other hand, given a convex function f in H ∩ B
γ/CI

Lip , we consider the

function g := Iδf defined by the interpolation operator. By property (L1) the
function g belongs to Bγ

Lip, and by property (L2) one has for any linear form ℓ in
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L2,

ℓ(g) = g(λx+ (1− λ)y)− (λg(x) + (1− λ)g(y))

6 f(λx+ (1− λ)y)− (λf(x) + (1− λ)f(y)) + 2δγ 6 2δγ

For η < 1, we let gη := (1 − η)g + ηsδ. Assuming δ 6 ε/2, the previous inequality
implies that for any linear form ℓ in Mε,

ℓ(gη) 6 (1− η)2δγ + η(δ2 − ε2) 6 2δγ − ηε2/2

Consequently, assuming 4δγ 6 ηε2 the inequality ℓ(gη) 6 0 holds for any linear form
ℓ in Mε, and g belongs to HMε . Moreover, using the fact that Lip is a semi-norm,
we have

Lip(gη) 6 (1− η)Lip(g) + ηLip(sδ)

6 (1− η)γ + 2CIη diam(X) (2.13)

In the second inequality, we used property (L1) and Lip(s) 6 2 diam(X). By Equa-
tion 2.13, the function gη belongs to Bγ

Lip provided that γ > 2CI diam(X). From

now on, we fix η = 4δγ/ε2, and let h = gη , which by the discussion above belongs
to HMε ∩ Bγ

Lip. The distance between f and h is bounded by

‖f − h‖∞ 6 ‖f − g‖∞ + η(‖g‖∞ + ‖sδ‖∞).

Since the space Eδ contains constant functions, we can assume that ‖g‖∞ is bounded
by Lip(g) diam(X) 6 γ diam(X). Assuming ε 6 diam(X),

‖f − h‖∞ 6 γδ

[

1 +
4

ε2
(

γ diam(X) + diam(X)2
)

]

6 10
γ2δ

ε2
diam(X),

thus implying Equation (2.11)
The proof of Equation (2.12) is very similar. Given a convex function f in the

intersection H∩Bκ
C1,1 , we consider the function g := Iδf defined by the interpolation

operator. Using (L3) one has for any linear form ℓ in L2,

ℓ(g) = g(λx+ (1− λ)y)− (λg(x) + (1− λ)g(y))

6 f(λx+ (1− λ)y)− (λf(x) + (1− λ)f(y)) + δ2κ 6 δ2κ

For η < 1, we set gη := (1 − η)g + ηsδ. Assuming δ 6 ε/2, the previous inequality
implies that for any linear form ℓ in Mε,

ℓ(gη) 6 (1− η)δ2κ+ η(δ2 − ε2) 6 δ2κ− ηε2/2

Hence, the function h := gη belongs to HMε , where η := 2κδ2/ε2. Using the fact
that Eδ contains affine function, we can assume g(x0) = 0, ∇g(x0) = 0 for some
point x0 in X, so that ‖g‖∞ 6 κdiam(X)2. Combining this with property (L3), we
get the following upper bound, which implies Equation 2.12:

‖f − h‖∞ 6 ‖f − g‖∞ + η(‖g‖∞ + ‖sδ‖∞)

6 const · κδ2
[

1 +
κdiam(X)2 + diam(X)2

ε2

]

. �
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3. Generalization to convexity-like constraints

In §3.1 we show how to extend the relaxation of convexity constraints presented
above to the constraints arising in the definition of the space of support function
of convex bodies. We show in §3.2 that both type of constraints fit in the general
setting of c-convexity constraints, where c satisfy the so-called non-negative cross-
curvature condition.

3.1. Support functions. A classical theorem of convex geometry, stated as Theo-
rem 1.7.1 in [23] for instance, asserts that any compact convex body in R

d is uniquely
determined by its support function. The support of a convex body K is defined by
the following formula

hK : x ∈ R
d 7→ max

p∈K
〈x|p〉.

This function is is positively 1-homogeneous and is therefore completely determined
by its restriction hK on the unit sphere. We consider the space Hs ⊆ C(Sd−1)
of support functions of compact convex sets. This space coincides with the space
of bounded functions on the sphere whose 1-homogeneous extensions to the whole
space R

d are convex.

Lemma 3.1. A bounded function g on the unit sphere is the support function of
a bounded convex set if and only if for every x1, . . . , xk in the sphere, and every
(λ1, . . . , λk) ∈ ∆k−1,

‖x‖ g
(

x

‖x‖

)

6
∑

i

λig(xi), where x :=
∑

i

λixi. (3.14)

Moreover, g is the support function of a convex set if it satisfies the inequalities for
k = 2 only.

Following this lemma, we define Ls
k as the space of all linear forms that can be

written as

ℓ(g) :=

∥

∥

∥

∥

∥

∑

i

λixi

∥

∥

∥

∥

∥

g

( ∑

i λixi
‖∑i λixi‖

)

−
∑

i

λig(xi), (3.15)

where x1, . . . , xk are points on the sphere Sd−1, and (λ1, . . . , λk) lies in ∆k−1. With
this notation at hand, we have another characterization of the space of support
functions: Hs coincides with the spaces HLs

k
for any k > 2.

Discretization of the constraints. The discretization of the set Ls
2 of constraints

satisfied by support functions follows closely the discretization of the convexity con-
straints described earlier. Consider three points x, y and z such that x and y are
not antipodal and such that z belongs to the minimizing geodesic between x and y.
We let z′ be the radial projection of z on the extrinsic segment [xy], i.e. such that
z′/ ‖z′‖ = z. Finally, we let λ = ‖zy‖ / ‖xy‖ and define:

ℓxyz(g) :=
∥

∥z′
∥

∥ g(z) − λg(x)− (1− λ)g(y).

As before, we discard the constraint ℓxyz if z does not lie on the minimizing geodesic
arc between x and y. Let Uε be a subset of the sphere that satisfies the sampling
condition

∀u ∈ Sd−1, ∃(σ, v) ∈ {±1} × Uε, s.t. ‖u− σv‖ 6 ε. (3.16)
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Then, for every vector u in Uε we construct an ε-sampling cu of the great circle
orthogonal to u that is also ε

2 -sparse, i.e. ‖x− y‖ > ε
2 for any pair of distinct points

x, y in cu. The space of constraints we consider is the following:

M s
ε = {ℓxyz; x, y, z ∈ cu for some u ∈ Uε} .

The proof of the following statement follows the proof of Proposition 2.2, and even
turns out to be slightly simpler as one does not need to take care of the boundary
of the domain.

Proposition 3.2. For any function h in the space HMs
ε
, there exists a bounded

convex set K such that ‖h− hK‖∞ 6 const(d)Lip(g)ε.

It is possible to define a notion of interpolation operator on the sphere as in Defi-
nition 2.2, and to obtain Hausdorff approximation results similar to those presented
in Theorem 2.1. The statement and proofs of the theorem being very similar, we do
not repeat them. However, we show that the indicator function of the unit ball, i.e.
the constant function equal to one, belongs to the interior of the set HMs

ε
. This is

the analogous of Lemma 2.6, which was the crucial point of the proof of convergence
for the usual convexity.

Lemma 3.3. With s(x) := 1, one has maxℓ∈Ms
ε
ℓ(s) 6 −const · ε2.

Proof. For every ℓ in M s
ε , there exists three (distinct) points x, y, z in cu for some

u in Uε. Let z′ denote the radial projection of z on the segment [x, y]. Then,
ℓxyz(s) = ‖z′‖ − 1. By construction, ‖x− z‖ and ‖y − z‖ are at least ε/2, and
therefore ‖z′‖ 6 1− const · ε2 thus proving the lemma. �

Support function as c-convex functions. Oliker [19] and Bertrand [3] introduced
another characterization of support functions of convex sets, inspired by optimal
transportation theory. They show that logarithm of support functions coincide with
c-convex functions on the sphere for the cost function c(x, y) = − log(max(〈x|y〉, 0))
(see §3.2 for a definition of c-convexity):

Lemma 3.4. The 1-homogeneous extension of a bounded positive function h on Sd−1

is convex if and only if the function ϕ := log(h) can be written as

ϕ(x) = sup
y∈Sd−1

−ψ(y)− c(x, y)

where c(x, y) = − log(max(〈x|y〉, 0)) and ψ : Sd−1 → R.

Proof. We show only the direct implication, the reverse implication can be found in
[3]. By assumption h = hK , whereK is a bounded convex set that contains the origin
in its interior, and let ρK be the radial function of K i.e. ρK(y) := max{r; ry ∈ K}.
Then,

hK(x) = max
p∈K

〈x|p〉 = max
y∈Sd−1

ρK(y)〈x|y〉

Since hK > 0, the maximum in the right-hand side is attained for a point y such
that 〈x|y〉 > 0. Taking the logarithm of this expression, we get:

ϕ(x) = max
y∈Sd−1

log(ρK(y))− c(x, y),

thus concluding the proof of the direct implication. �
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3.2. c-Convex functions. In this paragraph, we show how the discretizations of
the spaces of convex and support functions presented above can be extended to
c-convex functions. This extension is motivated by a generalization of the principal-
agent problem proposed by Figalli, Kim and McCann [7]. Thanks to the similarity
between the standard convexity constraints and those arising in their setting, one
could hope to perform numerical computations using the same type of discretization
as those presented in Section 2.

The authors of [7] prove that the set of c-convex functions is convex if and only
if c satisfy the so-called non-negative cross-curvature condition. Under the same as-
sumption, we identify the linear inequalities that define this convex set of functions.
Note that the numerical implementation of this section is left for future work.

Given a cost function c : X ×Y → R, where X and Y are two open and bounded
subsets of Rd, the c-transform and c∗-transform of lower semi-continuous functions
ϕ : X → R and ψ : Y → R are defined by

ϕc∗(y) := sup
x∈Y

−c(x, y) − ϕ(x),

ψc(x) := sup
y∈Y

−c(x, y)− ψ(y).

A function is called c-convex if it is the c∗-transform of a lower semi-continuous
function ψ : Y → R. The space of c-convex functions on X is denoted Hc. We will
need the following usual assumptions on the cost function c:

(A0) c ∈ C4(X × Y ), where X,Y ⊆ R
n are bounded open domains.

(A1) For every point y0 in Y and x0 in X, the maps

x ∈ X 7→ −∇yc(x, y0)

y ∈ Y 7→ −∇xc(x0, y)

are diffeomorphisms onto their range (bi-twist).
(A2) For every point y0 in Y and x0 in X, the sets Xy0 := −∇yc(X, y0) and

Yx0 := −∇xc(x0, Y ) are convex (bi-convexity).

These conditions allow one to define the c-exponential map. Given a point y0 in the
space Y , the c-exponential map expcy0 : Xy0 → X is defined as the inverse of the
map −∇yc(., y0), i.e. it is the unique solution of

expcy0(−∇yc(x, y0)) = x. (3.17)

The following formulation of the non-negative cross-curvature condition is slightly
non-standard, but it agrees to the usual formulation for smooth costs under condi-
tions (A0)–(A2), thanks to Lemma 4.3 in [7].

(A3) For every pair of points (y0, y) in Y the following map is convex:

v ∈ Xy0 7→ c(expcy0 v, y0)− c(expcy0 v, y). (3.18)

The main theorem of [7] gives a necessary and sufficient condition for the space Hc

of c-convex functions to be convex.

Theorem 3.5. Assuming (A0)–(A2), the space of c-convex functions Hc is itself
convex if and only if c satisfies (A3).

The proof that (A0)–(A3) implies the convexity of Hc given in [7] is direct but
non-constructive, as the authors show that the average of two functions ϕ0 and ϕ1 in
Hc also belongs to Hc. The following proposition provides a set of linear inequality
constraints that are both necessary and sufficient for a function to be c-convex.
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Proposition 3.6. Assuming the cost function satisfies (A0)–(A3), a function ϕ :
X → R is c-convex if and only if it satisfies the following constraints:

(i) for every y in Y , the map ϕy : v ∈ Xy 7→ ϕ(expcy v) + c(expcy v, y) is convex.
(ii) for every x in X, the subdifferential ∂ϕ(x) is included in Yx.

Note that the first set of constraints (i) can be discretized in an analogous way
to the previous sections. On the other hand, the second constraint concerns the
subdifferential of ϕ in the sense of semiconvex functions. It is not obvious how to
handle this constraint numerically, except in the trivial case where Yx coincides with
the whole space R

d for any x in X.

Proof. Suppose first that ϕ is c-convex. Then, there exists a function ψ such that
ϕ(x) = ψc∗ and one has

ϕy(v) = sup
z
[−ψ(z) − c(expcy v, z)] + c(expcy v, y).

Equation 3.18 implies that ϕy is convex as a maximum of convex functions.
Conversely, suppose that a map ϕ : X → R is such that the maps ϕy are convex

for any point y in Y , and let us show that ϕ is c-convex. Using the definition of ϕy,
and the definition of the c-exponential (3.17), one has

ϕ(x) = ϕy(−∇yc(x, y))− c(x, y)

for any pair of points (x, y) in X×Y . This formula and the convexity of ϕy imply in
particular that the map ϕ is semiconvex. Consequently, for every point x in X, the
subdifferential ∂ϕ(x) is non-empty, and there must exist a point y in Y such that
v := −∇xc(x, y) belongs to ∂ϕ(x). Hence, x is a critical point of the map ϕ−c(., y),
and therefore v is a critical point of ϕy. By convexity, v is also a global minimum

of ϕy, i.e. for every w in Xy,

ϕ(expcy w) + c(expcy w, y) > ϕ(x) + c(x, y).

Letting x′ = expcy w, we get ϕ(x′) > ϕ(x) + c(x, y) − c(x′, y). The function ϕ(x) +
c(x, y)−c(., y) is thus supporting ϕ at x. Since ϕ admits such a supporting function
at every point x in X, it is a c-convex function. �

4. Numerical implementation

In this section, we give some details on how to apply the relaxed convexity con-
straints presented in Section 2 to the numerical solution of problems of calculus
of variation with (usual) convexity constraints. Our goal is to minimize a convex
functional F over the set of convex functions H. Our algorithm assumes that F
is easily proximable (see Definition 4.1). For any convex set K, we denote iK the
convex indicator function of K, i.e. the function that vanishes on K and take value
+∞ outside of K. The constrained minimization problem can then be reformulated
as

min
g∈C(X)

F(g) + iH(g), (4.19)

The method that we present in this paragraph can be applied with minor modifica-
tions to support functions. Its extension to the other types of convexity constraints
presented in Section 3, will be the object of future work.
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4.1. Discrete formulation. We are given a finite-dimensional subspace E of C(X),
and a linear parameterization P : RN → E of this space. This subspace E and its
parameterization play a similar role to the interpolation operator in the theoretical
section. For instance, we can let E be the space of piecewise-linear functions on
a triangulation of X, and P be the parameterization of this space by the values
of the function at the vertices of the triangulation. For every point x in X, this
parametrization induces a linear evaluation map Px : RN → R, defined by Pxξ :=
(Pξ)(x). By convention, if x does not lie in X, then Pxξ = +∞. The convexity
constraints in (4.19) are discretized using Definition 2.1:

min
ξ∈RN

F(Pξ) + iHMε
(Pξ). (4.20)

We now show how to rewrite the indicator function of the discretized convexity
constraints HMε as a sum of indicator functions. This allows us to exploit this
particular structure to deduce an efficient algorithm.

Let Uε ⊆ ∂X be a finite subset such that every point of ∂X is at distance at
most ε from a point of Uε. Given a pair of points p 6= q in Uε, we consider the
discrete segment cpq := {p+ εi(q − p)/ ‖q − p‖ ; i ∈ N, 0 6 i 6 ‖q − p‖ /ε} . These
geometric constructions are illustrated in Figure 2. The evaluation of a function Pξ
on a discrete segment cpq is a vector indexed by N, which takes finite values only
for indices in {0, . . . , |cpq| − 1}:

Ppqξ =

(

Pξ
(

p+ εi
(q − p)

‖q − p‖

))

i∈N

Define H1 as the cone of vectors (fi)i∈N that satisfy the discrete convexity conditions
fi 6

1
2(fi−1 + fi+1) for i > 1. The relaxed problem (4.20) is then equivalent to the

following minimization problem:

min
ξ∈RN

F(Pξ) +
∑

(p,q)∈U2
ε

p 6=q

iH1(Ppqξ). (4.21)

Remark 4.1 (Number of constraints). In numerical applications, we set ε = cδ,
where c is a small constant, usually in the range (1, 3]. For a fixed convex domain X
of R2, there are O(1/ε) constraints per discrete segment and O(1/ε2) such discrete
segments. The total number of constraints is therefore C := O(1/ε3) = O(1/δ3).
Moreover, a triangulation of X with maximum edgelength δ has at least N =
O(1/δ2) points. This implies that the dependence of the number of constraints as

a function of the number of points is given by C = O(N3/2). This is slightly lower
than the exponent O(N1.8) found in [4]. Moreover, as shown below, the structure
constraints of Equation (4.21) is favorable for optimization.

4.2. Proximal methods. When the functional F is linear (4.21) is a standard lin-
ear programming problem. Similarly, when F is quadratic and convex, this problem
is a quadratic programming problem with linear constraints. Below, we show how
to exploit the 1D structure of the constraints so as to propose an efficient and easy
to implement algorithm based on a proximal algorithm. This algorithm allows to
perform the optimisation when F is a more general function. The version of the al-
gorithm that we describe below is able to handle functions that are easily proximable
(see Definition 4.1). Note that it it would also be possible to handle functions F
whose gradient is Lipschitz using the generalized forward-backward splitting algo-
rithm of [21].
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Algorithm 1 Simultaneous-direction method of multipliers (SDMM)

Input: γ > 0
Initialization: (y1,0, z1,0) ∈ R

2N1 , . . . , (ym,0, zm,0) ∈ R
2Nm

For: n = 0, 1, . . .
xn = Q−1

∑m
i=1 L

T
i (yi,n − zi,n)

For: i = 1, . . . ,m
si,n = Lixn
yi,n+1 = proxγ gi(si,n + zi,n)
zi,n+1 = zi,n + si,n − yi,n+1

Definition 4.1 (Proximal operator). The proximal operator associated to a convex
function f : RN → R is defined as follows:

proxγ f(y) = arg min
x∈RN

f(x) +
1

γ
‖x− y‖2 . (4.22)

The function is called easily proximable if there exists an efficient algorithme able
to computes its proximal operator. For instance, when f is the indicator function
iK of a convex set, proxγ f coincides with the projection operator on K, regardless
of the value of γ.

The simultaneous-direction method of multipliers (SDMM) algorithm is designed
to solve convex optimization problems of the following type :

min
x∈RN

g1(L1x) + . . . gm(Lmx)

where the (Li)16i6m are matrices of dimensions N1×N, . . . ,Nm×N and the function
(gi)16i6m are convex and easily proximable. Moreover, it assumes that the matrix
Q :=

∑m
i=1 L

T
i Li is invertible, where LT

i stands for the transpose of the matrix Li.
A summary of the SDMM algorithm is given in Algorithm 1. More details, and
variants of this algorithm can be found in [2]. Note that when applied to (4.21),
every iteration of the outer loop of the SDMM algorithm involves the computation of
several projection on the cone of 1D discrete functions H1. These projection can be
computed independently, thus allowing an easy parallelization of the optimization.

4.3. Hinge algorithm. In the algorithm above, we need to compute the ℓ2 projec-
tion of a vector (fi) on the cone of discrete 1D convex functions H1. In practice, (fi)
is supported on a finite set {0, . . . , n}, and one needs to compute the ℓ2 projection
of this vector onto the convex cone

Hn
1 = {g : {0, . . . , n} → R; ∀i ∈ {1, . . . , n− 1}, 2gi 6 gi−1 + gi+1}.

This problem is classical, and several efficient algorithm have been proposed to solve
it. Since the number of conic constraints is lower than the dimension of the ambient
space (n+1), the number of extreme rays of the polyhedral cone Hn

1 is bounded by
n. In this case coincide with the edges of the cone. Moreover, as noted by Meyer
[16], these extreme rays can be computed explicitly. This remark allows one to
parameterize the cone Hn

1 by the space R× R
n
+, thus recasting the projection onto

Hn
1 into a much simpler non-negative least squares problem. To solve this problem,

we use the simple and efficient exact active set algorithm proposed by Meyer [16].
In our implementation, we reuse the active set from one proximal computation to
the next one. This improves the computation time by up to an order of magnitude.
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Figure 3. Denoising a convex graph by one dimensional projections.

5. Application I : Denoising

Our first numerical application focuses on the L2 projection onto the set of convex
functions on a convex domain. We illustrate the efficiency of our relaxed approach
in the context of denoising. Let u∗ be a convex function on a domain X in R

d. We
approximate this function by a piecewise linear function on a mesh, and the values
of the function at the node of the mesh are additively perturbed by Gaussian noise:
u0(p) = u∗(p)+cN (0, 1), where N (0, 1) stands for the standard normal distribution
and c is a small constant. Our goal is then to solve the following projection problem
in order to estimate the original function u∗:

min
u∈H

‖u− u0‖L2(X) .

As described in previous sections, our discretization of the space of convex func-
tions is not interior. However, thanks to Theorem 2.5, we obtain a converging
discretization process that uses fewer constraints than previously proposed interior
approaches. More explicitly, we illustrate below our method on the following three-

dimensional denoising setting. Let u0(x, y, z) =
x2

3 + y2

4 + z2

8 , X = [−1, 1]3 and set

c = 1
40 . We carried our computation on a regular grid made of 803 points and we

look for an approximation in the space of piecewise-linear functions. The parameter
used to discretize the convexity constraints is set to ε = 0.02. Figure 3 displays the
result of the SDMM algorithm after 104 iterations. This computation took less than
five minutes on a standard computer.

To illustrate the versatility of the method, we performed the same denoising
experience in the context of support functions, using the discretization explained in
Section 3. As in the previous example, we consider a support function perturbed
by additive Gaussian noise h0(p) = h∗(p) + cN (0, 1). In the numerical application,
h∗ is the support function of the unit isocaedron and c = 0.05, as shown on the left
of Figure 4. Our goal is to compute the projection of h0 to the space of support
functions:

min
h∈Hs

‖h− h0‖2L2(Sd−1) .

In order to relax the constraint Hs, we imposed one dimensional constraints on a
family of 2000 great circles of Sd−1 uniformly distributed and a step discretization
of every circular arc equal to 0.02. We obtained a very satisfactory reconstruction of
hi after 104 iterations of the SDMM algorithm, as displayed on the right of Figure 4.
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Figure 4. Denoising the support function of a convex body. On the
left the perturbed support function of the icosaedron. On the right
its projection into the set of support functions.

6. Application II : Principal-agent problem

The principal-agent problem formalizes how a monopolist selling products can
determine a set of prices for its products so as to maximize its revenue, given a
distribution of customer – the agents. We describe the simplest geometric version
of this problem in the next paragraph. Various instances of this problem are then
used as numerical benchmarks for our relaxed convexity constraints.

6.1. Geometric principal agent problem. Let X be a bounded convex domain
of Rd, a distribution of agent ρ : X → R and a finite subset K ⊆ X. The monopolist
or principal needs to determine a price menu π for pick-up or deliveries, so as to
maximize its revenue. The principal has to take into account the two following
constraints: (i) the agents will try to maximize their utility and (ii) there is a finite
subset K ⊆ X of facilities, that compete with the principal and force him to set its
price π(y) to zero at any y in K. For a given price menu π, the utility of a location y

for an agent located at a position x in X is given by uπ(x, y) = −1
2 ‖x− y‖2 −π(y).

The fact that each agent tries to maximize his utility means that he will choose a
location that balances closeness and price. The maximum utility for an agent x is
given by:

uπ(x) := max
y∈X

u(x, y) = −1

2
‖x‖2 +max

y∈X

[

〈x|y〉 − 1

2
‖y‖2 − π(y)

]

Let us denote uπ(x) the convex function uπ(x) +
1
2 ‖x‖

2. This function is differen-
tiable almost every point x in X, and at such a point the gradient ∇uπ(x) agrees
with the best location for x, i.e. ∇uπ(x) = argmaxy u(x, y). This implies the
following equality:

uπ(x) = 〈x|∇uπ(x)〉 −
1

2
‖∇uπ(x)‖2 − π(∇uπ(x))

Our final assumption is that the cost of a location for the principal is constant.
Our previous discussion implies that the total revenue of the principal, given a price
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# points ε |L− Lopt| ‖u− uopt‖∞ CPU
30× 30 0.06 1.3 · 10−3 2 · 10−3 11s
60× 60 0.03 9.8 · 10−4 1.6 · 10−3 251s
90× 90 0.02 9.7 · 10−4 1.1 · 10−3 500s

Table 1. Convergence of numerical approximations for the geomet-
ric principal-agent problem (radial case).

# points ε |M −Mopt| ‖u− uopt‖∞ CPU
900 0.06 8 · 10−5 1.15 · 10−2 11s
3600 0.03 8 · 10−5 1.00 · 10−2 28s
8100 0.02 4.3 · 10−5 8.46 · 10−3 87s

Table 2. Convergence of numerical approximations for the linear
principal-agent.

menu π, is computed by the following formula

R(π) =

∫

X
π(∇uπ(x))ρ(x)dx

= −
∫

X

[

uπ(x)− 〈x|∇uπ(x)〉+
1

2
‖∇uπ(x)‖2

]

ρ(x)dx (6.23)

Changing the unknown from π to v := uπ, the assumption that the price vanishes
on the set K translates as uπ > maxy∈K −1

2 ‖· − y‖2 or equivalently

v(x) = uπ(x) > max
y∈K

〈x|y〉 − 1

2
‖y‖2 .

Thus, we reformulate the principal’s problem in term of v as the minimization of
the following functional:

L(v) :=

∫

X

[

v(x) +
1

2
‖∇v(x)− x‖2

]

ρ(x)dx (6.24)

where the maximum is taken over the set of convex functions v : X → R that satisfy
the lower bound v > maxy∈K〈.|y〉 − 1

2 ‖y‖
2.

6.2. Numerical results. We present three numerical experiments. The first one
concerns a linear variant of the principal-agent problem. The second and third one
concern the geometric principal-agent problem presented above: we maximize the
functional L of Equation (6.24) over the space of non-negative convex functions,
with X = B(0, 1) and X = [1, 2]2 respectively, ρ constant and K = {(0, 0)}.

Linear principal agent. As a first benchmark, we consider a variant of the principal-
agent problem where the minimized functional is linear in the utility function u [14].
The goal is to minimize the following functional

M(u) :=

∫

X
(u(x)− 〈∇u|x〉)ρ(x)dx,

where X = [0, 1]2 and ρ = 1, over the set of convex functions whose gradient is
included in [0, 1]2. The solution to this problem is known explicitely:

uopt(x1, x2) = max{0, x1 − a, x2 − a, x1 + x2 − b}
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Figure 5. (Left) Numerical approximation to the principal-agent
problem on X = B(0, 1), with δ = 1/60 and ε = 1/50. The profile
of the 1D solution is reported as a bold line on the graph. (Right)
Numerical approximation to the principal-agent problem with X =
[1, 2]2 by P3 finite elements.

where a = 2/3 and b = (4 −
√
2)/3. We solve the linear principal-agent problem

on a regular grid meshing [0, 1]2, and compare it to the exact solution on the grid
points. Table 2 displays the numerical results for various grid sizes and choices of ε.

Geometric principal agent, radial case. In order to evaluate the accuracy of our al-
gorithm, we first solve the (non-linear) geometric principal-agent problem on the
unit disk, with K = {(0, 0)} and ρ constant. The optimal profile is radial in this
setting, and one can obtain a very accurate description of the optimal radial com-
ponent by solving a standard convex quadratic programming problem. In parallel,
we compute an approximation of the 2D solution on an unstructured mesh of the
disk. On the left of Figure 5, we show that our solution matches the line of the one
dimensional profile after 103 iterations of the SDMM algorithm, for δ = 0.12 and
ε = 1/50. Table 1 shows the speed of convergence of our method, both in term of
computation time and accuracy, with 103 iterations.

Geometric principal agent, Rochet-Choné case. We recover numerically the so-called
bunching phenomena predicted by Rochet and Choné [22] when X = [1, 2]2, ρ is
constant and K = {(0, 0)}, thus confirming numerical results from [6, 17, 1]. On
the right of Figure 5, we show the numerical solution defined on a regular mesh of
the square of size 60 × 60, with ε = 0.02. In this computation, the interpolation
operator is constructed using P3 finite elements, so as to illustrate the flexibility of
our method.

7. Application III : Closest convex set with constant width

A convex compact set K of R
d has constant width α > 0 if all its projection

on every straight line are segments of length α. This property is equivalent to the
following constraints on the support function of K :

∀ν ∈ Sd−1, hK(ν) + hK(−ν) = α. (7.25)

Surprisingly, balls are not the only bodies having this property. In dimension two
for instance, Reuleaux’s triangles, which are obtained by intersecting three disks
of radius α centered at the vertices of an equilateral triangle have constant width
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Surface Volume Width Relative width error
L1 projection of hS 2.6616 0.36432 0.951 < 0.001
L2 projection of hS 2.5191 0.34312 0.920 < 0.003
L∞ projection of hS 2.1351 0.28081 0.835 < 0.001

Table 3. Numerical results for the projections of hS

α. Moreover, Reuleaux’s triangles have been proved by Lebesgue and Blaschke to
minimize the area among two-dimensional bodies with prescribed constant width.

In dimension three, this problem is more difficult. Indeed the mere existence of
non trivial three-dimensional bodies of constant width is not so easy to establish. In
particular, no finite intersection of balls has constant width, except balls themselves
[13]. As a consequence and in contrast to the two dimensional case, the intersec-
tion of four balls centered at the vertices of a regular simplex is not of constant
width. In 1912, E. Meissner described in [15] a process to turn this spherical body
into an asymmetric bodies with constant width, by smoothing three of its circular
edges. This famous body is called “Meissner tetrahedron” in the literature [11]. It
is suspected to minimize the volume among three dimensional bodies with the same
constant width. Let us point out that Meissner construction is not canonical in the
sense that it requires the choice the set of three edges that have to be smoothed.
As a consequence, there actually exists two kinds of “Meissner tetrahedron” having
the same measure.

In these two constructions, the regular simplex seems to play a crucial role in
the optimality (see also [8] for a more rigorous justification of this intuition). It is
therefore natural to search for the body with constant width that is the closest to
a regular simplex. In an Hilbert space, the projection on a convex set is uniquely
defined. Thus, the Meissner tetrahedra cannot be obtained as projections of a
regular simplex to the convex set Hs ∩ W with respect to the L2 norm between
support functions. Such an obstruction does not hold for the L1 and L∞ norm,
which are not strictly convex. We illustrate below that our relaxed approach can be
used to numerically investigate these questions. The optimization problem that we
have to approximate is

min
h∈Hs∩W

‖h0 − h‖Lp(S2) , 1 6 p 6 ∞

where W is the set of function of S2 which satisfy the width constraints (7.25).
As explained is Section 3, we relax the constraint of being a support function, by

imposing convexity-like conditions on a finite family of great circles of the sphere. In
the experiments presented below the number of vertices in our mesh of S2 is 5000.
We choose a family of 2000 great circles of S2 uniformly distributed (with respect
to their normal direction) and a step discretization of every circular arc equal to
0.02. Finally, the constant width constraint W is approximated by imposing that
antipodal values of the mesh must satisfy a set of linear equality constraints, which
can be easily implemented in the proximal framework depicted in Section 4.2. Note
that in this first experience, the value of the width constraint is not imposed.

We present in Table 7 and Figure 7, our numerical description of the projections of
the support function of a regular simplex in the set of support function of constant
width bodies for the L1, L2 and L∞ norms. One can observe that the resulting
support functions describe a body with constant width within an error of magnitude
0.1%. In other words the gap between the minimal width and the diameter is
relatively less than 0.001. In the L1 case we obtain a convex body whose surface
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Figure 6. Reconstruction of the convex bodies associated to the
L1, L2 and L∞ projection of hS without prescribing the width value.

area and volume are close to those of a Meissner body of same width, within a
relative error of less than 0.01. We also performed the same experiment starting
from the support functions of others platonic solids. For any of these other solids,
and when the value of the width is not imposed, the closest body with constant
seems to always be a ball.
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