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Abstract—Many numerical problems require
a higher computing precision than that offered
by common floating point (FP) formats. One
common way of extending the precision is to
represent numbers in a multiple component for-
mat. With so-called floating point expansions,
numbers are represented as the unevaluated
sum of standard machine precision FP num-
bers. This format offers the simplicity of us-
ing directly available and highly optimized FP
operations and is used by multiple-precisions
libraries such as Bailey’s QD or the analogue
Graphics Processing Units tuned version, GQD.
In this article we present a new algorithm for
computing the reciprocal FP expansion a−1 of a
FP expansion a. Our algorithm is based on an
adapted Newton-Raphson iteration where we
use "truncated" operations (additions, multipli-
cations) involving FP expansions. The thorough
error analysis given shows that our algorithm
allows for computations of very accurate quo-
tients. Precisely, after i > 0 iterations, the com-
puted FP expansion x = x0 + . . . + x2i

−1 satisfies

the relative error bound:
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−2i(p−3)−1,

where p > 2 is the precision of the FP repre-
sentation used (p = 24 for single precision and
p = 53 for double precision).
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floating-point expansions, high precision
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I. Introduction

Many numerical problems in dynamical sys-
tems or planetary orbit dynamics, such as the long-
term stability of the solar system [1], finding sinks

in the Henon Map [2], iterating Lorenz attrac-
tor [3], etc., require higher precisions than the stan-
dard double precision (now called binary64 [4]).
Quad or higher precision is rarely implemented in
hardware, and the most common solution is to
use software emulated higher precision libraries,
also called arbitrary precision libraries. There are
mainly two ways of representing numbers in ex-
tended precision. The first one is the multiple-
digit representation: numbers are represented with
a sequence of digits coupled with a single ex-
ponent. An example is the representation used
in GNU MPFR [5] which is an open-source C
library, which provides besides arbitrary precision,
also correct rounding for each atomic operation
(for basic operations and functions). The second
way is multiple terms representation: a number
is expressed as an unevaluated sum of several
standard FP numbers. This sum is usually called
an FP expansion. Bailey’s library QD [6] supports
double-double (DD) and quad-double (QD) com-
putations, that is, numbers are represented as the
unevaluated sum of 2 or 4 double-precision FP
numbers. It is known [7], however, that the DD and
QD formats and operations implemented in this
library are not compliant with the IEEE 754-2008
standard, and do not provide correctly rounded
operations. However, this multiple term format
offers the simplicity of using directly available and
highly optimized FP operations and most multiple
terms algorithms are straightforwardly portable
to highly parallel architectures, such as GPUs.
In consequence, there is a demand for providing
error bounds for algorithms based on the multiple-
term format. Addition and multiplication have
been previously studied [7], [6, Thm. 44, Chap.



14]. In this article we consider the case of com-
puting reciprocals of FP expansions. There are
two classes of algorithms for performing division:
the so-called digit-recurrence algorithms [8], that
generalize the paper-and-pencil method, and the
algorithms based on the Newton-Raphson itera-
tion [9], [10]. While the algorithms suggested so far
for dividing expansions belong to the former class,
here we will be interested in studying the possible
use of the latter class, since its very fast, quadratic,
convergence is appealing when high precision is at
stake.

The outline of the paper is the following: in
Section I-A we recall some basic notions about FP
expansions and in Section I-B we present existing
algorithms based on long classical division on ex-
pansions. Then, in Section II the new algorithm
for computing reciprocals of expansions is given
and its correctness is proved. Finally, in Section III
we assess the performance of our algorithm – in
terms of number of FP operations, proven accuracy
bounds and timings –.

A. Floating-point expansions

A normal binary precision-p floating-point
(FP) number is a number of the form

x = Mx · 2
ex−p+1,

with 2p−1 6 |Mx| 6 2p − 1. The integer ex is
called the exponent of x, and Mx · 2

−p+1 is called
the significand of x. We denote accordingly to
Goldberg’s definition ulp(x) = 2ex−p+1 [7, Chap.
2].

A natural extension of the notion of DD or QD
is the notion of floating-point expansion. A floating-
point expansion u with n terms is the unevaluated
sum of n floating-point numbers u0, u1, . . . , un−1,
in which all nonzero terms are ordered by magni-
tude (i.e., ui 6= 0⇒ |ui| > |ui+1|). Arithmetics on
FP expansions have been introduced by Priest [11],
and later on by Shewchuk [12].

To make sure that such an expansion carries
significantly more information than one FP num-
ber only, it is required that the ui’s do not “over-
lap”. This notion of overlapping varies depending
on the authors. We give here the definition of
Priest and Bailey that we consider in the following,
using the above-introduced notation.

Definition I.1. Assuming x and y are normal
numbers with representations Mx · 2ex−p+1 and
My · 2

ey−p+1 (with 2p−1 6 Mx, My 6 2p− 1), they

are P-nonoverlapping (that is, nonoverlapping ac-
cording to Priest’s definition [13]) if |ey − ex| > p.

Definition I.2. An expansion is P-
nonoverlapping (that is, nonoverlapping according
to Priest’s definition [13]) if all of its components
are mutually P-nonoverlapping.

A slightly stronger sense of nonoverlapping was
introduced by Hida, Li and Bailey [6]:

Definition I.3. An expansion u0, u1, . . . , un−1 is
B-nonoverlapping (that is, nonoverlapping accord-
ing to Bailey’s definition [6]) if for all 0 < i < n,
we have |ui| 6

1
2 ulp(ui−1).

Remark I.4. Note that for P-nonoverlapping ex-
pansions we have |ui| 6

2p−1
2p ulp(ui−1).

The majority of algorithms performing arith-
metic operations on expansions are based on the
so-called error-free transforms (such as the al-
gorithms 2Sum, Fast2Sum, Dekker product and
2MultFMA presented for instance in [7]), that
make it possible to compute both the result and
the error of a FP addition or multiplication. This
implies that in general, each such error-free trans-
form applied to two FP numbers, returns still
two FP numbers. So, an algorithm that performs
addition of two expansions x and y with n and re-
spectively m terms, returns an FP expansion with
at most n + m terms. Similarly, for multiplication,
the product is an FP expansion with at most 2nm
terms [11]. So-called normalization algorithms are
used to render the result non-overlapping, which
implies also a potential reduction in the number
of components.

In what follows we denote by RoundAddE(x[0 :
n − 1], y[0 : m − 1], k), an algorithm for ex-
pansions addition, which given two (P− or B−)
nonoverlapping expansions, returns the k most
significant terms of the exact normalized (P− or
B−) nonoverlapping sum. If no request is made
on the number of terms to be returned, then we
denote simply by AddE(x[0 : n − 1], y[0 : m −
1]). Similarly, we denote by RoundMulE, MulE,
RoundSubE, SubE, RenormalizeE algorithms for
multiplication, subtraction, normalization. While
many variants exist for these algorithms, division
and hence, reciprocal are less studied in literature.

B. Algorithms using classical long division on ex-
pansions

In [11] division is done using the classical
long division algorithm, which is recalled in Al-



gorithm 1.

Figure 1. Priest’s [11] division algorithm. We denote by
f [0 : . . .] and expansion f whose number of terms is not
known in advance.
Input: FP expansion a = a0 + . . . + an−1; b =

b0 + . . . + bm−1; length of output quotient FP
expansion d.

Output: FP expansion q = q0 + . . . with at most

d terms s.t.
∣

∣

∣

q−a/b
a/b

∣

∣

∣
< 21−⌊(p−4)d/p⌋.

1: q0 = RN(a0/b0)
2: r(0)[0 : n− 1]← r[0 : n− 1]
3: for i← 1 to d− 1 do
4: f [0 : . . .]← MulE(qi−1, b[0 : m− 1])
5: r(i)[0 : . . .] ← RenormalizeE(SubE(r(i−1)[0 :

. . .], f [0 : . . .]))

6: qi = RN(r
(i)
0 /b0)

7: end for
8: q[0 : . . .]← RenormalizeE(q[0 : d− 1])
9: return FP expansion q = q0 + . . ..

Bailey’s division algorithm [6] is very similar.
For instance, let a = a0 + a1 + a2 + a3 and
b = b0 + b1 + b2 + b3 be QD numbers. First,
one approximates the quotient q0 = a0/b0, then
compute the remainder r = a−q0b in quad-double.
The next correction term is q1 = r0/b0. Subsequent
terms qi are obtained by continuing this process.
Note that at each step when computing r full quad-
double multiplication and subtraction must be
performed since most of the bits will be cancelled
out when computing q3 and q4. A renormalization
step is performed only at the end, on q0+q1+q2+...
in order to ensure non-overlapping. No error bound
is given in [6].

Note that in Algorithm 1 [11] a renormalization
step is performed after each computation of r =
r − qib and an error bound given:

Proposition I.5. Consider two P-nonoverlapping
expansions: a = a0 + . . . + an−1 and b = b0 +
. . .+bm−1, Priest division algorithm [11] computes
a quotient expansion q = q0 + . . . + qd−1 s.t.

∣
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∣

q − a/b

a/b

∣

∣

∣

∣

< 21−⌊(p−4)d/p⌋. (1)

In Daumas and Finot’s paper [14], Priest’s divi-
sion algorithm is improved by using only estimates
of the most significant component of the remainder
r0 and storing the less significant components of
the remainder and the terms −qib unchanged in a
set that is managed with a priority queue. While

the asymptotic complexity of this algorithm is
better, in practical simple cases Priest’s algorithm
is faster due to the control overhead of the pri-
ority queue [14]. The error bound obtained with
Daumas’ algorithm is (using the same notations
as above):

∣

∣

∣

∣

q − a/b

a/b

∣

∣

∣

∣

< 2−d(p−1)
d−1
∏

i=0

(4i + 6). (2)

II. Reciprocal of expansions with an
adapted Newton-Raphson iteration

The classical Newton-Raphson iteration for
computing reciprocals is briefly recalled in what
follows [9], [10], [7, Chap. 2]. It is based on the
classical Newton iteration for computing the roots
of a given function f , which is xn+1 = xn−

f(xn)
f ′(xn) .

When x0 is close to a root α, f ′(α) 6= 0, the
iteration converges quadratically. For computing
1/a we look for roots of the function f(x) =
1/x − a which implies using the iteration xn+1 =
xn(2−axn). The iteration converges to 1/a for all
x0 ∈ (0, 2/a), but for a fast convergence we need
x0 to be close to 1/a. The quadratic convergence
is proven by xn+1 −

1
a = −a(xn −

1
a )2. This

iteration is self-correcting because minor errors,
like rounding errors, do not modify the limit value
of the convergence.

While the iteration is classical, in Algorithm 2
we use an adaptation to computing reciprocals
of FP expansions, with truncated operations in-
volving FP expansions. Our algorithm works with
both B- and P-nonoverlapping FP expansions. For
the sake of clarity we consider first the case of
B-nonoverlapping FP expansions, and then make
the necessary adjustments for P-nonoverlapping
expansions in Proposition II.3.

A. Error analysis of Algorithm 2

In the following, let a = a0 + . . . + a2k−1 be a
B-nonoverlapping FP expansion with 2k terms and
q > 0. We will prove that our algorithm returns an
approximation x = x0 + . . . + x2q−1 of 1

a , in the
form of a B-nonoverlapping FP expansion with 2q

terms, such that
∣

∣

∣

∣

x−
1

a

∣

∣

∣

∣

6
2−2q(p−3)−1

|a|
. (3)

We will first prove the following proposition:



Proposition II.1. Consider a B-nonoverlapping
expansion u = u0 +u1 + . . .+uk with k > 0 normal
binary FP terms of precision p. Denote u(i) = u0 +
u1 + · · ·+ ui, i > 0, i.e. "a truncation" of u to i + 1
terms. The following inequalities hold for 0 6 i 6
k:

|ui| 6 2−ip |u0| , (4)

∣

∣

∣
u− u(i)

∣

∣

∣
6 2−ip |u|

η

1− η
, (5)

(

1− 2−ip η

1− η

)

|u| 6
∣

∣

∣
u(i)

∣

∣

∣
6

(

1 + 2−ip η

1− η

)

|u| ,

(6)

∣

∣

∣

∣

1

u
−

1

u0

∣

∣

∣

∣

6
1

|u|
η, (7)

where

η =

∞
∑

j=0

2(−j−1)p =
2−p

1− 2−p
.

Proof: By definition of a B-nonoverlapping
expansion and since for any normal binary FP
number ui, ulp(ui) 6 2−p+1 |ui| we have |ui| 6
1
2 ulp(ui−1) 6 2−p |ui−1| and (4) follows by induc-
tion.

Consequently we have |u− u0| =
|u1 + u2 + · · ·+ uk| 6 2−p |u0| + 2−2p |u0| +
· · · + 2−kp |u0| 6 |u0| η. One easily observes that
u and u0 have the same sign. One possible
proof is by noticing that 1 − η > 0 and
− |u0| η 6 u − u0 6 |u0| η. Suppose u0 > 0,
then −u0η 6 u − u0 6 u0η, and hence
u0(1 − η) 6 u 6 u0(1 + η) which implies
u > 0. The case u0 < 0 is similar. It follows that

|u|

1 + η
6 |u0| 6

|u|

1− η
. (8)

For (5) we use (8) together with:

∣

∣

∣
u− u(i)

∣

∣

∣
6

∞
∑

j=0

2(−i−j−1)p |u0| 6 2−ipη |u0| ,

and (6) is a simple consequence of (5). Simi-

larly, (7) follows from
∣

∣

∣

1
u −

1
u0

∣

∣

∣
= 1

|u|

∣

∣

∣

u0−u
u0

∣

∣

∣
6

1
|u| η.

Figure 2. Truncated Newton iteration based algorithm for
reciprocal of an FP expansion.

Input: FP expansion a = a0 + . . . + a2k−1; length
of output FP expansion 2q.

Output: FP expansion x = x0 + . . . + x2q−1 s.t.
∣

∣x− 1
a

∣

∣ 6
2−2q(p−3)−1

|a|
.

1: x0 = RN(1/a0)
2: for i← 0 to q − 1 do
3: v̂[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], a[0 :

2i+1 − 1], 2i+1)
4: ŵ[0 : 2i+1 − 1] ← SubRoundE(2, v̂[0 : 2i+1 −

1], 2i+1)
5: x[0 : 2i+1 − 1] ← MulRoundE(x[0 : 2i − 1], ŵ[0 :

2i+1 − 1], 2i+1)
6: end for
7: return FP expansion x = x0 + . . . + x2q−1.

Proposition II.2. Algorithm 2 is correct when
run with B-nonoverlapping expansions.

Proof: The algorithm’s input is a = a0 +
a1 + · · · + a2k−1 a non-overlapping FP expansion
in which every term ai is a normal binary FP
number of precision p. Let fi = 2i+1 − 1 and
a(fi) = a0 + a1 + . . . + afi

i.e. "a truncation" of
a to fi + 1 terms, with 0 6 i.

For computing 1/a we use Newton iteration:
x0 = RN(1/a0), xi+1 = xi(2 − a(fi)xi)), i > 0 by
truncating each operation involving FP expansions
in the following way:

• let vi := (a(fi) · xi) be the exact prod-
uct represented as a non-overlapping FP
expansion on 22(i+1) terms, we compute

v̂i := v
(2i)
i i.e. vi "truncated to" 2i+1 terms;

• let wi := 2 − v̂i be the exact result
of the subtraction represented as a non-
overlapping FP expansion on 2i+1 + 1

terms, we compute ŵi := w
(2i)
i i.e. vi

"truncated to" 2i+1 terms;

• let τi := xi · ŵi be the exact product
represented as a non-overlapping FP ex-
pansion on 2 · 2i(2i+1) terms, we compute

xi+1 := τ
(2i+1−1)
i i.e. τi "truncated to" to

2i+1 terms.

Let us first prove a simple upper bound for the
approximation error in x0:

ε0 =

∣

∣

∣

∣

x0 −
1

a

∣

∣

∣

∣

6
2η

|a|
. (9)



Since x0 = RN(1/a0), then
∣

∣

∣
x0 −

1
a0

∣

∣

∣
6 2−p

∣

∣

∣

1
a0

∣

∣

∣
,

so
∣

∣x0 −
1
a

∣

∣ 6 2−p
∣

∣

∣

1
a0

∣

∣

∣
+

∣

∣

∣

1
a −

1
a0

∣

∣

∣
6

(1+η)2−p+η)
|a| 6

2η
|a| (from (8)).

Let us deduce an upper bound for the approx-
imation error in x at step i + 1, εi+1 =

∣

∣xi+1 −
1
a

∣

∣.
For this, we will use a chain of triangular in-
equalites that make the transition from our "trun-
cated" Newton error, to the "untruncated" one.
Let γi = 2−(2i+1−1)p η

1−η . We have from Proposi-
tion II.1, eq. (5):

|xi+1 − τi| 6 γi |xi · ŵi| , (10)

|wi − ŵi| 6 γi |wi| 6 γi |2− v̂i| , (11)

|vi − v̂i| 6 γi

∣

∣

∣
a(fi) · xi

∣

∣

∣
, (12)

∣

∣

∣
a− a(fi)

∣

∣

∣
6 γi |a| . (13)

From (10) we have:

εi+1 6 |xi+1 − τi|+

∣

∣

∣

∣

τi −
1

a

∣

∣

∣

∣

6 γi |xi · ŵi|+

∣

∣

∣

∣

xi · ŵi −
1

a

∣

∣

∣

∣

6 γi |xi(wi − ŵi)|+ γi |xiwi|+

∣

∣

∣

∣

xi · ŵi −
1

a

∣

∣

∣

∣

6 (1 + γi) |xi| |wi − ŵi|+ γi |xiwi|

+

∣

∣

∣

∣

xi · wi −
1

a

∣

∣

∣

∣

.

Using (11) and (12):

εi+1 6

∣

∣

∣

∣

xi · wi −
1

a

∣

∣

∣

∣

+ ((1 + γi)γi + γi) |xiwi|

6

∣

∣

∣

∣

xi · (2− vi)−
1

a

∣

∣

∣

∣

+ |xi| · |(vi − v̂i)|

+ (γi(1 + γi) + γi) |xi| (|(2− vi)|+ |vi − v̂i|)

6

∣

∣

∣

∣

xi · (2− a(fi) · xi)−
1

a

∣

∣

∣

∣

+ γi(1 + γi)
2

∣

∣x2
i

∣

∣

∣

∣

∣
a(fi)

∣

∣

∣

+ (γi(1 + γi) + γi)
∣

∣

∣
xi(2− a(fi) · xi)

∣

∣

∣
.

By (13), we have:
∣

∣

∣

∣

xi · (2− a(fi) · xi)−
1

a

∣

∣

∣

∣

6 |a|

∣

∣

∣

∣

xi −
1

a

∣

∣

∣

∣

2

+γi |xi|
2
|a| ,

|xi|
2

∣

∣

∣
a(fi)

∣

∣

∣
6 (1 + γi) |xi|

2
|a| ,

and
∣

∣

∣
xi · (2− a(fi) · xi)

∣

∣

∣
6 |a|

∣

∣

∣

∣

xi −
1

a

∣

∣

∣

∣

2

+γi |xi|
2
|a|+

1

|a|
.

Hence we have:

εi+1 6 (1 + γi)
2 |a|

∣

∣

∣

∣

xi −
1

a

∣

∣

∣

∣

2

+ γi(1 + γi)
2(2 + γi)

∣

∣x2
i

∣

∣ |a|

+ γi(2 + γi)
1

|a|
. (14)

We now prove by induction that for all i > 0:

εi =

∣

∣

∣

∣

xi −
1

a

∣

∣

∣

∣

6
2−2i(p−3)−1

|a|
. (15)

For i = 0, this holds from (9) and the fact that
η = 1

2p−1 6 2−p+1. For the induction step, we
have from (14):

εi+1 6 (1 + γi)
2 |a| |εi|

2

+ γi(1 + γi)
2(2 + γi) (1± εi |a|)

2 1

|a|

+ γi(2 + γi)
1

|a|
, (16)

which implies

|a| εi+1

2−2i+1(p−3)
6

(1 + γi)
2

4
+

(1 + 2−p+2)(2 + γi)

64

·

(

1 + (1 + γi)
2

(

1 + 2−2i(p−3)−1
)2

)

6
1

2
. (17)

This completes our proof.

Proposition II.3. Algorithm 2 is correct when
run with P-nonoverlapping expansions.

Proof: It is easy to see that the previous anal-
ysis holds, provided that we use Remark I.4. This
implies mainly the following changes η′ = 2

2p−3 ,



γ′
i =

(

2
2p−1

)2i+1−1
η′

1−η′
. With this change it is

easy to verify that equations (9)–(16) hold as soon
as p > 2. Note that for the induction step at i = 1,

a tighter bound is needed for ε′
0 6

2−p(1+η′)+η′

|a| 6

2η′

|a|
3−2−p

4 , but the rest of the proof is identical, safe
for some tedious computations.

B. Complexity analysis

As presented before, our algorithm has the fea-
ture of using "truncated" expansions, while some
variants of RoundAddE and RoundMulE need to
compute the result fully and only then truncate.
However, for the sake of completeness, we first
analyze the theoretical complexity of our algorithm
in terms of number of FP operations, using Priest’s
multiplication and addition. These are not tuned
for obtaining "truncated" expansions on the fly –
and thus penalize our algorithm–, but are more
general than Bailey’s ones, which restrict to 2 or 4
terms. Secondly, we compare the actual implemen-
tation performance of our algorithm using Bailey’s
addition and multiplication.

Complexity analysis based on Priest’s
multiplication and addition: We recall (and
slightly update by taking 6 FP operations
for 2Sum [7]) the original operation count of
Priest [11]:
– Priest addition [11] of two P-nonoverlapping
expansions with n and respectively m terms,
requires n + m 2Sum calls and n + m + 1 FP
comparisons in worst case. This accounts for
A(n, m) = 7(n + m) + 1 FP operations.
– Priest renormalization [11] of a P-
nonoverlapping expansion x with k terms, requires
3(k − 1) 2Sum calls and 2(k − 1) comparisons in
worst case. This accounts for R(k) = 20(k − 1)
FP operations.
– hence, Priest addition followed by
renormalization [11] of two P-nonoverlapping
expansions with n and respectively m terms,
requires (n + m) + 3(n + m − 1) 2Sum calls and
(n+m+1)+2(n+m−1) FP comparisons in worst
case. This accounts for AR(n, m) = 27(n+m)−19
FP operations.
– Priest multiplication [11] of two P-
nonoverlapping expansions with n and respectively
m terms, requires n + 2m Veltkamp’s "splits" [7,
Chap.4], 6nm multiplications, followed by

n
∑

i=1

(6R(m) +
5

∑

j=1

AR(jm, m) + AR(6m, 6(i− 1)m))

calls. This accounts for M(n, m) =

81 mn2 + 747 nm + 2 m− 233 n FP operations.
– Using Priest algorithms for addition and
multiplication of FP expansions, Priest
division Algorithm 1 requires d divisions and

(d−1)(M(1, m))+
d−1
∑

i=0

AR(2m, n+2m(i−1))+R(d)

function calls in worst case. This accounts for
D(d, n, m) = 27 d2m + 803 dm + 27 dn − 231 d −
830 m + 213 FP operations.

Proposition II.4. Using Priest algorithms for
addition and multiplication of FP expansions, Al-
gorithm 2 requires − 4461

7 +8 q +996 ·4q + 324
7 ·8

q−
404 · 2q FP operations.

Proof: We observe that the ith iteration
the following operations with expansions are per-
formed: 2 multiplications M(2i, 2i+1); one addition
and renormalization AR(2i+1, 1). Since q iterations
are done, the total number of FP operations is:
1 +

∑q−1
i=0 (2M(2i, 2i+1) + AR(2i+1, 1)) = − 4461

7 +
8 q + 996 · 4q + 324

7 · 8
q − 404 · 2q FP operations.

Remark II.5. Division is simply performed with
Algorithm 2 followed by a multiplication M(2q, n)
where the numerator expansion has n terms.

III. Comparison and Discussion

Concerning the error bounds provided (when
the same number of terms in the division are re-
quested) our algorithm performs better. In Table I
we show effective values for the bounds provided
by our error analysis compared with those of Priest
(see eq. (1)) and Daumas (see eq. (2)). Moreover,
our algorithm provides a unified error bound with
quadratic convergence independent of using under-
lying P- or B-nonoverlapping expansions.

Table I. Effective values for the bounds provided
by our error analysis compared with those of

Priest (see eq. (1)) and Daumas (see eq. (2))

Prec, iteration Eq. (1) Eq. (2) Eq. (15)

p = 53, i = 0 2 2−49 2−51

p = 53, i = 1 1 2−98 2−101

p = 53, i = 2 2−2 2−195 2−201

p = 53, i = 3 2−6 2−387 2−401

p = 53, i = 4 2−13 2−764 2−801

p = 24, i = 0 2 2−20 2−22

p = 24, i = 1 1 2−40 2−43

p = 24, i = 2 2−2 2−79 2−85

p = 24, i = 3 2−5 2−155 2−169

p = 24, i = 4 2−12 2−300 2−337

The complexity analysis performed with P-
nonoverlapping expansions shows that when at



most d components of the quotient are needed
and no error bound is requested, classical division
performs better. Some effective values of the worst
case operation count for the two algorithms, for
the same number of expansion terms are given in
Table II. Note that Priest algorithms are known
to be slow in practice due to the renormalization
process applied very often. For example, the mul-
tiplication of two FP expansions of length n and m
is proportional to n2m which is mainly the reason
why our algorithm is slower.

Table II. Effective values of the worst case FP
operation count for Algorithm 1 and Algorithm 2

used for reciprocal, when an expansion of at most d
terms is obtained.

d Flops Algorithm 1 Flops Algorithm 2
2 1573 2917
4 10653 16661
8 57157 83597

16 299829 437493

On the other hand, if a relative error is re-
quested, then it is preferable to use Algorithm 2.
For instance, to guarantee an error bound of
2−d(p−3)−1, Priest’s algorithm (based on the bound
given in Prop I.5) needs at least (dp−3d+2)p/(p−
4) terms, which entails a very poor complexity.
This implies that Daumas’ algorithm might be
a good compromise in this case, provided that
the priority queue used there can be efficiently
implemented.

In practice however, Bailey’s DD/QD libraries
are very often used, so we compare timings in
the setting of B-nonoverlapping expansions. In
Table III and IV we present effective timings
for several precisions for reciprocal and division
obtained with our algorithm vs. the QD library.
For manipulating double-double numbers, the QD
library is faster, but for quad-double and higher
precisions our algorithm performs better. This
confirms our hypothesis that for higher precisions
the Newton-Raphson iteration is preferable than
classical division. In Table V timings for precisions
greater than quad are recorded. All tests were
performed on an Intel(R) Core(TM) i7 CPU 3820,
3.6GHz computer.

As a future work we intend to generalize
the theoretical analysis of DD and QD addi-
tion/multiplication algorithms and thus to be able
to perform a more clinching complexity analysis for
reciprocal of B-nonoverlapping expansions also.

Table III. Timings in MFlops/s for Algorithm 2
vs. QD implementation for reciprocal of expansions.
The input expansion has di and the output expansion

has do double FP terms.

di do Algorithm 2 QD

1 1 107 107

2 2 62 70
4 4 10 3.6
1 2 62 86.2
2 4 10.7 3.7
4 2 61 86.2
1 4 12.6 7.36

Table IV. Timings in MFlops/s for Algorithm 2
vs. a QD implementation, where the numerator

expansion has do terms, the denominator expansion
has di and the output has do terms.

di do Algorithm 2 QD

1 1 107 107

2 2 46.3 70
4 4 6.8 3.6
1 2 46.7 86.2
2 4 7 3.7
4 2 46.1 86.2
1 4 7.7 7.36

Table V. Timings in MFlops/s for Algorithm 2
implementation for reciprocal of expansions. The

input expansion has di and the output expansion has
do double FP terms.

di do Algorithm 2
1 2 62
1 4 12.6
1 8 2
2 2 62
2 4 10.7
2 8 1.7
4 8 1.4
8 8 1.3
1 16 0.3
2 16 0.27
4 16 0.22
8 16 0.19

16 16 0.17
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