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ON CLOSED IDEALS IN THE BIG LIPSCHITZ ALGEBRAS OF

ANALYTIC FUNCTIONS

BRAHIM BOUYA AND MOHAMED ZARRABI

Abstract. In this paper we study the closed ideals in the big Lipschitz algebras of
analytic functions on the unit disk. More precisely we give the smallest closed ideal with
given hull and inner factor.

1. Introduction and statement of main result

Let D be the open unit disk of the complex plane and T its boundary. By H∞ we denote
the space of all bounded analytic functions on D. The big Lipschitz algebra is defined by
the following

Lipα :=
{

f ∈ H∞ : sup
z,w∈D

z 6=w

|f(z)− f(w)|

|z − w|α
< +∞

}

,

where 0 < α ≤ 1 is a real number. It is clear that Lipα is included in A(D), the usual disk
algebra of all analytic functions f on D that are continuous on D. It is well known that
Lipα is a non separable commutative Banach algebra when equipped with the norm

‖f‖α := ‖f‖∞ + sup
z,w∈D

z 6=w

|f(z)− f(w)|

|z − w|α
,

where ‖f‖∞ := sup
z∈D

|f(z)| is the supremum norm. We note that

‖f‖′α := ‖f‖∞ + sup
z∈D

(1− |z|)1−α|f ′(z)|,

defines an equivalent norm on Lipα, see for example [5, Theorem 5.1]. From now on, we
denote by U ∈ H∞ an inner function and by E ⊆ T a closed set such that E ⊇ σ(U) ∩ T,
where

σ(U) := {λ ∈ D : lim inf
z→λ

z∈D

|U(z)| = 0},

is called the spectrum of U, see [15, Pages. 62-63]. It is known that σ(U) = ZU ∪ supp(µ
U
),

where ZU is the zero set in D of U and supp(µ
U
) is the closed support of the singular

measure µ
U

associated to the singular part of U. We set

IA(D)(E, U) := {f ∈ A(D) : f|E ≡ 0 and f/U ∈ H∞}.
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2 B. BOUYA AND M. ZARRABI

The structure of closed ideals in the disk algebra was given independently by Beurling and
Rudin, see [8, Page. 85] and [17]. They proved that if I is a closed ideal of A(D), then
I = IA(D)(EI

, U
I
), where

E
I
:= {ξ ∈ T : f(ξ) = 0, ∀f ∈ I}

is known as the hull of I and U
I

is the greatest inner common divisor of the inner parts
of the non-zero functions in I. Later in [2, 3, 11, 13, 18, 20] the authors described the
complete structure of the closed ideals in some separable Banach algebras of analytic
functions. They proved that they are standard in the sense of the above Beurling and
Rudin characterization. However, the structure of the closed ideals of non separable Banach
algebras of analytic functions seems to be much more difficult, see [6, 7, 9] and references
therein for the analytic case and [19] for the non analytic case.

We set
Iα(E, U) := IA(D)(E, U) ∩ Lipα

and
Jα(E, U) :=

{

f ∈ Iα(E, U) : lim
δ→0

sup
z∈E(δ)

(1− |z|)1−α|f ′(z)| = 0
}

,

where
E(δ) := {z ∈ D : d(z,E) ≤ δ}, 0 < δ < 1,

and d(z,E) notes the Euclidian distance from the point z ∈ D to E. The spaces Iα(E, U)
and Jα(E, U) are clearly closed ideals of the algebra Lipα and Jα(E, U) ⊆ Iα(E, U). It is
known that there exists a non zero function f ∈ Lipα with boundary zero set E and inner
factor U if and only if the following condition holds

∫ 2π

0

log d(eiθ,E ∪ ZU )dθ > −∞, (1.1)

see Theorem 4 below. So under condition (1.1), we have E
I
= E and U

I
= U when I equals

Iα(E, U) or Jα(E, U). For every closed ideal I ⊆ Lipα we obviously have I ⊆ Iα(EI
, U

I
).

On the other hand, T. V. Pederson proved in [16, Theorem 4.1] that Jα(EI
, U

I
) ⊆ I,

for every I such that E
I

is a countable set. A result of this type was stated first in [7]
by Hedenmalm in the algebras H∞ and Lip1, for closed ideals I such that E

I
is a single

point. We also note that the closed ideals with countable hull in many different separable
Banach algebras were characterized in [1]. In [7, 16] the authors use the classical resolvent
method (also called the Carleman transform) which seems to be difficult to apply when
E

I
is uncountable. In this paper we show that the above inclusion always holds. To do

this we give an adaptation in the space Jα(E, U) of Korenblum’s functional approximation
method [11], see also [2, 14]. Our main result is the following Theorem.

Theorem 1. Let I ⊆ Lipα be a closed ideal, where 0 < α ≤ 1. Then Jα(EI
, U

I
) ⊆ I.

It follows that for every closed ideal I of Lipα, Jα(EI
, U

I
) ⊆ I ⊆ Iα(EI

, U
I
). We note

that for s ≥ 0, it is shown in [16, Corollary 4.7] that the set of closed ideals lying between
Jα({1}, ψs) and Iα({1}, ψs) is uncountable, where ψs is the following singular function

ψs(z) := es
z+1

z−1 , z ∈ D.
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We also obtain the following Corollary.

Corollary 1. The closed ideal Jα(E, U) is principal and is generated by any function

g ∈ Jα(E, U) with inner factor U and boundary zero set E.

To prove Theorem 1 we extend some approximation results obtained in [16] by using the
factorization property (also called the F-property) of the space Jα(E) := Jα(E, 1), which
we state in the following Theorem.

Theorem 2. Let g ∈ Lipα be a function and V ∈ H∞ be an inner function dividing g,
that is g/V ∈ H∞. If g ∈ Jα(E), then g/V ∈ Jα(E).

We note that Lipα possesses the F-property; If f ∈ Lipα and V ∈ H∞ is an inner
function such that f/V ∈ H∞ then f/V ∈ Lipα and ‖f/V ‖α ≤ cα‖f‖α, where cα is a
positive constant independent of the functions f and V, see [21].
The remaining of this paper is organized as follows: In section 2, we use Theorem 2 to give
the proof of Theorem 1. Section 3 contains the proof of Theorem 2. The last section is
devoted to presenting an elementary proof of Theorem 2 in the case 0 < α < 1.

2. Proof of Theorem 1

2.1. Some technical results. For f ∈ H∞ we denote by Uf and Of the inner and the
outer factor of f . By Bf the Blaschke product with zeros

Zf := {z ∈ D : f(z) = 0},

counting the multiplicities. For a closed ideal I of Lipα, we set Z
I
:=

⋂

f∈I

Zf and we denote

by B
I

the Blaschke product with zeros Z
I
, counting the multiplicities. In fact B

I
is the

Blaschke product factor of U
I
. We need the following result to show the next one.

Lemma 1. Let p ∈ N be a number. The set Jα(E, U)∩Ip
α(E) is dense in Jα(E, U), where

Ip
α(E) := {f ∈ Lipα : ∃C > 0, |f(ξ)| ≤ Cdp(ξ,E) for all ξ ∈ T}.

Proof. Here, we will just point out the steps in the proof of [16, Proposition 5.3] that prove
the present lemma. For a real number δ ∈ (0, 1), we let E1,δ and E2,δ be two closed disjoint

subsets of T such that E ⊆ E1,δ ⊆ E(δ) and Ef = E1,δ∪E2,δ. By using [16, Proposition 5.4],
we have Of = O1,δ × O2,δ, where Oi,δ ∈ Lipα are outer functions such that EOi,δ

= Ei,δ,

(i = 1, 2). We have T \ E1,δ =
∞
⋃

n=1

(an, bn), where (an, bn) ⊆ T \ E1,δ is an open arc joining

the points an, bn ∈ E1,δ. For N ∈ N, we define FN to be the outer function with boundary
modulus defined as follows

|FN(ξ)| :=

{

|O1,δ(ξ)|, if ξ ∈ ΩN ,
1, if ξ ∈ T \ ΩN ,
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where ΩN :=
∞
⋃

n=N+1

(an, bn). Since the set E \ ∂ΩN is finite we can set E \ ∂ΩN :=

{c1, c2, ..., cm
N
}. Also, we define

Ki,µ(z) :=
z − ci

z − ci(1 + µ)
, z ∈ D.

In [16, Pages 52-53] it is shown that for every ε > 0 there exist parameters δ, t, N , q, µ
and p such that the function

h :=
(

m
N

∏

i=1

Ki,µ

)p

F q
NO

t
1,δ

belongs to A(D) and ‖fh− f‖α ≤ ε. Hence every function f ∈ Jα(E, U) can be approxi-
mated by functions in Jα(E, U)∩ Ip

α(E), using the simple fact that Jα(E, U) ⊆ Jα(E) and
that U divides fh. So Jα(E, U) ∩ Ip

α(E) is dense in Jα(E, U). This finishes the proof of
Lemma 1. �

To prove our main Theorem we need the following Proposition which in particular gives
an answer to the question (2) in [16, Page 47].

Proposition 3. Let f ∈ Lipα be a function such that f ∈ Jα(Ef). Then

Lipα f = Jα(Ef , Uf).

Proof. Let f ∈ Jα(Ef) be a function. It is clear that Lipα f ⊆ Jα(Ef , Uf). We have to

show that Jα(Ef , Uf) ⊆ Lipα f. Using Lemma 1 it is sufficient to show that Jα(Ef , Uf) ∩

Ip
α(Ef) ⊆ Lipα f for some p ∈ N. Let g ∈ Jα(Ef , Uf) ∩ Ip

α(Ef ) be a function and suppose
that p > 2α. We note that Of ∈ Jα(Ef ), by Theorem 2. According to the proof of [16,
Proposition 5.2] the function g can be approximated by functions of the form ghOf , where
h ∈ Lipα, (see assertions (i) − (ii) in [16, p. 48] and assertions (11) − (a) − (b) in [16,
p. 50]). By using the F–property g/Uf ∈ Lipα. Then hgOf = h (g/Uf) f ∈ Lipα f. It

follows that g ∈ Lipα f. Hence Jα(Ef , Uf) ∩ Ip
α(Ef ) ⊆ Lipα f. The proof of Proposition 3

is finished. �

The following space

A1(D) := {f ∈ A(D) : f ′ ∈ A(D)},

endowed with norm

‖f‖A1 := ‖f‖∞ + ‖f ′‖∞, f ∈ A1(D),

is a Banach algebra. Clearly A1(D) is continuously embedded in Lipα. The following
theorem is proved in [10, Theorems 2 and 4], see also [22, Theorem].

Theorem 4. Let f be a nonzero function in Lipα. Then the closed set Ef ∪ Zf satisfies

the condition (1.1). Conversely if E ∪ ZU satisfies the condition (1.1), then there exists a

function f ∈ A1(D) such that Uf = U, Ef = E and Ef ′ ⊇ E.

Now we can give the proof of our main Theorem by using Proposition 3 and Theorem 4.
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2.2. Proof of Theorem 1. Let I ⊆ Lipα be a closed ideal. Since A1(D) is continuously
embedded in Lipα then I1 := A1(D)∩I is a closed ideal of A1(D). It is clear that E

I
⊆ E

I1

and U
I

divides U
I1
. Now, let f ∈ I \ {0} be a function. It is easily seen that f1 := fOf

belongs to Jα(Ef1). Then Lipα f1 = Jα(Ef1 , Uf1), by using Proposition 3. Since Ef1 = Ef ,
Uf1 = Uf and f1 ∈ I then Jα(Ef , Uf) ⊆ I.
By Theorem 4 there exists a function g ∈ A1(D) such that Ug = Uf , Eg = Ef and Eg′ ⊇ Ef .
It is clear that g ∈ Jα(Ef , Uf ). Then g ∈ I and by consequence g ∈ I1. We conclude that
U

I1
divides Uf and E

I1
⊆ Ef for every function f ∈ I \ {0}. So E

I1
= E

I
and U

I1
= U

I
.

According to the structure of closed ideals in A1(D) given in [12]

{f ∈ A1(D) : f/U
I1

∈ H∞ and f = f ′ = 0 on E
I1
} ⊆ I1. (2.1)

It follows that

{f ∈ A1(D) : f/U
I
∈ H∞ and f = f ′ = 0 on E

I
} ⊆ I. (2.2)

By using Theorem 4 there exists a function f0 ∈ A1(D) such that Uf0 = U
I
, Ef0 = E

I

and Ef ′
0
⊇ E

I
. Then f0 ∈ I by (2.2). It follows that Lipα f0 ⊆ I. Since f0 ∈ Jα(Ef0)

then Lipα f0 = Jα(EI
, U

I
), by using Proposition 3. Hence Jα(EI

, U
I
) ⊆ I. The proof of

Theorem 1 is completed.

2.3. Proof of Corollary 1. It follows clearly from Theorem 1 that Jα(E, U) is generated
by any function g ∈ Jα(E, U) such that Ug = U and Eg = E. So we have just to check
that such functions exist. If Jα(E, U) 6= {0} then E ∪ ZU satisfies the Condition (1.1)
by Theorem 4. Now the existence of such functions follows again from Theorem 4, which
finishes the proof of Corollary 1.

3. Proof of Theorem 2

Let g be a nonzero function in Jα(E) such that V divides Ug. We set k := g/V. For
a real number δ ∈ (0, 1), we let E1,δ and E2,δ be two closed disjoint subsets of T such

that E ⊆ E1,δ ⊆ E(δ) and Eg = E1,δ ∪ E2,δ. By using [16, Proposition 5.4], we have
Og = O1,δ × O2,δ, where Oi,δ ∈ Lipα are outer functions such that EOi,δ

= Ei,δ, (i = 1, 2).
The function Oi,δ is constructed such that log |Oi,δ| = χi log |Og| = χi log |g| on T, where
χi is a function such that 0 ≤ χi ≤ 1. This implies in particular that |Oi,δ| ≤ |g|+ 1. We
have

(gOt
1,δ − g)′ = tOt

1,δO
′
1,δO2,δUg + (Ot

1,δ − 1)g′.

Then

‖gOt
1,δ − g‖′α ≤ ν(t, δ) + (‖g‖∞ + 2) sup

z∈E(2δ)

(1− |z|)1−α|g′(z)|, (3.1)

where t ∈ (0, 1) is a real number and

ν(t, δ) := ‖gOt
1,δ − g‖∞ + t‖O1,δ‖

t
∞‖O2,δ‖∞‖O1,δ‖

′
α + ‖g‖′α sup

z∈D\E(2δ)

|Ot
1,δ − 1|.
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It is plain to see that, for every real number δ′ > 0,

lim
t→0+

sup
z∈D\E1,δ(δ′)

|Ot
1,δ(z)− 1| = 0. (3.2)

It follows
lim
t→0+

sup
z∈D\E(2δ)

|Ot
1,δ(z)− 1| = 0, (3.3)

by using the fact that D \E(2δ) ⊆ D \E1,δ(δ). From (3.2) and the fact that g is continuous

on D and vanishes on E1,δ, we get that

lim
t→0+

‖gOt
1,δ − g‖∞ = 0. (3.4)

Thus, for a fixed δ ∈ (0, 1), we have

lim
t→0+

ν(t, δ) = 0, (3.5)

by using (3.3) and (3.4). Now, since g ∈ Jα(E, U) then

lim
δ→0+

sup
z∈E(2δ)

(1− |z|)1−α|g′(z)| = 0. (3.6)

We deduce from (3.1), (3.5) and (3.6) that for every δ ∈ (0, 1) there exists a number
t(δ) > 0 such that

lim
δ→0+

‖gO
t(δ)
1,δ − g‖α = 0. (3.7)

By using the F-property of Lipα

‖k(O
t(δ)
1,δ − 1)‖α ≤ cα‖g(O

t(δ)
1,δ − 1)‖α, for all 0 < δ < 1, (3.8)

where cα > 0 is a constant independent of δ. Hence

lim
δ→0+

‖k(O
t(δ)
1,δ − 1)‖α = 0. (3.9)

By computing the derivative we see easily that kO
t(δ)
1,δ ∈ Jα(E), for all 0 < δ < 1. Hence

k ∈ Jα(E), as consequence of the fact that Jα(E) is closed and (3.9). This finishes the
proof of Theorem 2.

Remark 5. In the appendix below we give an elementary proof of Theorem 2 for 0 < α < 1
based on an estimation of some classical Toeplitz operators. However we do not know how

to extend this proof to the limit case α = 1.

4. Appendix: A Toeplitz method for the F-property of Jα(E)

In this section we consider the spaces Lipα such that 0 < α < 1. The proof in the
following section is inspired from [21, Page. 8]. Let E ⊆ T be a closed set. We define in
Lipα the following Toeplitz operator

T
V
(g)(z) :=

1

2πi

∫

T

g(ζ)V (ζ)

ζ − z
dζ, z ∈ D,

where V ∈ H∞ is a function. We start with the following Proposition.
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Proposition 6. Let g ∈ Lipα where 0 < α < 1 is a real number. For every function

V ∈ H∞, we have

sup
z∈D

(1− |z|)1−α|
(

T
V
(g)

)′
(z)| < +∞. (4.1)

If moreover g ∈ Jα(E), then we have

lim
δ→0

sup
z∈E(δ)

(1− |z|)1−α|
(

T
V
(g)

)′
(z)| = 0, (4.2)

uniformly with respect to all functions V such that ‖V ‖∞ ≤ 1.

Proof. Let g ∈ Lipα where 0 < α < 1 is a real number. We have

(

T
V
(g)

)′
(z) =

1

2πi

∫

T

g(ζ)V (ζ)

(ζ − z)2
dζ

=
1

2πi

∫

T

(g(ζ)− g(z/|z|))V (ζ)

(ζ − z)2
dζ, z ∈ D. (4.3)

It follows

(1− |z|)1−α|
(

T
V
(g)

)′
(z)|

≤
‖V ‖∞(1− |z|)1−α

2π

∫

T

|g(ζ)− g(z/|z|)|

|ζ − z|2
|dζ | (4.4)

≤ ‖V ‖∞‖g‖α(1− |z|)1−α

∫

T

|ζ − z/|z||α

|ζ − z|2
|dζ |, z ∈ D. (4.5)

The following classical equality

|eit − |z|eiθ|2 = (1− |z|)2 + 4|z| sin2(
1

2
(θ − t)),

gives the following one

|ζ − z/|z||α

|ζ − z|2
=

2α| sin(1
2
(θ − t))|α

(1− |z|)2 + 4|z| sin2(1
2
(θ − t))

, (4.6)

where z := |z|eiθ ∈ D and ζ := eit ∈ T. Therefore
∫

T

|ζ − z/|z||α

|ζ − z|2
|dζ | ≤ c

∫ π

0

sα

(1− |z|)2 + s2
ds ≤ cα(1− |z|)α−1, z ∈ D, (4.7)

where c and cα are constants. By combining (4.5) and (4.7),

(1− |z|)1−α|
(

T
V
(g)

)′
(z)| ≤ cα‖V ‖∞‖g‖α, z ∈ D, (4.8)

which proves (4.1).
Now we suppose that g ∈ Jα(E) and that ‖V ‖∞ ≤ 1. Let ε > 0 be a positive number. It
follows from [16, Proposition 3.1], there exists a real number 0 < δ < 1 such that

|g(ζ)− g(ξ)| ≤ ε|ζ − ξ|α, ζ, ξ ∈ E(δ) ∩ T.
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For a point z ∈ E(δ),
∫

T

|g(ζ)− g(z/|z|)||V (ζ)|

|ζ − z|2
|dζ |

≤

∫

T

|g(ζ)− g(z/|z|)|

|ζ − z|2
|dζ |

=

∫

E(δ)∩T

|g(ζ)− g(z/|z|)|

|ζ − z|2
|dζ |+

∫

T\E(δ)

|g(ζ)− g(z/|z|)|

|ζ − z|2
|dζ |

≤ ε

∫

T

|ζ − z/|z||α

|ζ − z|2
|dζ |+ ‖g‖α

∫

T\E(δ)

|ζ − z/|z||α

|ζ − z|2
|dζ |. (4.9)

Let 0 < δ′ < δ/2 and z ∈ E(δ′). By using (4.6),
∫

T\E(δ)

|ζ − z/|z||α

|ζ − z|2
|dζ | ≤ c

∫

s≥ δ−δ′

2

sα

(1− |z|)2 + s2
ds

≤ cα(1− |z|)α−1

∫

u≥ δ−δ′

2δ′

uα

1 + u2
du, z ∈ E(δ′), (4.10)

where c and cα are constants not depending on δ and δ′. Hence, for sufficiently small δ′,
∫

T

|g(ζ)− g(z/|z|)||V (ζ)|

|ζ − z|2
|dζ | ≤ εc′α(1− |z|)α−1, z ∈ E(δ′), (4.11)

by combining (4.7), (4.9) and (4.10). We deduce that (4.2) holds as consequence of (4.4)
and (4.11). This finishes the proof of Lemma 6. �

The following Corollary gives the F-property of the spaces Lipα and Jα(E) directly from
Proposition 6.

Corollary 2. Let g ∈ Lipα where 0 < α < 1 is a real number. Let V ∈ H∞ be an inner

function dividing Ug. We have the following assertions

1. The function g/V belongs to Lipα.
2. If g ∈ Jα(E), then g/V ∈ Jα(E).

Proof. Since V ∈ H∞ is an inner function dividing Ug, then T
V
(g) = g/V. The proof of

the assertions 1 and 2 are deduced by applying Proposition 6. �
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