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Abstract—The estimation of directions of arrival is formulated
as the decomposition of a 3-way array into a sum of rank-
one terms. However, a low-rank tensor approximation does not
always exist. We propose an optimization technique based on
differentiable angular constraints on the factors, ensuring the
existence of the low-rank tensor decomposition. The efficiency of
the proposed algorithm is demonstrated via numerical simula-
tions, and compared to Cramér-Rao bounds.

I. INTRODUCTION

Estimation of Directions of Arrival (DoA) is a central prob-

lem in antenna array processing, including in particular Radar,

Sonar, or Telecommunications [1]. Traditional approaches are

based on low-rank approximation of the covariance matrix

of observations, and on detecting points of minimal distance

with the so-called array manifold [2] [3]. These approaches

hence assume that (i) the measurements are weakly stationary

over sufficiently long observation lengths, (ii) the number of

sources of interest is smaller than the number of sensors,

and (iii) spatial responses of all sensors are known, and in

particular their location (in other words, the sensor array needs

to be calibrated).

In [4], a deterministic approach has been proposed, which

permits not only to work with short data lengths (and hence

less stationary sources), but also to localize more sources

than sensors present in the reference array. This approach is

based on the same rotational invariance as exploited in [5]. It

consists in storing the measurements in a 3-way array, and

to decompose it into a sum of rank-one terms. One very

interesting by-product of [4] is that source copies are also

delivered for free, without any further estimation stage.

In this paper we revisit the approach of [4], where an

important fact has been neglected: a low-rank tensor approx-

imation does not always exist, so that the latter approach is

actually ill posed. This fact has been already pointed out in

[6], and additional constraints have been suggested, which

enjoy a reliable physical meaning and at the same time ensure

existence of a solution. In the present contribution, we shed

some light on conditioning and algorithmic issues.
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II. MODELING AND NOTATION

In the following, vectors will be denoted by bold lowercases,

e.g. a, whereas matrices or higher-order arrays will be denoted

by bold uppercases, e.g. A. Moreover, ar will denote the rth
column of matrix A.

Suppose that R narrow-band radiating sources impinge on

an array of sensors, formed of L subarrays of K sensors each.

We make the far-field assumption, that is, we assume that

sources are located sufficiently far from the array, compared

to the array dimensions, so that waves can be considered as

plane. The key assumption made in [5], [4], [6] is that, taking

one subarray as reference, every subarray can be deduced from

the reference one by an unknown translation in space, defined

by some vector δ! of R
3, 1 ≤ ! ≤ L, δ1

def
= 0.

Denote ςr(t) the signal transmitted by the rth source, dr its

DoA viewed from the array, and s(y, t) the signal measured
at a point in space defined by its coordinates y (we consider

complex envelopes about the central frequency). Then we

have:

s(y, t) =
R
∑

r=1

ςr(t) ar(y), ar(y)
def
= exp{

ω

C
yTdr} (1)

where ω is the central pulsation of the narrow-band waves,

C the wave celerity, and  =
√
−1. Because waves are plane

and narrow-band, the signal measured at another point y+ τ ,

deduced from y by a translation τ takes the form:

s(y, τ , t) =

R
∑

r=1

ar(y) br(τ ) ςr(t), br(τ )
def
= exp{

ω

C
τTdr}

(2)

In other words, function s(y, τ , t) decomposes into a sum of

R simpler functions whose variables separate.

Now, if we discretize the R3 space with the above defined

subarrays, and take M time samples, we end up with a multi-

linear relationship. In fact, let pk be the coordinate vector of

the kth sensor of the reference subarray, and δ! the translation

defining the location of the !th subarray, 1 < ! ≤ L. Then
signal (2) can be stored in a K × L × M three-way array,

which follows the model below:

Tk!m =

R
∑

r=1

λr Akr B!r Smr (3)



where Akr = 1√
K
exp

(

 ωCpT

kdr

)

, B!r = 1√
L
exp

(

 ωC δ
T

! dr

)

,

Smr = ςr(tm)/‖ςr‖, and λr =
√
KL‖ςr‖.

Model (3) is related to the Canonical Polyadic decompo-

sition (CP)1, which consists of decomposing a tensor T into

a sum of decomposable tensors. For the sake of convenience,

equation (3) is rewritten in vector form as

t =

R
∑

r=1

λr ar ⊗ br ⊗ sr (4)

where ⊗ denotes the Kronecker product, and t = vec{T} is a
column vector of dimension KLM containing the entries of

the 3-way array T.

III. EXISTENCE AND UNIQUENESS

The goal is to identify the directions of arrival (DoA), θr, of

the R impinging plane waves and to estimate corresponding

transmitted source signals ςr(tm) up to a scale factor, given
the whole array T. Clearly, a sufficient condition is to be able

to identify all parameters in the RHS of (4).

A. Low rank approximation

Actually, observations are corrupted by noise, so that (3-4)

do not hold exactly. A natural idea is then to fit model (4) by

minimizing the error

Υ(A,B,S;Λ) =

∥

∥

∥

∥

∥

t−
R
∑

r=1

λr ar ⊗ br ⊗ sr

∥

∥

∥

∥

∥

2

(5)

whereΛ denotes the diagonal matrix containing the λr’s. Min-

imizing error (5) means finding the best rank-R approximate

of T and its CP decomposition. However, the infimum of Υ

may not be reached; see e.g. [7], [6] and references therein.

The reason is that the set of rank-R tensors is not closed for

R > 1. The idea we promote here is to impose an additional
constraint that will ensure the existence of a minimum, as

elaborated in the next section. In addition, from the physical

point of view, one can make the following observations:
• sources that are totally correlated need to be localized

separately only if they are sufficiently well angularly

separated. In that case they correspond to multi-paths.

• sources that are located in the same direction need

to be estimated separately only if they are sufficiently

decorrelated.

• otherwise, one can assimilate highly correlated sources

arriving from close directions to a single fat source,

spread out in space.

The purpose of the section is to formalize these constraints.

B. Coherences

As in the compressed sensing literature [8], [9], we define

the coherence of a set of unit norm vectors as the largest value

of cross scalar products:

µA = sup
k "=!

|aHka!| (6)

1also sometimes called Candecomp/Parafac in Psychometry.

The coherence of matrix A is defined this way, if ak denote

its (unit norm) columns. Coherences of matrices B and S are

defined similarly, and denoted by µB and µS , respectively. Let

G be the R×R Gram matrix defined by:

Gpq = (aHpaq)(b
H

pbq)(s
H

p sq)

Then for given matrices A, B and S, the optimal value Λ
o

minimizing error Υ is obtained by cancelling the gradient of

(5) w.r.t. Λ, which leads to the linear system:

Gλ
o = f , (7)

where λ
o = diag(Λo) and vector f in the right hand side is

defined by the contraction fr =
∑

ijk Tijk A
∗
irB

∗
jrS

∗
kr , 1 ≤

r ≤ R. Equation (7) shows that coherences play a role in the
conditioning of the minimization problem. Also note that only

the product between coherences appears, and not coherences

individually.

C. Existence

We are now in a position to state conditions of existence.

It has been shown in [6] that if

µAµBµS <
1

R− 1
(8)

then the infimum of (5) is reached. This happens because error

(5) becomes coercive as soon as (8) is satisfied. And it must

then reach its minimum since it is continuous.

Constraint (8) needs some care because it involves max
operators, which are not differentiable. For this reason, we

propose to use the fact that L∞ norm can be bounded by L2ρ

norms, and approximated for large values of ρ:

||z||∞ = max
k

{zk} ≤ ||z||2ρ = (
∑

k

z2ρk )1/2ρ, ∀ρ ≥ 1

for zk ∈ R
+. Applying this inequality to zk ≡ ‖aHpaq‖ allows

to bound coherences above by a differentiable quantity, so that

another (somewhat more constraining) sufficient condition can

be obtained. More precisely:

µA ≤ µ(A, ρ)
def
=

(

∑

p<q

|aHpaq |
2ρ

)1/2ρ

We subsequently call Cρ the constraint obtained by replacing
the max operators by the L2ρ norms in constraint (8):

Cρ
def
= 1−R+ µ(A, ρ)−1µ(B, ρ)−1µ(S, ρ)−1 > 0 (9)

D. Uniqueness

There exist sufficient conditions ensuring that the solution

of (4) is unique, which involve coherences [6]. However, the

condition below is much less constraining [10, p.13]:

R ≤ M and R(R − 1) ≤ K(K − 1)L(L− 1)

2
(10)

and guarantees that there exists almost surely a unique solu-

tion. Other sufficient conditions for generic uniqueness exist

[11], [12], but are less attractive when one dimension (i.e. M )

is large.



IV. COMPUTER RESULTS

A. Optimization

The constrained optimization is carried out with the help

of gradient descent type algorithms, which handle con-

straints in different manners. Denote for conciseness x =
vec{[AT,BT,ST]} and define the objective function:

Fρ(x;λ) = Υ(x;Λ) + η exp(−γ Cρ(x)) (11)

where η is the penalty weight, γ is introduced to control the

importance of penalty Cρ(x), and λ is defined in (7) and

depends on x and t. This leads to the algorithm below

ALGORITHM

1) Choose R satisfying (10).

2) Initialize (A(0),B(0),S(0)) to matrices with unit-norm
columns satisfying Cρ ≥ 0.

3) Compute G(0) and f(0), and solve G(0)λ(0) = f(0)
for λ, according to (7)

4) For k ≥ 1 and subject to a stopping criterion, do
a) Compute the descent direction as the gradient w.r.t.

x:

d(k) = −∇Fρ(x(k − 1);λ(k − 1))
b) Compute a stepsize !(k)
c) Update x(k) = x(k − 1) + !(k)d(k)
d) Extract the 3 blocks from x(k): A(k), B(k) and

S(k)
e) Normalize the columns of A(k), B(k) and S(k)
f) Compute G(k) and f(k), and solve G(k)λ(k) =

f(k) for λ, according to (7).

In the algorithm, η is decreased as the reconstruction error

Υ(x;Λ) decreases, whereas γ is kept fixed.

We give now some gradient expressions2 necessary to

determine the descent direction d(k) when Fρ is used:

∂Υ

∂A
= 2AMA − 2NA

where MA
pq

def
=

∑

jk λpBjpSkpS
∗
kqB

∗
jqλ

∗
q , NA

ip
def
=

∑

jk TijkB
∗
jpS

∗
kpλ

∗
p and

∂ exp(−γ Cρ)

∂A
=

γ

exp (γ Cρ)
LA
ρ A

[

(AHA)!QA − I
]

where ! denotes the Hadamard entry-wise product,

LA
ρ

def
=

(

∑

q<p

|aHpaq|
2ρ

)
−1

2ρ
−1

µ(B, ρ)−1µ(S, ρ)−1,

and Qpq
def
= |aHq ap|

2ρ−2. Keep in mind that expressions above

hold true because matrix A has unit-norm columns. And

expressions are similar for matrices B and S, which also have

unit-norm columns.

2Matrix gradients are written with the conventions described in [13], [14].

B. Advantage of the constraint Cρ(x)

To see the interest of constraint Cρ(x) used in the opti-
mization algorithm, Figure 3 sketches the evolution of the

reconstruction error Υ(x;Λ), and Cρ(x) as a function of
iterations. The figure shows that thanks to the constraint Cρ:
(i) iterates are incited to remain/turn back to the feasible region

(where existence is guaranteed), (ii) the optimization algorithm

converges quickly because iterates are allowed to move away

from the feasible region (depending on parameters η and γ).

C. Monte Carlo experiments

In this section, we asses the performances of the proposed

algorithm using several sensor subarrays in two different con-

figurations. The scenario on which the algorithm is tested can

be of interest in various applications. For instance, consider

sonar buoys left floating on the surface and equipped with a

device permitting to maintain their orientation towards North.

Each subarray is rigid and fixed on a buoy, but its relative

location with respect to other subarrays is unknown.

The first configuration consists of two identical subar-

rays (L = 2) separated by a distance of 25λ (i.e. δ2 =
[0, 25λ, 0]T ), where λ = ω/2πC is the wavelength. The

second configuration consists of three identical subarrays

(L = 3) with the following translations: δ2 = [0, 25λ, 0]T ,
δ3 = [0, 37.5λ, 5λ]T . In both configurations, each subarray
is an ULA array of 4-element with half-wavelength spacing.

For the two configurations, we consider three equal-power

narrowband source signals (R = 3) impinging respectively
from θ1 = 77◦, θ2 = 55◦ and θ3 = 5◦ (angles w.r.t endfire).
In all experiments, γ = 5, M = 200 time samples are

used, and 50 Monte-Carlo simulations are run for each SNR

level. The additive noise is complex-valued circular Gaussian.

Figures 1 and 2 report the total root-mean square error (RMSE)

of the DoA using respectively the first (L = 2) and the second
(L = 3) configuration. The deterministic Cramér-Rao bound
(CRB) is reported as a benchmark; exact expressions of DoA
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Fig. 1. Total DoA error versus SNR, with L = 2 subarrays.



CRB will be detailed in a full length paper. In fact, CRB can

be found in [15] for factor matrices, e.g. A, and in [16] for

DoAs obtained with L = 2 subarrays, but DoA CRB are not

available for L > 2.
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Fig. 2. Total DoA error versus SNR, with L = 3 subarrays.

Configuration 1. This experiment shows that: (i) the

proposed CP algorithm exhibits the same performances as

ESPRIT, which makes sense, (ii) MUSIC performs the best,

but exploits more information, namely the exact knowledge

of sensor locations, whereas this information is actually not

available in the present scenario. Hence MUSIC performances

just serve as a reference.

Configuration 2. This experiment shows that the proposed

algorithm yields better results than EPSRIT. The reason is that

ESPRIT uses at most two subarrays, whereas the proposed

algorithm uses all of them. Again, MUSIC is reported just as

a reference benchmark.

V. CONCLUDING REMARKS

The DoA estimation is formulated as a CP decomposition

under the assumptions presented in § II on the sensor array
formed of L identical subarrays. We proposed an optimization
algorithm using a new differentiable constraint Cρ(x) ensuring
existence of the low-rank tensor approximation. It was shown

that thanks to Cρ(x) the proposed algorithm converges quickly
and is prevented to leave for long the feasible region. DoA

estimation results show that, as expected, the CP algorithm

exhibits better results than reference DoA estimation methods

when L > 2. Performances of signal estimation will be
reported in a full length paper, as well as expressions of CRBs.
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