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ABSTRACT

Different amount of metal silver particles are linfited into porous SmCe)CuQ, (SCC)
scaffold to form SCC-Ag composite cathodes. Thenubal stability, microstructure
evolution and electrochemical performance of theposite cathode are investigated using
X-ray diffraction (XRD), scanning electron microsgodSEM), and AC impedance
spectroscopy respectively. The composite cathotiébies enhanced chemical stability. The
metal Ag remains un-reacted with SCC and el 10195 (CGO) at 800 °C for 72 h. The
polarization resistance of the composite cathodeedses with the addition of metal Ag. The
optimum cathode SCC-Ag05 exhibits the lowest apeific resistance (ASR, 0.43cnr) at

700 °C in air. Investigation shows that metal Agederates the charge transfer process in the
composite cathode, and the rate limiting step fecteochemical oxygen reduction reaction

(ORR) changes to oxygen dissociation and diffupi@tess.

KEYWORDS Solid oxide fuel cell; Slver infiltration; Composite cathode; Electrode reaction
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1 Introduction

One of the research targets for SOFCs is loweringy dperating temperature in order to
increase the life-time of the cell/stack/modulenad as to reduce the cost of the materials. So
far, many studies have been focused on the developof new electrode and electrolyte
materials toward low temperature operable SOFCs[2]] [3] and [4]. Layered perovskite
oxides with KNiF,-type structure were extensively studied in recgedrs, due to their
promising transport and catalytic properties, thmhemical stability and compatibility with
other cell components [5], [6], [7], [8], [9], [LOJ11], [12], [13], [14] and [15]. Among these
oxides, LaCuQ, materials were found to exhibit excellent perfonee For example, Li et
al. reported that the ASR of the 11381 sCuQ, cathode was as low as 0.96cnt at 700 °C
[16]. We studied the electrochemical performance Sof—CeCuO, and the ASR of
Smy.¢Ce2CuQ, was found to be 1.1€ cnt at 700 °C [17]. Further research on the oxygen
reduction kinetics of these cuprate cathodes alf@ysd that the charge transfer reaction was
the rate limiting step [16], [17], [18], [19] an@(]. Thus, enhancing the oxygen reduction

activity of these cathode materials is crucialtfe@ development of novel IT-SOFC cathode.

Studies proved that cathodes infiltrated with Rallen (Pd) and platinum (Pt) metal particles
showed promising oxygen reduction activity, dughe substantially increase of the surface
catalysis properties [21] and [22]. Ag is anoth#raative infiltrating candidate than those
precious metals, due to its good catalytic actjvitigh electrical conductivity and relatively
low cost. Numerous works have been performed omAtiradded perovskite cathodes [23],

[24], [25], [26] and [27], but less attention weasgto the KNiF,-type material [28].
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To continue our studies on $pC& ,CuQ, (referred as SCC in this paper) cathode materials,
and to understand the effect of Ag doping on tleetebde performance, SCC-Ag composite
cathode was selected and the electrochemical gyopes studied compared with the bare
SCC electrode. The mechanism of the oxygen redudiothe SCC-Ag composite cathode

was investigated using electrochemical impedancets@eopy (EIS) technique.

2 Experimental

Smy €Ce CuQy, powder was synthesized using the glycine-nitrategss (GNP). According
to the formula, stoichiometric amount of metal aiiss were mixed in a beaker to form a
solution, and then glycine (aminoacetic acikNBH,CO,H) was added into the nitrate
solution at 1:2 M ratio of metal ions/glycine aadiog to propellant chemistry. After drying
and firing, the resultant powder was calcined ma&i1000 °C for 12 h. The ¢¢5d) 101 95
(CGO) powder (Rhodia Courbevoie, France) was pdega@xially at 220 MPa and sintered
at 1400 °C for 10 h to form a densified pellet.omler to perform EIS measurement, a test
cell with three electrodes configuration was camgtd. The SasCe CuO, powder was
mixed with terpineol to form a slurry, and subseulyepainted on one side of the CGO
electrolyte pellet to form an electrode area of %, used as working electrode (WE). The
WE was first heated at 400 °C for 2 h to eliminatganic binders, followed by sintering at
1000 °C for 4 h in air, with a heating/cooling rafe3 °C min™. Platinum paste was painted
on the other side of the CGO pellet in symmetricfigomation, and then sintered at 800 °C
for 1 h in air, to form porous counter electrodeEJCA Pt wire was used as reference
electrode (RE) and put on the same side of the iwgridectrode. Silver nitrate solution was
then infiltrated into the porous cathode. The dethinfiltration process was as follows: 0.05
mol L™ AgNO; solution was prepared by dissolving silver nitpadevders in mixture solution

of distilled water and ethanol. Ethanol was addeddduce the surface tension on SCC
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backbone. The ratio of ethanol to water is 1 tdHe infiltration was carried out in a vacuum
chamber by dripping the AgNOsolution onto the SCC cathode area carefully using
injector and drying at 80 °C. The infiltrated catleovas then calcined at 800 °C for one hour.
This infiltration step was repeated several tingeslitain a suitable weight of Ag loaded on
the SCC backbone. The obtained cathodes with diffeveight ratio of Ag were abbreviated
as SCC-Ag02 for SmCea LCuQ, with 2 wt.% Ag, SCC-Ag05 for SmCe ,CuO, with 5

wt.% Ag, and so on.

In order to check the chemical stability of SCChMEGO at high temperature, these two
components were mixed thoroughly in 1:1 weightoradind heat-treated at 1000 °C for 4 h in
air. Silver nitrate was then added to the mixtameg again heated up to 800 °C for 72 h to

form SCC-CGO-Ag composite powders.

The sample was characterized using X-ray diffracticsstrument (Rigaku, D/MAX-3B) and

scanning electron microscopy (SEM) (Hitachi, S-4REG), respectively. The impedance
spectra were recorded over the frequency range ¥ MH).1 Hz using Autolab PGStat30.
The measurements were performed at OCV as a funofieemperature (550-700 °C) and

oxygen partial pressure (in,KD, mixed atmosphere).

3 Results and discussion

Phase purity of the prepared SCC and chemical coiipgg of Ag metal with SCC and

CGO were first investigated. Fig. 1 shows XRD pateof the sintered SCC-CGO and SCC-
CGO-Ag composite powders. The spectra of pure SEICEHO materials are also presented
in the same figure for comparison. The SCC powdadenby GNP process crystallizes in

body-centered tetragonal symmetry (Fig. 1(a)), sbimg with SmCuQ, structure (PDF card
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No. 24-0998). After sintered at 1000 °C for 4 h,(S@nd CGO retained their own structures
in the SCC—-CGO mixture (Fig. 1(c)). When Ag wasedlénd the composite cathode was
then heated at 800 °C for prolonged 72 h, no aufthti peaks except those from metal Ag,
SCC and CGO can be detected (Fig. 1(d)). This trésdicates that Ag is highly chemical

compatible with SCC and CGO materials.

0 0 Ag
d:SCC+CGO+Ag {‘ o | ’ 5
o e
S| ||
E’; c:SCC+CGO , I|| .|| \ o I! \ -,"l
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Fig. 1: XRD patterns of SCC, CGO, SCC-CGO and SG&2€Ag powders.

The SEM images of SCC and SCC-Ag cathodes are gatvigahown in Fig. 2. Obviously a
fine microstructure with moderate porosity and wedtked particles is formed in the SCC
cathode after firing at 1000 °C for 4 h (Fig. 2(AJhe impregnation of Ag does not change
the microstructure adversely. Some round-shapéclestare found in the SCC-Ag05 cathode
after the infiltration of AgNQ@ and then firing at 800 °C for 1 h (Fig. 2(B)). Tharface
mapping result indicates that these round-shapeciesrare metallic Ag, which are dispersed
uniformly on the surface of the cathode (Fig. 2(0))e average particle size of Ag is about

1-2 um. The cross-sectional image of the SCC-Ag05 cahmad the CGO electrolyte is
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presented in Fig. 2(D). Clearly the cathode andetleetrolyte form good contact with each
other. These is no delamination or cracking thatobserved at the electrode/electrolyte
interface. The thickness of the electrode is adduim (Fig. 2(D)). The EDX result further
supports that metal Ag is distributed in the SC@3gathode (Fig. 2(D), inset). When the
Ag loading increases to 10 wt.%, however, the glati@en and growth of Ag particles can be
visualized (Fig. 2(E)). This aggregation result$eiss TPBs and thus be suspected to increase

the polarization resistance.

Fig. 2: SEM micrographs of the cathodes: (A) SC@waut Ag (1000 °C, surface), (B) SCC-
Ag05 (800 °C, surface), (C) EDS elemental Mappimgtiow the spatial distribution of
metallic Ag (red), inset shows the mapping are80G€C-Ag05 cathode: (D) SCC-Ag05 (800
°C, cross-sectional image), inset is the EDX resithe cross-sectional part of SCC-Ag05

cathode, (E) SCC with 10 wt.% Ag (800 °C, surface).
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To explore the effects of Ag loading on polarizatresistance, the impedance spectra of SCC
cathode impregnated with different amounts of Agreveneasured (Fig. 3). For all the
cathodes, the impedance spectra can be separtaesvinarcs located in the high-frequency
zone and the low-frequency zone respectively, iimglywo consecutive reaction processes
related to oxygen reduction reaction (ORR) mighketplace. The overall size of the two arcs
is primarily attributed to the cathode area spedaifisistance (ASR), which is widely used to
describe the resistance terms related to electpooeess. The Arrhenius plots of ASR are
given in Fig. 4. Obviously the activation enerdsa) of SCC-Ag cathode is much smaller
than SCC cathode. The ASR decreases with the Ateebrreaches a minimum at 5 wt.%
Ag, and then increases again at 10 wt.% Ag. Thatian of ASR with Ag contents can be
understood, considering that the ORR process o8®&€ electrode is likely promoted by the
surface modification with silver. However, with therther increase of Ag content in the
composite cathode, some surface of the SCC partiokey be covered by the Ag metal, and
the active sites for oxygen reduction reaction Wwél reduced. This deduction was proved by
fitting the impedance spectra with an equivalentwt (Fig. 3, inset) composed of two R-
CPE elements in series to obtain the resistancdiffédrent processes. In this equivalent
circuit, Ronm represents the combination of electrolyte rescsaelectrode ohmic resistance,
lead resistance and contact resistance betweeadeatnd Pt mesh current collectBy, and

R_ are the polarization resistané&) corresponding to the high-frequency and low-festy
arc, respectively. The ASR is the sumRyf andR_. CPE is constant phase element whose
value reflects the reaction mechanism of differettrode processes. The fitting results are
presented in Fig. 5. It can be seen tRatis much larger thafR_ in SCC cathode. In a
previous study, we proved that the reaction ratetihg step of SCC cathode was charge
transfer reaction, which was characterized by tgh frequency arc in the EIS spectrum [17].

Compared to SCC electrode, the addition of Ag redudramatically the value of ASR and
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the decrease is mainly attributed by the reduabioRy. Arrhenius plots of the fitting results
for SCC—Ag composite cathode are given in Fig.t@s Ifound that bottRy and R_ first
decreases with the addition of Ag, and then in@eagain when the Ag content is up to 10
wt.% in the SCC—Ag composite. The activation endoy\Ry is in the range of 1.52-1.55 eV,
close to the activation energy of the oxygen s@rfxchange process inANO,.; [5]. At the
same time, the low frequency arc becomes domimatité impedance spectra (Fig. 3), and
the values oR_ are larger than these Bf; in the SCC-Ag composite cathodes (Fig. 6). The
activation energy foR_ is in the range of 0.96-1.16 eV, which is closéh@dissociation and
diffusion activation energy of the adsorbed oxygeolecular on the cathode surface [29].
The contribution of Ag loading is further illusteat in the Bold plot (Fig. 7). The enhanced
charge transfer reaction can be seen by a dramatiease of the phase angle of the high
frequency peak in the Bold plot. This is clearlifetient from that of SCC cathode. According
to the fitting results, this difference indicatésitt the oxygen reduction mechanism has been

changed with the addition of Ag.
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Fig. 3: Nyquist plot for SCC—Ag composite cathode=asured at 700 °C in air.
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Fig. 7: Bold plot for SCC—Ag composite cathodes soeed at 700 °C in air.
The electrochemical reaction mechanism of SCC-Agpmsite cathode was studied as a

function of oxygen partial pressure. Fig. 8 shoesitnpedance spectra of SCC-Ag05

cathode measured at 700 °C under various oxygéialgaressuresi, ). The polarization

resistance decreases with the increase of oxyg#algaessure, indicating an oxygen

11
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activity related electrochemical reaction that ooed on the composite cathode. By using the

same equivalent circuit presented in Fig. 3, tHeesofRy andR_ under different oxygen

partial pressure can be calculated. It is foundtti@resistance of the high frequency &g) (

is always much smaller than that of the low frequyeone R.). This means that tHg_ related

process is the reaction rate limiting step. Gehgrtie polarization resistancBy varies

with the oxygen partial pressure according to tiewing equation:

R =REX (R,)"

700°C

o 0.7x10°Pa

104 © 1.9x10°Pa

B 3.2x10°Pa

ogd * 6.7x10Pa

fitlne

E 06
FL\-I 0.4 4
0.2 4
0.0
2.4

Fig. 8: Impedance spectra for the SCC-Ag05 catlood€GO at 700 °C under various

oxygen partial pressures.

The value oh could give useful information about the type oéaps involved in the

reactions [30] and [31]:

n=1 0,(9) = O,
n:O'S OZads. < Z)ads.

N=025 O, + & +V, « O

— 2- o X
n=0 PB +Vo < Oo

12
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Fig. 9: Dependence of polarization resistance ggen partial pressure for SCC-Ag05
composite cathode at 700 °C.

The dependence of polarization resistanBgasafidR,, respectively) on oxygen partial was
presented in Fig. 9. It is found that the values obrresponding tB andR_ are 0.24 and
0.58 respectively. In this case the high frequearcyis confirmed to be related to the charge
transfer process, and the low frequency arc igassdito the dissociation and diffusion of
adsorbed oxygen. Compared to the results obtamEdji 8, it is clear that th&_related
process is the major rate limiting step for SCC-Agbmposite cathode in the whole range of
measurement oxygen partial pressure. However f@ &thode, the n values Bf, andR_
are 0.27 and 0.62 respectively, and the valug,aé always larger thaR_, which implied
that the charge transfer process on SCC cathdtle iate limiting step [17]. So it is clear that
when Ag was added in the electrode, a change aftledimiting step from charge transfer
process to diffusion of the dissociative adsorbeghen was likely happened. As we
expected, Ag catalyst promotes the surface excharogpess (charge transfer reaction) and
additionally, Ag particles can provide additionkdaron transport pathway through the
cathode surface due to its high electronic condigtiTherefore, the oxygen reduction

reaction could be more effective at the boundar&igAg/SCC than at Air/SCC, and

13



219 consequently the electrochemical performance isrex@thby the impregnation of Ag

220 catalyst.

221 It should point out that the great reducdrgfvalue is paid back by the simultaneous increase
222 of R_ (Fig. 5). It is proposed that this simple infiticm method used may lead to the growth
223 of micrometer size Ag particles, which will coveetSCC particle surface and block the

224  oxygen diffusion channel in the cathode. So themsitucture of the cathode need to be

225  further optimized.

226 4 Conclusion

227 The Sm gCea LuO,—Ag composite cathodes were prepared and theitretdemical

228 properties were studied below 700 °C. The SCC-Agfiaposite exhibits improved catalytic
229 activity for the oxygen reduction reaction compa@the SmgCe ,CuQ, cathode, due to the
230 increased electronic conductivity and electro-gaiabctivity contributed by Ag particles.
231 The lowest area specific resistance obtained a@aa air is 0.43) cnt for SCC-Ag05

232 composite cathode. The addition of Ag in the SG£tebde changes the rate limiting step
233 from charge transfer process to oxygen dissociamhdiffusion process. However, further
234 long-term stability investigation by operating oeer extended period may be needed to

235 verify the effect of Ag diffusion.
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