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FREE CHOOSABILITY OF THE CYCLE

YVES AUBRY, JEAN-CHRISTOPHE GODIN AND OLIVIER TOGNI

Abstract. A graph G is free (a, b)-choosable if for any vertex v with b

colors assigned and for any list of colors of size a associated with each
vertex u 6= v, the coloring can be completed by choosing for u a subset
of b colors such that adjacent vertices are colored with disjoint color
sets. In this note, a necessary and sufficient condition for a cycle to be
free (a, b)-choosable is given. As a corollary, some choosability results
are derived for graphs in which cycles are connected by a tree structure.

1. Introduction

For a graph G, we denote its vertex set by V (G) and edge set by E(G).
A color-list L of a graph G is an assignment of lists of integers (colors) to
the vertices of G. For an integer a, a a-color-list L of G is a color-list such
that |L(v)| = a for any v ∈ V (G).

In 1996, Voigt considered the following problem: let G be a graph and L
a color-list and assume that an arbitrary vertex v ∈ V (G) is precolored by
a color f ∈ L(v). Under which hypothesis is it always possible to complete
this precoloring to a proper color-list coloring ? This question leads to the
concept of free choosability introduced by Voigt [8].

Formally, for a graph G, integers a, b and a a-color-list L of G, an (L, b)-
coloring of G is a mapping c that associates to each vertex u a subset c(u)
of L(u) such that |c(u)| = b and c(u) ∩ c(v) = ∅ for any edge uv ∈ E(G).
The graph G is (a, b)-choosable if for any a-color-list L of G, there exists an
(L, b)-coloring . Moreover, G is free (a, b)-choosable if for any a-color-list L,
any vertex v and any set c0 ⊂ L(v) of b colors, there exists an (L, b)-coloring
c such that c(v) = c0.

As shown by Voigt [8], there are examples of graphs G that are (a, b)-
choosable but not free (a, b)-choosable. Some related recent results concern
defective free choosability of planar graphs [6]. We investigate, in the next
section, the free-choosability of the first interesting case, namely the cycle.
We derive a necessary and sufficient condition for a cycle to be free (a, b)-
choosable (Theorem 4). In order to get a concise statement, we introduce
the free-choice ratio of a graph, in the same way that Alon, Tuza and Voigt
[1] introduced the choice ratio (which is equal to the so-called fractional
chromatic number).

For any real x, let FCH(x) be the set of graphs G which are free (a, b)-
choosable for all a, b such that a

b
≥ x:
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FCH(x) =
{

G | ∀
a

b
≥ x, G is free (a, b)-choosable

}

.

Moreover, we can define the free-choice ratio fchr(G) of a graph G by:

fchr(G) := inf
{a

b
| G is free (a, b)-choosable

}

.

Remark 1. Erdős, Rubin and Taylor have asked [3] the following question:
If G is (a, b)-choosable, and c

d
> a

b
, does it imply that G is (c, d)-choosable ?

Gutner and Tarsi have shown [5] that the answer is negative in general. If
we consider the analogue question for the free choosability, then Theorem 4
implies that it is true for the cycle.

The path Pn+1 of length n is the graph with vertex set V = {v0, v1, . . . , vn}
and edge set E =

⋃n−1
i=0 {vivi+1}. The cycle Cn of length n is the graph with

vertex set V = {v0, . . . , vn−1} and edge set E =
⋃n−1

i=0 {vivi+1(mod n)}. To
simplify the notation, for a color-list L of Pn or Cn, we let L(i) denote L(vi)
and c(i) denote c(vi).

The notion of waterfall color-list was introduced in [2] to obtain choos-
ability results on the weighted path and then used to prove the (5m, 2m)-
choosability of triangle-free induced subgraphs of the triangular lattice. We
recall one of the results from [2] that will be used in this note, with the
function Even being defined for any real x by: Even(x) is the smallest even
integer p such that p ≥ x.

Proposition 2 ([2]). Let L be a color-list of Pn+1 such that |L(0)| =
|L(n)| = b, and |L(i)| = a = 2b+ e for all i ∈ {1, . . . , n − 1} (with e > 0).

If n ≥ Even
(

2b
e

)

then Pn+1 is (L, b)-colorable.

For example, let Pn+1 be the path of length n with a color-list L such
that |L(0)| = |L(n)| = 4, and |L(i)| = 9 for all i ∈ {1, . . . , n − 1}. Then
the previous proposition tells us that we can find an (L, 4)-coloring of Pn+1

whenever n ≥ 8. In other words, if n ≥ 8, we can choose 4 colors on each
vertex such that adjacent vertices receive disjoint colors sets. If |L(i)| = 11
for all i ∈ {1, . . . , n − 1}, then Pn+1 is (L, 4)-colorable whenever n ≥ 4. On
the other side, there are color-lists L for which Pn+1 is not (L, b)-colorable

2. Free choosability of the cycle

We begin with a negative result for the even-length cycle:

Lemma 3. For any integers a, b, p such that p ≥ 2, and a
b
< 2+ 1

p
, the cycle

C2p is not free (a, b)-choosable.

Proof. We construct a counterexample for the free-choosability of C2p: let
L be the a-color-list of C2p such that

L(i) =















{1, . . . , a}, if i ∈ {0, 1};
{ i−1

2 a+ 1, . . . , i−1
2 a+ a}, if i 6= 2p− 1 is odd;

{b+ i−2
2 a+ 1, . . . , b+ ( i−2

2 + 1)a}, if i is even and i 6= 0;
{1, . . . , b, 1 + (p − 1)a, . . . , 1 + pa− b− 1}, if i = 2p− 1.
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v0

{1, 2, . . . , 9}

v5{1, . . . , 4, 19, . . . , 23}

v4{14, . . . , 22}

v3

{10, . . . , 18}

v2 {5, . . . , 14}

v1 {1, . . . , 9}

Figure 1. The cycle C6, along with a 9-color-list L for which
there is no (L, 4)-coloring c such that c(v0) = {1, 2, 3, 4}.

If we choose c0 = {1, . . . , b} ⊂ L(0), we can check that there does not
exist an (L, b)-coloring of C2p such that c(0) = c0, so C2p is not free (a, b)-
choosable. See Figure 1 for an illustration when p = 3, a = 9 and b = 4. �

Now, if ⌊x⌋ denotes the greatest integer less than or equal to the real x,
we can state:

Theorem 4. For the cycle Cn of length n,

Cn ∈ FCH
(

2 +
⌊n

2

⌋

−1)

.

Moreover, we have:

fchr(Cn) = 2 +
⌊n

2

⌋

−1
.

Proof. Let a, b be two integers such that a/b ≥ 2+⌊n2 ⌋
−1. Let L be a a-color-

list of Cn. Without loss of generality, we can suppose that v0 is the vertex
chosen for the free-choosability and c0 ⊂ L(v0) has b elements. It remains
to construct an (L, b)-coloring c of Cn such that c(v0) = c0. Hence we have
to construct an (L′, b)-coloring c of Pn+1 such that L′(0) = L′(n) = L0 and
for all i ∈ {1, ..., n − 1}, L′(i) = L(vi). We have |L′(0)| = |L′(n)| = b and
for all i ∈ {1, ..., n − 1}, |L′(i)| = a. Since a/b ≥ 2 + ⌊n2 ⌋

−1 and e = a− 2b,

we get e/b ≥ ⌊n2 ⌋
−1 hence n ≥ Even(2b/e). Using Proposition 2, we get:

Cn ∈ FCH(2 +
⌊n

2

⌋

−1
).

Hence, we have that fchr(Cn) ≤ 2 + ⌊n2 ⌋
−1. Moreover, let us prove that

M = 2 + ⌊n2 ⌋
−1 is reached. For n odd, Voigt has proved [9] that the choice

ratio chr(Cn) of a cycle of odd length n is exactly M . Hence fchr(Cn) ≥
chr(Cn) = M , and the result is proved. For n even, Lemma 3 asserts that
Cn is not free (a, b)-choosable for a

b
< 2 + ⌊n2 ⌋

−1. �

Remark 5. In particular, the previous theorem implies that if b, e, n are
integers such that n ≥ Even(2b

e
), then the cycle Cn of length n is free (2b+

e, b)-choosable.
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In order to extend the result to other graphs then cycles, the following
simple proposition will be useful:

Proposition 6. Let a, b be integers with a ≥ 2b. Let G be a graph and Gv

be the graph obtained by adding a leave v to any vertex of G. Then G is free
(a, b)-choosable if and only if Gv is free (a, b)-choosable.

Proof. Since the ”only if” part holds trivially, let us prove the ”if” part.
Assume G is free (a, b)-choosable and let L be a a-color-list of G. Let v be a
new vertex and let Gv be the graph obtained from G by adding the edge uv,
for some u ∈ V (G). Then any (L, b)-coloring c of G can be extended to an
(L, b)-coloring of Gv by giving to v b colors from L(v)\c(u) (|L(v)\c(u)| ≥ b
since a ≥ 2b). If v is colored with b colors from its list, then, since G is free
(a, b)-choosable, the coloring can be extended to an (L, b)-coloring of Gv by
first choosing for u a set of b colors from L(u) \ c(v). �

Starting from a single edge and applying inductively Proposition 6 allows
to obtain the following corollary:

Corollary 7. Let T be a tree of order n ≥ 2. Then

T ∈ FCH(2).

Now, we can state the following:

Proposition 8. If G is a unicyclic graph with girth g, then

G ∈ FCH
(

2 +
⌊g

2

⌋

−1)

.

Proof. Let a, b be two integers such that a/b ≥ 2 + ⌊n2 ⌋
−1, L be a a-color-

list of G, C = v1, . . . , vg be the unique cycle (of length g) of G and Ti,
i ∈ {1, . . . , g}, be the subtree of G rooted at vertex vi of C.

Let v be the vertex chosen for the free choosability and let c0 ⊂ L(v)
be a set of cardinality b. If v ∈ C, then by virtue of Theorem 4, there
exists an (L, b)-coloring c of C such that c(v) = c0. This coloring can be
easily extended to the whole graph by coloring the vertices of each tree Ti

thanks to Corollary 7. If v ∈ Ti for some i, 1 ≤ i ≤ g, then Corollary 7
asserts that the coloring can be extended to Ti. Then color C starting at
vertex vi by using Theorem 4. Finally, complete it by coloring each tree Tj,
1 ≤ j 6= i ≤ g. �

3. Applications

As an example to the possible use of the results from Section 2, we begin
with determining the free choosability of a binocular graph, i.e. two cycles
linked by a path.

For integers m,n and p such that m,n ≥ 3 and p ≥ 0, the binocular
graph BG(m,n, p) is the disjoint union of an m-cycle u0, u1, . . . , um−1 and
of an n-cycle v0, . . . , vn−1 with vertices u0 and v0 linked by a path of length
p given by u0, x1, . . . , xp−1, v0. Note that if p = 0, then u0 and v0 are the
same vertex.

Proposition 9. For any m ≥ 3, n ≥ 3 and p ≥ 0,

BG(m,n, p) ∈ FCH
(

2 +
⌊min(m,n)

2

⌋

−1)

.
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Figure 2. A tree of cycles (on the left), and the associated
tree obtained by collapsing cycles (on the right).

Proof. Assume without loss of generality that m ≥ n and let a, b be integers
such that a/b ≥ 2 + ⌊n2 ⌋

−1. Let L be a a-color-list of BG(m,n, p). Let y
be the vertex chosen for the free choosability and let c0 ⊂ L(y) be a set of
cardinality b. If y lies on the m-cycle, then by virtue of Theorem 4, there
exists an (L, b)-coloring c of the m-cycle such that c(y) = c0. By Corollary 7,
this coloring can be extended to the vertices of the path. Now, it remains to
color the vertices of the n-cycle, with v0 being already colored. This can be
done thanks to Theorem 4. If y lies on the n-cycle, the argument is similar.
If y ∈ {x1, . . . , xp−1}, then the coloring can be extended to the whole path
and the coloring of the m-cycle and n-cycle can be completed thanks to
Theorem 4. �

This method can be extended to prove similar results on graphs with more
than two cycles, connected by a tree structure.

Define a tree of cycles to be a graph G such that all its cycles are disjoint
and collapsing all vertices of each cycle of G produces a tree.

Corollary 10. Any tree of cycles of girth g is in FCH(2 + ⌊g2⌋
−1).

4. Algorithmic considerations

Let n ≥ 3 be an integer and let a, b be two integers such that a/b ≥
2 + ⌊n2 ⌋

−1. Let L be a a-color-list of Cn.
As defined in [2], a waterfall list L of a path Pn+1 of length n is a list L

such that for all i, j ∈ {0, . . . , n} with |i − j| ≥ 2, we have L(i) ∩ L(j) = ∅.
Le m = | ∪n

i=0 L(i)| be the total number of colors of the color-list L.
The algorithm behind the proof of Proposition 2 consists in three steps:

first, the transformation of the list L into a waterfall list L′ by renaming
some colors; second, the construction of the (L′, b)-coloring by coloring ver-
tices from 0 to n − 1, giving to vertex i the first b-colors that are not used
by the previous vertex; third, the backward transformation to obtain an
(L, b)-coloring from the (L′, b)-coloring by coming back to original colors
and resolving color conflicts if any. It can be seen that the time complex-
ity of the first step is O(mn); that of the second one is O(a2n) and that
of the third one is O(max(a, b3)n). Therefore, the total running time for
computing a free (L, b)-coloring of the cycle Cn is O(max(m,a2, b3)n).
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