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Introduction

For a graph G, we denote its vertex set by V (G) and edge set by E(G). A color-list L of a graph G is an assignment of lists of integers (colors) to the vertices of G. For an integer a, a a-color-list L of G is a color-list such that |L(v)| = a for any v ∈ V (G).

In 1996, Voigt considered the following problem: let G be a graph and L a color-list and assume that an arbitrary vertex v ∈ V (G) is precolored by a color f ∈ L(v). Under which hypothesis is it always possible to complete this precoloring to a proper color-list coloring ? This question leads to the concept of free choosability introduced by Voigt [START_REF] Voigt | Choosability of planar graphs[END_REF].

Formally, for a graph G, integers a, b and a a-color-list L of G, an (L, b)coloring of G is a mapping c that associates to each vertex u a subset c(u) of L(u) such that |c(u)| = b and c(u) ∩ c(v) = ∅ for any edge uv ∈ E(G). The graph G is (a, b)-choosable if for any a-color-list L of G, there exists an (L, b)-coloring . Moreover, G is free (a, b)-choosable if for any a-color-list L, any vertex v and any set c 0 ⊂ L(v) of b colors, there exists an (L, b)-coloring c such that c(v) = c 0 .

As shown by Voigt [START_REF] Voigt | Choosability of planar graphs[END_REF], there are examples of graphs G that are (a, b)choosable but not free (a, b)-choosable. Some related recent results concern defective free choosability of planar graphs [START_REF] Li | Free Choosability of Outerplanar Graphs, Green Communications and Networks[END_REF]. We investigate, in the next section, the free-choosability of the first interesting case, namely the cycle. We derive a necessary and sufficient condition for a cycle to be free (a, b)choosable (Theorem 4). In order to get a concise statement, we introduce the free-choice ratio of a graph, in the same way that Alon, Tuza and Voigt [START_REF] Alon | Choosability and fractional chromatic number[END_REF] introduced the choice ratio (which is equal to the so-called fractional chromatic number).

For any real x, let FCH(x) be the set of graphs G which are free (a, b)choosable for all a, b such that a b ≥ x:

FCH(x) = G | ∀ a b ≥ x, G is free (a, b)-choosable .
Moreover, we can define the free-choice ratio fchr(G) of a graph G by:

fchr(G) := inf a b | G is free (a, b)-choosable .
Remark 1. Erdős, Rubin and Taylor have asked [START_REF] Erdős | Choosability in graphs[END_REF] the following question: If G is (a, b)-choosable, and c d > a b , does it imply that G is (c, d)-choosable ? Gutner and Tarsi have shown [START_REF] Gutner | Some results on (a:b)-choosability[END_REF] that the answer is negative in general. If we consider the analogue question for the free choosability, then Theorem 4 implies that it is true for the cycle.

The path P n+1 of length n is the graph with vertex set V = {v 0 , v 1 , . . . , v n } and edge set E = n-1 i=0 {v i v i+1 }. The cycle C n of length n is the graph with vertex set V = {v 0 , . . . , v n-1 } and edge set E = n-1 i=0 {v i v i+1(mod n) }. To simplify the notation, for a color-list L of P n or C n , we let L(i) denote L(v i ) and c(i) denote c(v i ).

The notion of waterfall color-list was introduced in [START_REF] Aubry | Every triangle-free induced subgraph of the triangular lattice is (5m, 2m)-choosable[END_REF] to obtain choosability results on the weighted path and then used to prove the (5m, 2m)choosability of triangle-free induced subgraphs of the triangular lattice. We recall one of the results from [START_REF] Aubry | Every triangle-free induced subgraph of the triangular lattice is (5m, 2m)-choosable[END_REF] that will be used in this note, with the function Even being defined for any real x by: Even(x) is the smallest even integer p such that p ≥ x. For example, let P n+1 be the path of length n with a color-list L such that |L(0)| = |L(n)| = 4, and |L(i)| = 9 for all i ∈ {1, . . . , n -1}. Then the previous proposition tells us that we can find an (L, 4)-coloring of P n+1 whenever n ≥ 8. In other words, if n ≥ 8, we can choose 4 colors on each vertex such that adjacent vertices receive disjoint colors sets. If |L(i)| = 11 for all i ∈ {1, . . . , n -1}, then P n+1 is (L, 4)-colorable whenever n ≥ 4. On the other side, there are color-lists L for which P n+1 is not (L, b)-colorable

Free choosability of the cycle

We begin with a negative result for the even-length cycle: Lemma 3. For any integers a, b, p such that p ≥ 2, and a b < 2 + 1 p , the cycle C 2p is not free (a, b)-choosable.

Proof. We construct a counterexample for the free-choosability of C 2p : let L be the a-color-list of C 2p such that

L(i) =        {1, . . . , a}, if i ∈ {0, 1}; { i-1 2 a + 1, . . . , i-1 2 a + a}, if i = 2p -1 is odd; {b + i-2 2 a + 1, . . . , b + ( i-2 2 + 1)a}, if i is even and i = 0; {1, . . . , b, 1 + (p -1)a, . . . , 1 + pa -b -1}, if i = 2p -1. v 0 {1, 2, . . . , 9} v 5 {1, . . . , 4, 19, . . . , 23} v 4 {14, . . . , 22} v 3 {10, . . . , 18} v 2 {5, . . . , 14} v 1 {1, . . . , 9} Figure 1.
The cycle C 6 , along with a 9-color-list L for which there is no (L, 4)-coloring c such that c(v 0 ) = {1, 2, 3, 4}.

If we choose c 0 = {1, . . . , b} ⊂ L(0), we can check that there does not exist an (L, b)-coloring of C 2p such that c(0) = c 0 , so C 2p is not free (a, b)choosable. See Figure 1 for an illustration when p = 3, a = 9 and b = 4. Now, if ⌊x⌋ denotes the greatest integer less than or equal to the real x, we can state:

Theorem 4. For the cycle C n of length n, C n ∈ FCH 2 + n 2 -1
.

Moreover, we have:

fchr(C n ) = 2 + n 2 -1
.

Proof. Let a, b be two integers such that a/b ≥ 2+⌊ n 2 ⌋ -1 . Let L be a a-colorlist of C n . Without loss of generality, we can suppose that v 0 is the vertex chosen for the free-choosability and c 0 ⊂ L(v 0 ) has b elements. It remains to construct an (L, b)-coloring c of C n such that c(v 0 ) = c 0 . Hence we have to construct an (L ′ , b)-coloring c of P n+1 such that

L ′ (0) = L ′ (n) = L 0 and for all i ∈ {1, ..., n -1}, L ′ (i) = L(v i ). We have |L ′ (0)| = |L ′ (n)| = b and for all i ∈ {1, ..., n -1}, |L ′ (i)| = a. Since a/b ≥ 2 + ⌊ n 2 ⌋ -1 and e = a -2b, we get e/b ≥ ⌊ n 2 ⌋ -1 hence n ≥ Even(2b/e).
Using Proposition 2, we get:

C n ∈ FCH(2 + n 2 -1
).

Hence, we have that fchr(C n ) ≤ 2 + ⌊ n 2 ⌋ -1 . Moreover, let us prove that M = 2 + ⌊ n 2 ⌋ -1 is reached. For n odd, Voigt has proved [START_REF] Voigt | On list Colourings and Choosability of Graphs[END_REF] that the choice ratio chr(C n ) of a cycle of odd length n is exactly M . Hence fchr(C n ) ≥ chr(C n ) = M , and the result is proved. For n even, Lemma 3 asserts that C n is not free (a, b)-choosable for a b < 2 + ⌊ n 2 ⌋ -1 . Remark 5. In particular, the previous theorem implies that if b, e, n are integers such that n ≥ Even( 2b e ), then the cycle C n of length n is free (2b + e, b)-choosable.

In order to extend the result to other graphs then cycles, the following simple proposition will be useful: Starting from a single edge and applying inductively Proposition 6 allows to obtain the following corollary: Corollary 7. Let T be a tree of order n ≥ 2. Then T ∈ FCH(2). Now, we can state the following:

Proposition 8. If G is a unicyclic graph with girth g, then G ∈ FCH 2 + g 2 -1
.

Proof. Let a, b be two integers such that a/b ≥ 2 + ⌊ n 2 ⌋ -1 , L be a a-colorlist of G, C = v 1 , . . . , v g be the unique cycle (of length g) of G and T i , i ∈ {1, . . . , g}, be the subtree of G rooted at vertex v i of C.

Let v be the vertex chosen for the free choosability and let c 0 ⊂ L(v) be a set of cardinality b. If v ∈ C, then by virtue of Theorem 4, there exists an (L, b)-coloring c of C such that c(v) = c 0 . This coloring can be easily extended to the whole graph by coloring the vertices of each tree T i thanks to Corollary 7. If v ∈ T i for some i, 1 ≤ i ≤ g, then Corollary 7 asserts that the coloring can be extended to T i . Then color C starting at vertex v i by using Theorem 4. Finally, complete it by coloring each tree T j , 1 ≤ j = i ≤ g.

Applications

As an example to the possible use of the results from Section 2, we begin with determining the free choosability of a binocular graph, i.e. two cycles linked by a path.

For integers m, n and p such that m, n ≥ 3 and p ≥ 0, the binocular graph BG(m, n, p) is the disjoint union of an m-cycle u 0 , u 1 , . . . , u m-1 and of an n-cycle v 0 , . . . , v n-1 with vertices u 0 and v 0 linked by a path of length p given by u 0 , x 1 , . . . , x p-1 , v 0 . Note that if p = 0, then u 0 and v 0 are the same vertex. Proof. Assume without loss of generality that m ≥ n and let a, b be integers such that a/b ≥ 2 + ⌊ n 2 ⌋ -1 . Let L be a a-color-list of BG(m, n, p). Let y be the vertex chosen for the free choosability and let c 0 ⊂ L(y) be a set of cardinality b. If y lies on the m-cycle, then by virtue of Theorem 4, there exists an (L, b)-coloring c of the m-cycle such that c(y) = c 0 . By Corollary 7, this coloring can be extended to the vertices of the path. Now, it remains to color the vertices of the n-cycle, with v 0 being already colored. This can be done thanks to Theorem 4. If y lies on the n-cycle, the argument is similar. If y ∈ {x 1 , . . . , x p-1 }, then the coloring can be extended to the whole path and the coloring of the m-cycle and n-cycle can be completed thanks to Theorem 4. This method can be extended to prove similar results on graphs with more than two cycles, connected by a tree structure.

Define a tree of cycles to be a graph G such that all its cycles are disjoint and collapsing all vertices of each cycle of G produces a tree.

Corollary 10. Any tree of cycles of girth g is in FCH(2 + ⌊ g 2 ⌋ -1 ).

Algorithmic considerations

Let n ≥ 3 be an integer and let a, b be two integers such that a/b ≥ 2 + ⌊ n 2 ⌋ -1 . Let L be a a-color-list of C n . As defined in [START_REF] Aubry | Every triangle-free induced subgraph of the triangular lattice is (5m, 2m)-choosable[END_REF], a waterfall list L of a path P n+1 of length n is a list L such that for all i, j ∈ {0, . . . , n} with |i -j| ≥ 2, we have L(i) ∩ L(j) = ∅. Le m = | ∪ n i=0 L(i)| be the total number of colors of the color-list L. The algorithm behind the proof of Proposition 2 consists in three steps: first, the transformation of the list L into a waterfall list L ′ by renaming some colors; second, the construction of the (L ′ , b)-coloring by coloring vertices from 0 to n -1, giving to vertex i the first b-colors that are not used by the previous vertex; third, the backward transformation to obtain an (L, b)-coloring from the (L ′ , b)-coloring by coming back to original colors and resolving color conflicts if any. It can be seen that the time complexity of the first step is O(mn); that of the second one is O(a 2 n) and that of the third one is O(max(a, b 3 )n). Therefore, the total running time for computing a free (L, b)-coloring of the cycle C n is O(max(m, a 2 , b 3 )n).
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 921 For any m ≥ 3, n ≥ 3 and p ≥ 0, BG(m, n, p) ∈ FCH 2 + min(m, n)
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 2 Figure 2. A tree of cycles (on the left), and the associated tree obtained by collapsing cycles (on the right).