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A Newton algorithm for steady Johnson-Segalman

viscoelastic fluids based on a new non-singular

log-conformation formulation and an incompressible finite

element method

Pierre Saramito

CNRS and Lab. J. Kuntzmann, B.P. 53, 38041 Grenoble cedex 9, France

Abstract – A new log-conformation formulation of viscoelastic fluid flows is presented
in this paper. It is non-singular for vanishing Weissenberg numbers and allows a direct
steady numerical resolution by a Newton method. Moreover, an exact computation of
all the terms of the linearized problem is provided. The use an exact divergence free fi-
nite element method for velocity-pressure approximation and a discontinuous Galerkin
upwinding treatment for stresses leads to a robust discretization. A demonstration is
provided by the computation of steady solutions at high Weissenberg numbers for the
difficult benchmark of the lid driven cavity flow. Numerical results are in good agree-
ment, both qualitatively with experiment measurements on real viscoelastic flows, and
quantitatively with computations performed by others authors. The numerical algo-
rithm is both robust and very efficient, as it requires few and mesh-invariant number of
linear systems resolution to reach solutions at high Weissenberg number. An adaptive
mesh procedure is also presented: it permits to catch accurately both boundary layers
and main and secondary vortex.

Keywords – Johnson-Segalman viscoelastic fluid ; matrix logarithm ; Newton method ; incom-
pressible finite elements ; adaptive mesh ; lid-driven cavity

Introduction

The Johnson-Segalman [32] model is considered here, i.e. the upper convective derivative in the
Oldroyd-B [45] model is replaced by a mixed Gordon-Schowalter [23] derivative with a parame-
ter a ∈ [−1, 1]:

Daτ

Dt
=

∂τ

∂t
+ (u.∇)τ − τ ga(u)

T − ga(u) τ , (1)

for all symmetric tensor τ , where u is the velocity field and

ga(u) =
1 + a

2
∇u − 1− a

2
∇uT (2)

denotes a generalized gradient, with the convention ∇u =

(

∂ui
∂xj

)

16i,j6d

and d = 2, 3. Here,

a ∈ [−1, 1] denotes the parameter of the tensor derivative. Remark that ga(u) =W (u) + aD(u)
whereD(u) = (∇u+∇uT )/2 andW (u) = (∇u−∇uT )/2 are the symmetric and skew-symmetric
parts of the velocity gradient, respectively. When a = 1, then g1(u) = ∇u and the Gordon-
Schowalter derivative coincides with the usual upper-convected tensor derivative. When a = 0,
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we obtain the corotational derivative and when a=−1, the lower convected derivative. Problems
involving such tensor derivatives appear in non-Newtonian viscoelastic polymer melt flow problems
(see e.g. [55, 61]), in turbulence modeling with the Rij−ǫ Reynolds stress turbulence models, for
liquid crystals [18], fiber suspension [40] or active fluids [18], where a is related to the aspect ratio
of the particles in suspension. All these models introduce a relaxation time, multiplying the tensor
derivative, and the corresponding dimensionless quantity is called the Weissenberg number.

The numerical computation of viscoelastic flows in non-trivial geometries has been founded from
years as a very challenging enterprise. The failure of numerical methods when the Weissenberg
number becomes large is known as the high Weissenberg number problem. In 1986, Keunings [34]
observed that the maximal Weissenberg number reached by all algorithms was mesh-dependent:
he deduced that this failure was due to a wrong numerical methodology. In 1987, Marchal and
Crochet [43] presented numerical computations for high Weissenberg numbers with an improved
numerical approach: they pointed out the need of mixed finite element methods and an upwinding
treatment of the stress transport terms. This was the starting point of many numerical computa-
tions of viscoelastic flows for higher Weissenberg numbers (see e.g. [20, 56] and [47] for a review
of this period). In 2000, in a review paper, Keunings [34] observed the progresses done, but
pointed out that the maximal Weissenberg number reached by most reported simulations was still
clearly decreasing with mesh refinement. He also concluded on the crucial role of benchmark flow
problems for future works.

In 2004, Fattal and Kupferman [15, 16] remarked that some numerical instability are caused by
the failure of polynomial function to approximate accurately the exponential growth of the stress
tensor, due due to the presence of the deformation as a source term in the tensor transport
equation. The deformation source term takes its origin in the two last terms on the right-hand
side of the tensor derivative (1). The remedy proposed by these authors was a change of unknown
that scale logarithmically with the stress tensor. Exploiting the fact that the conformation tensor
is symmetric positive definite, the stress transport equation was reformulated as equations for
the matrix logarithm of the conformation tensor (the so-called log-conformation formulation).
Numerical experiments for the driven cavity benchmark showed that maximal Weissenberg number
reached was no more mesh-sensitive [16]. This idea was a new starting point and many improved
numerical computations of viscoelastic flows was then performed (see e.g. [26, 13, 1] and [10] for
a recent book).

The main objective of the present paper is to bring some novelties in the challenging field of
numerical methods for viscoelastic fluid flows. These novelties develops in threes main axes:

1. A new and different log-conformation formulation of viscoelastic models is proposed. This
formulation is non-singular when the Weissenberg number vanishes, while the original one,
as proposed by Fattal and Kupferman [15, 16], degenerates, due to the apparition of the
inverse of the Weissenberg number in the set of equation. With the present formulation, the
problem reduces nicely to the Navier-Stokes equations at zero Weissenberg number. This is
a major advantage, as it opens the door of continuation methods, starting smoothly at zero
Weissenberg number and increasing progressively.

2. The steady problem is directly solved by a Newton method, while, to our knowledge, all pre-
vious approaches with the log-conformation formulation was time-dependent (see e.g. [13]).
The derivation of a robust Newton solver for the strongly nonlinear steady log-formulation is
based on an exact computation of all the derivatives. Notice that previous Newton methods
relies on some finite difference methods for computing the Jacobian matrix, as the strong
non-linearities was considered as non-differentiable [33, 13].

3. The discretization bases on an incompressible finite element method: the discrete velocity
field satisfies exactly the divergence free relation. This is a major advantage when dealing
with a transport equation: Recall that a non-divergence free velocity field u introduces an
additional source term divu in the stress transport equation: this term could then generate
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an exponential growth of the stresses, and then destroy all the profit of the log-conformation
formulation.

The outline of the paper is as follows. Section 1 starts with a presentation of the Johnson-
Segalman model and its reformulation with the conformation tensor. Then the new non-singular
log-conformation formulation is presented. The first section closes with the variational formula-
tion of the steady problem. Section 2 begins with the space discretization by an incompressible
finite element method. Then, the upwinding discretization of the transport term, based on the
discontinuous Galerkin method is presented. Next, the Newton method on the discrete problem
is introduced, with a special care for the derivation of highly nonlinear terms produced by the
log-conformation formulation. This section closes with the Euler-Newton continuation algorithm.
Section 3 presents numerical computations on the bi-dimensional driven cavity flow. A specific
adaptive mesh procedure allows to catch accurately both boundary layers and secondary vor-
tex. Finally, two appendices groups the computation of some strongly nonlinear terms and their
derivatives.

1 Continuous setting

1.1 Conformation tensor formulation

Let Ω ⊂ R
d be a bounded open domain, d = 2, 3, and tf > 0 a final time. The Jonson-Segalman

problem writes :

(P1): find τ , u and p, defined in ]0, tf [×Ω, such that

λ
Daτ

Dt
+ τ − 2ηpD(u) = 0 in ]0, tf [×Ω

ρ
Du

Dt
− div ( τ + 2ηvD(u)− p.I) = 0 in ]0, tf [×Ω

divu = 0 in ]0, tf [×Ω

λ(τ − τΓ) = 0 on ]0, tf [×∂Ω−

u = uΓ on ]0, tf [×∂Ω
λτ(0) = λτ0 and u(0) = u0 in Ω

where
D

Dt
=

∂

∂t
+ u.∇u denotes the Lagrange derivative, λ > 0 is the relaxation time, ηp > 0 and

ηv > 0 are the polymer and solvent viscosities, respectively, ρ > 0 is the constant density, τ0, u0,
τΓ and uΓ are given initial and boundary conditions and ∂Ω− is the upstream boundary, defined
by ∂Ω− = {x ∈ ∂Ω; uΓ.n(x) < 0}. The total Cauchy stress tensor is σtot = −p I + 2ηvD(u) + τ .
When λ = 0, the problem reduces to the Navier-Stokes equations with a total viscosity ηv + ηp
and τ = 2ηpD(u).

There are several results available concerning the existence, uniqueness and regularity of this
problem. In 1985, Renardy [53] showed an existence result for the steady problem. In 1987,
Guillopé and Saut [24] proved that there exists a unique strong solution local in time and that
this solution is globally defined when the data are small and the fluid is not too much elastic (see
also [38] for a different approach). In 1998, Fernández-Cara, Guillén and Ortega [17] extended this
result to the large elasticity case and for arbitrarily large but finite final time tf . In 2000, Lions
and Masmoudi [39] obtained an enhanced result (tf could be infinite) in the particular case of a
corotational derivative (a = 0). In 2005, Kupferman, Mangoubi, and Titi [35] obtained a more
explicit condition for the global in time existence of the solution when Ω = R

3.

The solution (τ,u, p) exhibits some important properties. Hulsen [30, p. 6, eqn(30)] (see also Kwon
and Leonov [36, p. 31, eqn (10)], Lee et al. [37, p. 383]) introduced the following definition of the

3



conformation tensor when both a and λ are non-zero:

c = τ +
ηp
aλ

I

where I denotes the d × d identity matrix. Notice that c has the dimension of a stress and is
undefined when λ = 0 or a = 0. Also, the conformation tensor c admit an explicit expression
in integral form involving the unknown velocity field u [37, p. 385, eqn (3.29)]. From (1) we get
Da I

Dt
= −2aD(u) and from (1) we have

Daτ

Dt
=

Dac

Dt
− 2ηp

λ
D(u). Then, the Johnson-Segalman

problem becomes:

(P2): find c, u and p, defined in ]0, tf [×Ω, such that

λ
Dac

Dt
+ c =

ηp
aλ
I in ]0, tf [×Ω (3a)

ρ
Du

Dt
− div (c+ 2ηvD(u)− p.I) = 0 in ]0, tf [×Ω (3b)

divu = 0 in ]0, tf [×Ω (3c)

λ(c− cΓ) = 0 on ]0, tf [×∂Ω− (3d)

u = uΓ on ]0, tf [×∂Ω (3e)

λc(0) = λc0 and u(0) = u0 in Ω (3f)

In 1990, Hulsen [30] showed that, when the initial condition c0 in (3f) is symmetric definite pos-
itive, and that ∇u is bounded, then c remains symmetric definite positive at any time t > 0.
Notice that when λ = 0, the problem degenerates, due to the apparition of aλ in the denominator
in the constitutive equation (3a). In the case of the upper convected derivative (a = 1), Fattal and

Kupferman [15, 16] introduced a change of variable ψ = log

(

aλ

ηp
c

)

, the so-called log-conformation

formulation. Nevertheless, when λ = 0, the expected solution is simply ψ = 0, while the reformu-
lated problem still degenerates, due to a division by λ in the conservation of momentum equation
(see [15, p. 283], the last eqn of the page). This change of variable was then applied in [11] to
a generalized constitutive model that covers the present Johnson-Segalman model (a ∈ [−1, 1]),
but the obtained problem still degenerates when λ = 0. The next paragraph proposes a slightly
different change of variable that solves nicely this degeneracy: the new formulation will be no
more singular when λ = 0 and this opens the possibility of building a robust steady solver based
on the Newton method and a continuation algorithm, starting smoothly at λ = 0.

1.2 A new log-conformation formulation

In order to obtain a non-singular formulation, a different change of the logarithmic variable is
introduced:

χ =
ηp
aλ

log

(

aλ

ηp
c

)

=
ηp
aλ

log

(

I +
aλ

ηp
τ

)

(4a)

⇐⇒ c =
ηp
aλ

exp

(

aλ

ηp
χ

)

and τ =
ηp
aλ

(

exp

(

aλ

ηp
χ

)

− I

)

(4b)

Notice that both χ, c and τ have the dimension of stress. At the limit case aλ = 0, the new
variable χ is still well defined, as showed by a simple Taylor expansion of the matrix logarithm at
the vicinity of aλ = 0:

χ = τ −
(

aλ

ηp

)

τ 2 + . . .+
1

n

(

aλ

ηp

)n−1

τn + . . .

For instance, when λ = 0, then τ = 2ηpD(u) is the solution for the Johnson-Segalman model that
reduces to a Newtonian fluid, and then χ = τ = 2ηpD(u). For completeness, the derivation of the
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present log-conformation formulation is provided here, since there is some subtle modifications due
to the different change of variable and the introduction of the the Gordon-Schowalter derivative
parameter a. The impatient reader can jump directly to the new formulation (8a)-(8f).

The main technique of the present derivation of the log-conformation is related to the evolution
of the principal axes of the conformation tensor [31]. Recall that the symmetric positive definite
matrix c can always be diagonalized as c = qc̃qT where c̃ is diagonal and q is an orthogonal tensor,

i.e. qqT = qTq = I. For convenience, let us denote by τ̇ =
Dτ

Dt
=
∂τ

∂t
+ u.∇τ the Lagrangian

derivative of any tensor τ . Then ċ = q ˙̃cqT + qc̃q̇T + q̇c̃qT . Let us introduce r = qq̇T . By
differentiating qqT = I we get q̇qT+qq̇T = 0 that writes also rT = −r. Then r is skew-symmetric.
We also obtain q̇ = −rq and q̇T = −qT rT = qT r and then ċ = q ˙̃cqT − qc̃qT rT − rqc̃qT . Next,
let r̃ = qT rq. Remark that r̃ is also skew-symmetric. We have r = qr̃qT and then

ċ = q
(

˙̃c− c̃r̃T − r̃c̃
)

qT (5a)

The generalized gradient introduced in (2) decomposes in this eigensystem as ga(u) = qg̃aq
T

where g̃a is not a priori diagonal, since c and ga(u) are not expected in general to share the
same eigenvectors. Then −cga(u)

T − ga(u)c = q
(

−c̃g̃T
a − g̃ac̃

)

qT and the Gordon-Schowalter
derivative (1) writes:

Dac

Dt
= q

(

˙̃c− c̃ (r̃+ g̃a)
T − (r̃+ g̃a) c̃

)

qT (5b)

and the constitutive equation (3a) leads to

˙̃c =
ηp
aλ2

I − 1

λ
c̃+ (r̃+ g̃a) c̃+ c̃ (r̃+ g̃a)

T
(5c)

This is a tensorial equation. Let (ci)16i6d be the eigenvalues of c. Recall that c̃ is diagonal and
that its i-th diagonal entry is ci. Then, by taking the diagonal entries i = j, 1 6 i 6 d, of the
tensorial equation (5c), we get a differential equation for ci :

ċi =
ηp
aλ2

−
(

1

λ
− 2a d̃i,i

)

ci

where we have set d̃ = qTD(u)q = (d̃i,j)16i,j6d. The previous relation writes also

˙̃c =
ηp
aλ2

I −
(

I

λ
− 2a diag(d̃)

)

c̃ (5d)

Now, let us perform the change of variable (4a)-(4b): the problem will be rewritten in terms of

χ =
ηp
aλ

log

(

aλ

ηp
c

)

= q
ηp
aλ

log

(

aλ

ηp
c̃

)

qT = qχ̃qT

where χ̃ is the diagonal tensor with diagonal entries

χi =
ηp
aλ

log

(

aλ

ηp
ci

)

⇐⇒ ci =
ηp
aλ

exp

(

aλ

ηp
χi

)

, 1 6 i 6 d

Thus ˙̃χi =
ηp
aλ

˙̃ci
c̃i

and then, since c̃, χ̃, ˙̃c and ˙̃χ are all diagonal:

˙̃χ =
ηp
aλ

˙̃cc̃−1

=
ηp
aλ

(

ηp
aλ2

I −
(

I

λ
− 2a diag(d̃)

)

c̃

)

c̃−1, from (5d)

= − 1

λ

{

ηp
aλ

(

I − aλ

ηp
c̃−1

)}

+
2ηp
λ

diag(d̃)
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From (4a), we have c−1 =
aλ

ηp
exp

(

−aλ
ηp
χ

)

and then

˙̃χ = − 1

λ

{

ηp
aλ

(

I − exp

(

−aλ
ηp
χ̃

))}

+
2ηp
λ

diag(d̃)

Then, replacing in (5a) the instances of c and c̃ by χ and χ̃ respectively, the Lagrangian derivative
of χ expresses:

χ̇ = q
(

˙̃χ− χ̃r̃T − r̃χ̃
)

qT

= − 1

λ

{

ηp
aλ

(

I − exp

(

−aλ
ηp
χ

))}

+ q

(

2ηp
λ

diag(d̃)− χ̃r̃T − r̃χ̃

)

qT (5e)

This relation writes equivalently

χ̇+ φa(χ,∇u) +
1

λ

{

ηp
aλ

(

I − exp

(

−aλ
ηp
χ

))}

= 0 (5f)

where we have introduce the notation:

φa(χ,∇u) = qφ̃aq
T

φ̃a = χ̃r̃T + r̃χ̃− 2ηp
λ

diag(d̃)

Notice that φa(χ,∇u) is symmetric since diag(d̃) is diagonal and r̃χ̃+ χ̃r̃T is symmetric. Notice
also that both q and diag(d̃) are directly computable from χ and ∇u since q is the tensor
containing the eigenvectors of χ and d̃ = qTD(u)q. The computation of r̃χ̃+ χ̃r̃T is more
technical. Let us compute r̃ = (r̃i,j)16i,j6d. Since r̃T = −r̃ we have r̃i,i = 0. By taking the
off-diagonal entries i 6= j, 1 6 i, j 6 d, in (5c), we get

0 = ci(−r̃i,j + g̃a;j,i) + (r̃i,j + g̃a;i,j)cj

where we have used r̃j,i = −r̃i,j and set g̃a;i,j = w̃i,j + ad̃i,j and w̃ = qTW (u)q = (w̃i,j)16i,j6d.
When ci 6= cj we get by a simple development:

r̃i,j =
g̃a;i,jcj + g̃a;j,ici

ci − cj
= −w̃i,j + a

(

ci + cj
ci − cj

)

d̃i,j = −w̃i,j +
a d̃i,j

tanh

(

aλ

ηp

(

χi − χj

2

))

Notice that now r̃ is directly computable from χ and ∇u but is still undetermined when χi = χj

or aλ = 0. Next, always when i 6= j and ci 6= cj :

φ̃a;i,j = χir̃j,i + r̃i,jχj = − (χi − χj) r̃i,j = (χi − χj) w̃i,j −









aλ

ηp

(

χi − χj

2

)

tanh

(

aλ

ηp

(

χi − χj

2

))









2ηpd̃i,j
λ

As lim
x→0

x

tanh(x)
= 1, we obtain:

φ̃a;i,j = −2ηp
λ
d̃i,j when χi = χj or aλ = 0

Finally φa(χ,∇u) is directly computable from χ and ∇u, in all cases. Notice that when all

the eigenvalues of χ are equal, then φa(χ,∇u) = −2ηp
λ
D(u). Also, when a = 0, we have
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φa(χ,∇u) = χW (u)−W (u)χ− 2ηp
λ
D(u). This suggest to introduce a nonlinear form κ(., .) such

that

φa(χ,∇u) = χW (u)−W (u)χ+
ηp
λ
κ

(

aλ

ηp
χ, 2D(u)

)

− 2ηp
λ
D(u)

Then (5f) becomes

λ (χ̇+ χW (u)−W (u)χ) + ηpκ

(

aλ

ηp
χ, 2D(u)

)

+
ηp
aλ

(

I − exp

(

−aλ
ηp
χ

))

= 2ηpD(u) (5g)

Let R
d×d
s denotes the set of d × d symmetric real matrix. The form κ(β,γ) is defined for all

β,γ ∈ R
d×d
s by

κ(β,γ) = qκ̃qT (6a)

κ̃i,j = κ̂

(

βi − βj
2

)

γ̃i,j , 1 6 i, j 6 d (6b)

where β̃ = qTβq = diag(βi) and γ̃ = qTγq. Here, κ̂(x) is defined for all x ∈ R by

κ̂(x) =

{

0 when x = 0

1− x

tanh(x)
otherwise (6c)

For convenience, let us define, for all real µ > 0 and χ ∈ R
d×d
s the following function:

f(µ,χ) =







0 when µ = 0
exp(µχ)− I

µ
− χ otherwise

(7)

Notice that the trace of λ f

(

aλ

ηp
, χ

)

represents a local free energy stored by the micro-scale

mechanical system (see e.g [5, 67, 46]). This concept was more recently used for stability estimates
by Hu and Lelièvre [29, 7] and is reused later in this paper for automatic adaptive mesh purpose.

The new log-conformation formulation of the Johnson-Segalman problem writes:

(P3): find χ, u and p, defined in ]0, tf [×Ω, such that

λ
D0χ

Dt
+ χ− f

(

aλ

ηp
, −χ

)

+ ηpκ

(

aλ

ηp
χ, 2D(u)

)

− 2ηpD(u) = 0 in ]0, tf [×Ω (8a)

ρ
Du

Dt
− div

(

χ+ f

(

aλ

ηp
, χ

)

+ 2ηvD(u)− p.I

)

= 0 in ]0, tf [×Ω (8b)

divu = 0 in ]0, tf [×Ω (8c)

λ(χ− χΓ) = 0 on ]0, tf [×∂Ω− (8d)

u = uΓ on ]0, tf [×∂Ω (8e)

λχ(0) = λχ0 and u(0) = u0 in Ω (8f)

where χ0, χΓ, u0 and uΓ are given. The functions f and κ are defined by (7) and (6a)-(6c),

respectively. The elastic stress τ is explicitly computable from χ by τ = χ+ f

(

aλ

ηp
, χ

)

and the

total Cauchy stress tensor is σtot = −p I + 2ηvD(u) + τ .

Remark 1 (Limit λ = 0: Newtonian fluid)
When λ = 0, the problem reduces, as expected, to the Navier-Stokes equations with a total viscosity
ηv + ηp and χ = 2ηpD(u).
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Remark 2 (Limit a = 0: corotational Johnson-Segalman fluid)
When a = 0, the present log-formulation of the problem nicely reduces to the corotational Johnson-
Segalman problem with τ = χ is the elastic stress, since f(0, .) and κ(0, .) both are zero, as showed
in the two forthcoming properties.

Remark 3 (Corotational versus Gordon-Schowalter tensor derivatives)
Notice the corotational derivative for χ in (8a). Thus, the present log-conformation formulation of
the general Johnson-Segalman model interprets as a nonlinear perturbation with nonlinear terms
(f and κ) of the corotational Johnson-Segalman model. In the following section, we show that
numerical treatment of corotational derivative is much more simpler than the Gordon-Schowalter
one.

Property 1 (Regularity of f)
The function f defined by (7) is continuously differentiable and

f(0,χ) = f(µ, 0) = 0, ∀µ ∈ R
+, ∀χ ∈ R

d×d
s

Proof: This result follows from a simple Taylor expansion:

f(µ,χ) = µχ2

(

I

2
+
µχ

6
+ . . .+

(µχ)n

(n+ 2)!
+ . . .+

)

Property 2 (Skew symmetry of κ)
The function κ defined by (6a)-(6c) satisfies the following properties:

1. κ(., .) is nonlinear with respect to the first variable β and is linear with respect to its second
variable γ.

2. κ is traceless:
trκ(β,γ) = 0, ∀β,γ ∈ R

d×d
s

3. κ(β,γ) = 0 when β and γ are aligned, i.e. share the same eigensystem. As a special case,
κ(β,γ) = 0 when all eigenvalues of β are equal.

4. κ is skew-symmetric with respect to its first variable:

κ(β,γ) :β = 0, ∀β,γ ∈ R
d×d
s

The skew symmetry extends to

κ(β,γ) :σ = 0, ∀β,γ,σ ∈ R
d×d
s and β and σ share the same eigensystem (9)

5. κ is continuously differentiable everywhere and

κ(0,γ) = 0 and
∂κ

∂β
(0,γ) = 0, ∀γ ∈ R

d×d
s

Proof: Remark that, from (6a)-(6c), we have κ̃k,k = 0 for all k, 1 6 k 6 d which leads to
the traceless property. When β and γ are aligned then γ̃ is diagonal and then κ̃i,j = 0. The
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skew-symmetry result can be showed by a development:

κ(β,γ) :β = (qκ̃qT ) : (q β̃ qT )

=

d−1
∑

i,j,k,l,m=0

qi,j κ̃j,kql,k qi,mβmql,m

=

d−1
∑

j,k,m=0

δj,mδk,mκ̃j,kβm since

d−1
∑

i=0

qi,jqi,m = δj,m and
d−1
∑

l=0

ql,kql,m = δk,m

=

d−1
∑

k=1

κ̃k,kβk

= 0 since κ̃k,k = 0

When β = 0, then all eigenvalues of β are equal and then κ(0,γ) (point 3). The proof of the
differentiability of κ is reported in appendix A.2, as it requires some technical developments.

1.3 Variational formulation of the steady problem

The variational formulation of the steady version of the log-conformation formulation (8a)-(8f)
of the Johnson-Segalman problem is considered here. Moreover, the inertia term (u.∇)u in
the conservation of momentum (8b) is neglected: this is a common assumption in such flow
simulation and the main difficulty is associated to the nonlinear terms related to the elasticity
λ > 0. Let us introduce three functional spaces T = L2(Ω)d×d

s for square summable symmet-
ric tensors, V (uΓ) = {v ∈ H1(Ω)d; v = uΓ on ∂Ω} for velocities with square summable gradients
and that satisfies the boundary condition and Q = L2

0(Ω) = {q ∈ L2(Ω);
∫

Ω
q dx = 0} for square

summable pressures with zero average value. Next, let the following forms, defined for all χ, ξ ∈ T ,
u,v ∈ H1(Ω)d p, q ∈ L2(Ω) by

t(u; χ, ξ) = λ

∫

Ω

((u.∇)χ) :ξ dx+ λ

∫

∂Ω

max(0,−uΓ.n)χ :ξ ds

+λ

∫

Ω

(χW (u)−W (u)χ) :ξ dx+ ηp

∫

Ω

κ

(

aλ

ηp
χ, 2D(u)

)

:ξ dx (10a)

l(ξ) = λ

∫

∂Ω

max(0,−uΓ.n)χΓ :ξ ds (10b)

a0(χ, ξ) =

∫

Ω

χ :ξ dx−
∫

Ω

f

(

aλ

ηp
,−χ

)

:ξ dx (10c)

b1(ξ,u) = −2ηp

∫

Ω

ξ :D(u) dx (10d)

b2(χ,v) = −
∫

Ω

χ :D(v) dx−
∫

Ω

f

(

aλ

ηp
,χ

)

:D(v) dx (10e)

c(u,v) = 2ηv

∫

Ω

D(u) :D(v) dx (10f)

d(u, q) = −
∫

Ω

q divu dx (10g)

The variational formulation writes

(FV ): find (χ,u, p) ∈ T × V (uΓ)×Q such that

t(u;χ, ξ) + a0(χ, ξ) + b1(ξ,u) = l(ξ), ∀ξ ∈ T (11a)

b2(χ,v)− c(u,v)− d(v, p) = 0, ∀v ∈ V (0) (11b)

−d(v, p) = 0, ∀q ∈ Q (11c)

9



The following properties are fundamental for the numerical resolution and will admit a finite-
dimensional counterpart in the next section.

Property 3 (Skew-symmetry of t)
For all χ ∈ T and u ∈ V (0) such that divu = 0, we have

t(u; χ, χ) = 0 (12)

Proof: From integration by part, we have
∫

Ω

((u.∇)χ) :χ dx = −
∫

Ω

((u.∇)χ) :χ dx−
∫

Ω

|χ|2 divu dx+

∫

∂Ω

|χ|2 u.n ds

and since u is divergence free and vanishes on the boundary, the first term of the right-hand
side of (10a), giving the expression of t(u;χ,χ), is zero. Next, from the skew-symmetry of
W (u) and the symmetry of χ we have (χW (u)−W (u)χ) :χ = 0. From property (9) we have

κ

(

aλ

ηp
χ, 2D(u)

)

:χ = 0 and then we get (12).

Property 4 (Positivity of a0)
For all χ ∈ L2(Ω)d×d

s , we have

a0(χ, χ) > 0 (13)

Proof: From (10c) and the definition (7) of f , we have

a0(χ, χ) =
ηp
aλ

∫

Ω

(

I − exp

(

−aλ
ηp
χ

))

:χ dx

Observe that σ :τ = tr(στ ) for all symmetric tensors σ and τ and then, when aλ 6= 0:

a0(χ, χ) =
ηp
aλ

∫

Ω

tr

((

I − exp

(

−aλ
ηp
χ

))

χ

)

dx

As χ and exp

(

−aλ
ηp
χ

)

share the same eigensystem, if µ is an eigenvalue of χ then g(µ) is an

eigenvalue of χ− exp

(

−aλ
ηp
χ

)

χ where g(µ) = µ − exp(−aλµ/ηp)µ. An easy inspection of the

variation of g shows that g(µ) > 0 for all µ ∈ R. Then, we obtain the result (13).

Remark 4 (Corotational versus Gordon-Schowalter tensor derivatives (cont.))
Multiplying (1) by τ , integrating and rearranging leads to

∫

Ω

Daτ

Dt
:τ dx =

1

2

d

dt

(∫

Ω

|τ |2 dx
)

− 2a

∫

Ω

tr(τ D(u) τ ) dx

When a 6= 0, there is no way to determine the sign of the last term of the right-hand side of the
previous relation. The corresponding term −a(τD(u) +D(u)τ ), ported by a 6= 0 in the tensor
derivative (1), acts as a source term in any tensorial transport problem involving the general
Gordon-Schowalter derivative, such the initial and conformation formulations of the Johnson-
Segalman problem. This term is responsible of the observed exponential growth of the stress tensor
τ and the failure of numerical methods. There is no hope to obtain either a skew-symmetry or
a positivity property for such problems, and this especially true for the popular upper-convected
derivative (a = 1). On the contrary, the log-conformation formulation involves a corotational
tensor derivative of χ in (8a): this leads to the skew-symmetry of t and the positivity of a0.
Properties 3 and 4 are definitive advantages of the present log-conformation formulation to the
initial or the conformation one.

Remark also that, when using initially a corotational derivative (a = 0), there is no more need of
the log-conformation formulation. In that case, observe that the new formulation presented here
nicely reduces to the initial one with χ = τ while all the extra nonlinear terms disappear.
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2 Discretization and numerical resolution

2.1 Space approximation

The main idea is to replace the three spaces T , X, Q by some finite dimensional counterparts Th ⊂
T , Xh ⊂ X, Qh ⊂ Q in the variational formulation (11a)-(11c). When λ = 0 (i.e. a Newtonian
fluid), a finite dimensional linear system is then obtained, whose matrix has the following bloc
structure:





A BT 0
B −C −DT

0 −D 0





This linear system is often called the three field Stokes problem and the approximation space pairs
(Th, Xh) and (Xh, Qh) have both to satisfy a compatibility condition, known as the inf-sup or
Babuška-Brezzi condition [8, 21, 9]. There are many possible choices for Th, Xh and Qh each of
them having some advantages and drawbacks. In this paper, we consider the following choice (see

macro-element technic
P2 continuous P1 discontinuous

u σ and p

Figure 1: Incompressible element for the three-field Stokes problem.

Fig. 1):

Th = {τh ∈ T ; τh|K ∈ P1, ∀K ∈ Th}
Xh = {vh ∈ (H1(Ω) ∩ C0(Ω))d; vh|K ∈ P2, ∀K ∈ Th}

Vh(g) = Xh ∩ V (πh(g))

Qh = {qh ∈ Q; qh|K ∈ P1, ∀K ∈ Th}

where Th is a finite element mesh of the flow domain Ω and h > 0 denotes the largest edge length
of the mesh. Notice that both Th and Qh contain discontinuous piecewise polynomials while Xh

elements are continuous. The discontinuous approximation of stresses has two advantages. From
one hand, D(Xh) ⊂ Th and then the compatibility condition between Th and Xh is satisfied for
the bi-linear form b1, as showed by Fortin and Pierre [21, 20]. From other hand, it allows an
efficient treatment of the stress transport term by the discontinuous Galerkin method.

The discontinuous approximation of pressure has also a major advantage. As div(Xh) ⊂ Qh, it
leads to an exact divergence free approximation of the velocity: for any field vh ∈ Xh satisfying
d(vh, qh) = 0 for all qh ∈ Qh, we have divvh = 0 point-wise everywhere in Ω. The pair (Xh, Qh)
is known as the Scott-Vogelius lowest-order finite element approximation [63]. This is a major
advantage when dealing with a transport equation. The only drawback is that the pair (Xh, Qh)
do not satisfy the inf-sup condition for an arbitrary mesh. Nevertheless, there is a remedy: Arnold
and Qin [3] proposed a macro element technique applied to the mesh [3] that permits to satisfy
the inf-sup condition: for any triangular finite element mesh, it is sufficient to split each triangle
in three elements from its barycenter (see Fig. 1). This technique has been implemented for the
present computations. Notice that the macro element technique extends to quadrilateral meshes [3]
and to the three-dimensional case [68].
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Let us review and discuss some other possible choices for the discretization of the problem.

• A very popular choice is to use staggered finite difference grids for velocity and pressure
the velocity-pressure pair. With this choice the approximate velocity fields are also exactly
divergence free, the finite-difference implementation is simple and this element also extends
nicely in the mixed finite element context with the incompressible Raviart-Thomas finite
element [22, chap. 3]. For the stress approximation, there are several possibilities: in [55,
p. 17], the present author used also a staggered grid approximation (diagonal stress com-
ponents at cell centers and off-diagonal components at cell corners in the bi-dimensional
case). With this choice, the stress-velocity pair satisfies the inf-sup condition and leads to
a robust scheme that is able to reach solutions for high Weissenberg numbers (see [56, 62]).
In [16, p. 27], Fattal and Kupferman used a cell centered approximation for all the stress
components. As pointed out by these authors [16, p.29]:

”This implies that the rotational components of the system may be sensitive to
numerical instabilities. A natural remedy would have been to store the off-diagonal
elements of the stress tensor at cell corners. This cannot be done in our framework
as the log-conformation tensor is an entity whose tensorial nature is essential.”

See also point 6 of the discussion, p. 36 of the same paper. With this choice, it is not
clear whether the stress-velocity pair satisfies the inf-sup condition. Nevertheless, using this
approximation, these authors was also able to compute solutions for some high Weissenberg
numbers. A possible explanation of this success can be founded in a paper by Baranger
and Sandri [4]: these authors have shown that the stress-velocity compatibility condition
exhibited by [21] is only required when ηv/(ηv + ηp) ≪ 1, i.e. in the absence of the pure
viscous contribution. Otherwise, when ηv is not too small as compared with ηp, a much
larger class of discretization schemes is allowed. This last condition was fulfilled by Fattal
and Kupferman: all the computations presented by these authors used ηv = ηp.

• A classical choice is the Taylor-Hood P2−P1 continuous element [66] (see also [9, p. 252])
for the velocity-pressure spaces (Xh, Qh) while stresses are piecewise linear and discontinu-
ous. This choice for the stress approximation was first introduced by A. and M. Fortin [20].
Damanik [12, p. 25] used recently a variant for quadrilaterals meshes, combining Q2 contin-
uous velocities with P1 discontinuous pressure [9, p. 216] and quadratic continuous approx-
imation of stresses. As div(Xh) 6⊂ Qh, for these elements, the approximate velocity field are
not exactly divergence free: this is the main difference with the Scott-Volelius used in the
present computation. We performed tests for both the Taylor-Hood approximation and the
Q2−P1,d variant for quadrilaterals, together with P1,d stresses, on the driven cavity problem
and observed that the steady approximate solution presents some troubles: for large dimen-
sionless Weissenberg numbers (e.g. We = 1), the divergence divuh do no more converge to
zero with mesh refinement h→ 0. It could be due to the low regularity of the velocity field
in boundary layers of the cavity, especially at high Weissenberg numbers. This observation
motivates the use the divergence-free approximation for the velocity-pressure pair.

• Another possible choice is to use constant and discontinuous P0 stresses while the velocity-
pressure space pair (Xh, Qh) is still the divergence free Scott-Vogelius one, as in the present
paper. Notice that we have now D(Xh) 6⊂ Th. This choice was first suggested by Mangoubi
and Boyaval [42, 6, 7] in a theoretical paper and these authors was able to show a nice
stability property for the free energy. There was no numerical experiments available to our
knowledge with this combination and we also performed some test on the driven cavity
problem: we observed that this choice is less robust and less precise than when choosing
piecewise linear and discontinuous stresses as presented here.

This discretization review is far from complete and exhaustive: there is many other possible
approaches and many of some of them has been already experimented. Nevertheless, observe
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that the exact divergence free property for the approximation of the velocity field appears as an
essential condition in such flow simulations. Both the staggered finite difference method and the
Scott-Vogelius finite element one for the velocity-pressure pair satisfies this condition. The Scott-
Vogelius finite element method presents two additional advantages as compared with the finite
difference one: (i) it allows the same approximation for all the stress components while satisfying
the inf-sup condition and (ii) it is more flexible when dealing with complex geometries or adaptive
mesh.

2.2 Approximation of the transport term

Let us turn to the discretization of the nonlinear stress transport term by the discontinuous
Galerkin method. We introduce the following form, defined for all u ∈ H1(Ω)d and χ, ξ ∈
L2(Ω)d×d

s such that χ|K , ξ|K ∈ H1(K)d×d
s for all element K ∈ Th:

th(u;χ, ξ) = λ
∑

K∈Th

∫

K

((u.∇)χ) :ξ dx+ λ
∑

S∈S
(i)
h

∫

S

[[χ]] :

(

θ

2
|u.n| [[ξ]]− (u.n) {{ξ}}

)

ds

+ λ

∫

∂Ω

max (0,−uΓ.n)χ :ξ ds+ λ

∫

Ω

(χW (u)−W (u)χ) :ξ dx

+

∫

Ω

κ

(

aλ

ηp
χ, 2D(u)

)

:ξ dx (14)

where S
(i)
h denotes the set of internal sides of the mesh Th and [[ξ]] is the jump of a piecewise

discontinuous tensor across a side and {{ξ}} is its average value [14, 60]. The three first terms
represent a discrete counterpart of the transport term, that can not be defined globally since the
stress approximation is piecewise discontinuous. A term is weighted by a factor θ > 0: choosing
θ = 0 corresponds to the so-called centered flux approximation, while θ > 0 is the upwinding flux
approximation. The case θ = 1, that is the most popular upwinding discontinuous approximation
scheme, is considered here. The upwinding technique is known as an efficient approach to avoid
spurious oscillations of the approximate solutions.

The discrete variational formulation of the problem writes:

(FV )h: find χh ∈ Th, uh ∈ Vh(uΓ) and ph ∈ Qh such that

th(uh;χh, ξh) + a0(χh, ξh) + b1(ξh,uh) = l(ξh), ∀ξh ∈ Th

b2(χh,vh)− c(uh,vh)− d(vh, ph) = 0, ∀vh ∈ Vh(0)

−d(uh, qh) = 0, ∀qh ∈ Qh

The continuous tri-linear form t has simply been replaced by th and the functional spaces by their
finite dimensional counterpart.

Property 5 (Discrete generalized skew-symmetry)
For all χh ∈ Th and uh ∈ Vh(0) such that divuh = 0, we have

th(uh; χh, χh) > 0 (15)

with an equality when θ = 0.

Proof: Integrating by part on an element K leads to

∫

K

((uh.∇)χh) :χh dx = −
∫

K

χh : ((uh.∇)χh) dx+

∫

K

|χh|2 (uh.n) dx
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since divuh = 0. Then

∑

K∈Th

∫

K

((uh.∇)χh) :χh dx =
1

2

∑

K∈Th

∫

∂K

|χh|2 (uh.n) ds =
1

2

∑

S∈S
(i)
h

∫

S

[[|χh|2]] (uh.n) ds

Remark that, for any discontinuous scalar field φ and ϕ across a side S, we have
[[φϕ]] = [[φ]]{{ψ}}+ {{φ}}[[ϕ]]. Then [[|χh|2]]/2 = [[χh]] :{{χh}} and

∑

K∈Th

∫

K

((uh.∇)χh) :χh dx =
∑

S∈S
(i)
h

∫

S

[[χh]] :{{χh}} (uh.n) ds

Using uh = 0 on ∂Ω and dealing with the two last terms of (14) as in the proof of property 3, we
obtain:

th(uh; χh, χh) =
θλ

2

∑

S∈S
(i)
h

∫

S

|[[χh]]|2 |uh.n| ds

which completes the proof.

Property 6 (Discrete positivity)
For all χh ∈ Th, we have

a0(χh, χh) > 0 (16)

Proof: As Th ⊂ L2(Ω)d×d
s , this result is a direct consequence of property 4.

2.3 Newton method

Newton methods for the numerical resolution of steady viscoelastic flow problem started in 1987
with the work of Marchal and Crochet [43]. In 1992, Fortin and Zine [19] proposed a quasi-Newton
variant, where the Jacobian matrix was approximated instead of being completely recomputed at
each iteration. After a long time, the Newton method approach for viscoelastic fluid problems
comes back. While previous works relies on some finite difference methods for computing the
Jacobian matrix, in 2009, Howell [28] computed exactly the linearized problem for the steady
Johnson-Segalman problem in its initial formulation. In 2010, Damanik et al [13, 12] turned to a
Newton method for the time-dependent log-conformation formulation. These last authors used a
finite difference method for computing the Jacobian matrix. Let us quote a remark made in 2009
by Kane, Guénette, and Fortin [33, p. 45] for the log-conformation formulation:

”[...] there is no hope to fully linearize the constitutive equations for the Newtons
method without using some numerical tricks such as finite difference methods. The
bulk of the computations relies indeed on the calculation, at each Gauss node, of the
eigenvalues and eigenvectors of the conformation tensor which are not differentiable
functions”.

In the present paragraph, an exact expression of the derivatives for the fully linearized constitutive
equation is presented for log-conformation formulation, without any trick such as finite difference
methods for computing the Jacobian matrix. The present Newton method directly treats the
steady problem: by an obvious extension, it applies also to fully implicit time dependent simula-
tions.

The discrete problem can be put in a compact form:
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find (χh,uh, ph) ∈ Th × Vh(uΓ)×Qh such that

F (λ; (χh,uh, ph)) = 0

where F is defined in variational form for all (ξh,vh, qh) by

〈F (λ; (χh,uh, ph)), (ξ,v, q)〉 = th(uh; χh, ξh) + a0(χh, ξh) + b1(ξh,uh)− l(ξh)

+ b2(χh,vh)− c(uh,vh)− d(vh, ph)

− d(uh, qh)

and where 〈., .〉 stands for the duality product induced by the L2 pivot space, i.e.
〈ϕ, φ〉 =

∫

Ω
ϕφ dx for all ϕ, φ defined in Ω. The function F has two variables λ ∈ R

+ and
U = (χh,uh, ph) ∈ Th ×Xh ×Qh. The λ variable will be used as a continuation parameter in

the next section. The Newton method defines the sequence
(

χ
(k)
h ,u

(k)
h , p(k)

)

k>0
by recurrence as:

• k = 0: let
(

χ
(0)
h ,u

(0)
h , p(0)

)

∈ Th × Vh(uΓ)×Qh being given.

• k > 0: let
(

χ
(k−1)
h ,u

(k−1)
h , p(k−1)

)

∈ Th × Vh(uΓ)×Qh being known.

Find (δχh, δuh, δph) ∈ Th × Vh(0)×Qh such that

∂F

∂U

(

λ;
(

χ
(k−1)
h ,u

(k−1)
h , p

(k−1)
h

))

.(δχh, δuh, δph) = −F
(

λ,
(

χ
(k−1)
h ,u

(k−1)
h , p

(k−1)
h

))

and then defines

χ
(k)
h = χ

(k−1)
h + δχh, u

(k)
h = u

(k−1)
h + δuh and p

(k)
h = p

(k−1)
h + δph

At each step k > 0, this algorithm solves a linear subproblem involving the Jacobian
∂F

∂U
. The

Newton method has only local convergence properties, i.e. the initial data should be close enough
to the solution. In order to circumvent this limitation, a globalized Newton variant is used here:
it bases on a damped strategy, as described and implemented in the Rheolef free software FEM
library [59]. Notice the absolute value function that appears in the upwinding term in the defini-
tion (14) of th:

sh(uh; χh, ξh) =
1

2

∑

S∈S
(i)
h

∫

S

[[χh]] : [[ξh]] |uh.n| ds

This term is not differentiable with respect to uh, and so are th and F . Nevertheless, the absolute
value is convex and some tools from the subdifferential calculus can be used to circumvent this
new difficulty. Let us introduce the multi-valued sign function:

sgn(x) =







{1} when x > 0
[−1, 1] when x = 0
{−1} when x < 0

Then, the subdifferential of the absolute value function is sgn(x) and for all δwh,wh, uh,vh ∈ Xh,
we define a generalization of the partial derivative as

∂sh
∂uh

(uh; χh, ξh).(δuh) =
1

2

∑

S∈S
(i)
h

∫

S

[[χh]] : [[ξh]] sgn(uh.n) δuh.n ds

Thus, the Jacobian
∂F

∂U
can be defined as a multi-valued subgradient set. In 1993, Qi and Sun [52]

showed how the Newton method extends to this case: any element that belongs to this set rep-
resents a valid direction for the Newton correction step. Such a non-smooth Newton method was
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successfully implemented for the steady Navier-Stokes equations with the discontinuous Galerkin
method and upwinding [60].

The multi-valued Jacobian
∂F

∂U
is defined for all (χh,uh, ph) ∈ Th × V (uΓ) × Qh, and

(δχh, δuh, δph) ∈ Th × V (0)×Qh (ξh,vh, qh) by

〈

∂F

∂U
(λ, (χh,uh, ph)) .(δχh, δuh, δph), (ξh,vh, qh)

〉

= a1(χh,uh; δχh, ξh) + b11(χh,uh; ξh, δuh)

+ b12(χh; δχh,vh) − c(δuh,vh) − d(vh, δph)

− d(δu, q)

where

a1(χ,u; δχ, ξ) =
∂th
∂χ

(u; χ, ξ).(δχ) +
∂a

∂χ
(χ, ξ).(δχ)

= λt0,h(u; δχ, ξ) + sh(u; δχ, ξ) +

∫

∂Ω

δχ :ξ max(0, −uΓ.n) ds

+
aλ

ηp

∫

Ω

(

∂κ

∂β

(

aλ

ηp
χ, 2D(u)

)

:δχ

)

:ξ dx

+

∫

Ω

δχ :ξ dx+

∫

Ω

(

exp′
(

−aλ
ηp
χ

)

:δχ

)

:ξ dx

b11(χ,u; ξ, δu) = λt0,h(δu; χ, ξ) + λ
∂sh
∂u

(u; χ, ξ).(δu) + b1(ξ, δu)

+

∫

Ω

κ

(

aλ

ηp
χ, 2D(u)

)

:ξ dx

b12(χ; δχ,v) =
∂b2
∂χ

(χ,v).(δχ)

= −
∫

Ω

δχ :D(v) dx−
∫

Ω

(

exp′
(

aλ

ηp
χ

)

:δχ

)

:ξ dx

and where t0,h denotes the following linear stress transport operator:

t0,h(uh;χh, ξh) =
∑

K∈Th

∫

K

((uh.∇)χh) :ξh dx−
∑

S∈S
(i)
h

∫

S

[[χh]] :{{ξh}} (uh.n) ds

+

∫

Ω

(χhW (uh)−W (uh)χh) :ξh dx

Here exp′(χ) : δχ denotes the differential at δχ of the exponential of a d × d matrix. Recall that
when χ and δχ commutes, then exp′(χ) :δχ = exp(χ) δχ while the general case is more complex.

Also
∂κ

∂β
involves the derivatives of eigenvalues and eigenvectors of a d× d matrix with respect to

the matrix coefficients. Notice that, since κ is linear with respect to its second variable γ we have
∂κ

∂γ
(β,γ) :δγ = κ(β, δγ). A key point of the present implementation of the Newton method is the

exact computation of both exp(χ), exp′(χ), κ(β,γ) and
∂κ

∂β
(β,γ). Indeed, these computation

can be performed explicitly: Rouvière [54, p. 297] proposes some tools for the derivation of an
exponential of a matrix while Hairer and Wanner [25, p. 102] give some formula for computing
derivative of eigenvalues and Magnus and Neudecker [41, p. 177] present also the derivative of
eigenvectors with respect to the coefficient of a matrix. Kane, Guénette, and Fortin [33, p. 50]
proposed some explicit expressions for exp(χ) and exp′(χ), based on the mapple software: these
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expressions contained some errors and we provide here, for completeness, the correct expression
in appendix A.1. Appendix A.2 shows that κ is continuous and differentiable with respect to the
matrix coefficients and details for the first time how to compute these quantities. Finally, the
integrals involving nonlinear expressions are evaluated by a Gauss quadrature formula with six
interior nodes in a triangle: this quadrature formula is exact for polynomials which degree is lower
or equal to four. Numerical experiments with higher order of quadrature order do not produce
any perceptible change in the numerical results.

2.4 Euler-Newton continuation algorithm

The aim of the Euler-Newton continuation algorithm is to starts from a previous computed solution
at a smaller λ (or dimensionless Weissenberg number), performs a prediction by using an Euler
scheme (as if λ was a pseudo-time) and then do corrections with the Newton method. This
approach allows to reach efficiently high values of the λ parameter.

Let us denote U = (χh,uh, ph) ∈ Th×Xh×Qh, such that the approximate nonlinear problem writes
in a concise form F (λ, U) = 0. In this paragraph, we introduce an Euler-Newton continuation
algorithm (see e.g. [50, p. 176] or [64]) that contains two nested loops:

algorithm 1 (continuation)

• n = 0: Let (λ0, U0) be given. Compute

U̇0 = −
(

∂F

∂U
(λ0, U0)

)−1
∂F

∂λ
(λ0, U0)

• n > 0: Let (λn, Un) and U̇n being known.

1) First choose a step ∆λn and set λn+1 = λn +∆λn.

2) Then, perform an Euler prediction by computing

w0 = Un −∆λn

(

∂F

∂U
(λn, Un)

)−1
∂F

∂λ
(λn, Un)

3) Then, perform a Newton correction step: for all k > 0, with Wk being known, compute

Wk+1 =Wk −
(

∂F

∂U
(λn+1,Wk)

)−1

F (λn+1,Wk)

At convergence of the correction loop, set Un+1 =W∞.

4) Finally, compute

U̇n+1 = −
(

∂F

∂U
(λn+1, Un+1)

)−1
∂F

∂λ
(λn+1, Un+1)

The step ∆λn can either be fixed or chosen by adjusting the contraction ratio of the Newton

method [50, 64]. The previous algorithm requires the computation of
∂F

∂λ
, that expresses:

〈

∂F

∂λ
(λ, (χh,uh, ph)) , (ξh,vh, qh)

〉

= t0,h(uh;χh, ξh) + sh(uh;χh, ξh) +

∫

∂Ω

max(0,−uΓ.n)χh :ξh ds

+
a

ηp

∫

Ω

(

∂κ

∂χ

(

aλ

ηp
χh, 2D(uh)

)

:χh

)

:ξh dx

− a

ηp

∫

Ω

∂f

∂µ

(

aλ

ηp
, −χh

)

:ξh dx− a

ηp

∫

Ω

∂f

∂µ

(

aλ

ηp
, χh

)

:D(vh) dx
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where

∂f

∂µ
(µ,χ) =



















χ2

2
when µ = 0

− 1

µ2
(exp (µχ)− I) +

1

µ
exp′ (µχ) :χ otherwise

2.5 Automatic adaptive mesh

The anisotropic auto-adaptive mesh feature available in the Rheolef free software FEM library [59]
has been used in this paper. This feature bases on the free software bamg bidimensional anisotropic
mesh generator developed by Hecht [27]. Let us first summarize the principle of the adaptive mesh
procedure. Let Th be an initial mesh and U = (χh,uh, ph) ∈ Th × Xh × Qh be the solution of
the discrete nonlinear problem (FV )h associated to the mesh Th. Let φ be a governing field to be
suitably chosen from the solution U . For a piecewise linear interpolation of φ, the interpolation
error in the unitary direction d ∈ IR2 is estimated in any element K ∈ Th by:

eK,d = h2K,d

∣

∣

∣

∣

∂2φ

∂d2

∣

∣

∣

∣

in K

where hK,d is the length of K in the d direction and

∂2φ

∂d2
= dTH(φ)d and H(φ) =









∂2φ

∂x2
∂2φ

∂x∂y
∂2φ

∂x∂y

∂2φ

∂y2









Here H(φ) denotes the Hessian of φ. A possibility to adapt the mesh to the computation of φ is
to equi-distribute this error, i.e. to make it constant over all triangles and in all directions. Let
λ1, λ2 be the eigenvalues of H(φ) and d1 and d2 the associated eigenvectors:

∂2φ

∂d2
1

= λ1 and
∂2φ

∂d2
2

= λ2

The error eK,d is independent of d and K when there exists a constant e0 > 0 independent of K

F

e1

e2

h1 d1

d2

h2

Figure 2: Anisotropic adaptive mesh.

such that eK,d1 = eK,d2 = e0. This writes equivalently

h2K,d1
|λ1| = h2K,d2

|λ2| = e0, ∀K ∈ Th

The constant e0 represents a global surface density factor: the adapted mesh generator tries to
shrink elements in all directions with a factor

√
e0 and all the bidimensional element areas are
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thus reduced by a factor e0. Suppose that H(φ) is non-singular, i.e. λ1λ2 6= 0. The constant e0
being known, our aim is now to build triangles of length hi in the di direction with hi =

√

e0/|λi|,
i = 1, 2. Such a triangle has no privileged direction in a metric such that the two hidi vectors,
i = 1, 2, have the same norm. Thus, let us introduce the metric M(φ) tensor that have the same
eigenvectors as H(φ) and |λi|, i = 1, 2 as eigenvalues. The induced norm ‖.‖M satisfies

‖hidi‖M = hK

√

dT
i M(φ)di =

√
e0, i = 1, 2

Then, it suffices to build an isotropic mesh in the Riemann space associated to the metric M(φ):
in the Euclidean space, this mesh locally shrinks with a factor hi in the di direction.

It remains to choose a suitable φ governing field. Several numerical experiments have led to use
the combination of a free energy and a viscous dissipation term:

φ = λ tr

(

f

(

aλ

ηp
, χ

))

+ ηv |D(u)|2

where f is defined in (7). As both χh and D(uh) are linear and piecewise discontinuous, the gov-
erning field φ is also approximated by a piecewise linear and discontinuous function φh. obtaining
its hessian requires then a L2 projection and two derivations. The L2 projection of φh furnishes
a piecewise linear and continuous approximation of φ, denoted by φ̃h. The discrete Hessian Hh

is obtained from φ̃h by computing first its discrete gradient gh, continuous and piecewise linear,
from the variational formula:

∫

Ω

gh.vh dx =

∫

Ω

∇φ̃h.vh dx

where vh is any continuous piecewise linear vector. Then Hh is obtained from the variational
formula:

∫

Ω

Hh :ξh dx =

∫

Ω

D(gh) : ξh dx

where ξh is any continuous piecewise linear tensor. Solving a problem using an automatic adaptive
mesh is an iterative process, which involves three main steps :

1. Starting from an initial mesh Th, solves the problem by using the Newton method. Let U
be the corresponding solution associated to the mesh Th.

2. From U , computes the governing field φh.

3. From the governing field φh, defined on the mesh Th, generates a totally new mesh, denoted

by T
(1)
h .

Then, T
(1)
h is used to solve the problem, and so on, until convergence of both the mesh and

its associated solution. Hence, the final adapted mesh minimizes the interpolation error for the
governing field. This choice of the governing field has been founded to be able to catch accurately
the boundary layers and secondary vortex, as showed in the next section.

3 Tests on the smoothed driven cavity flow

For the purpose of comparison with previous authors [16, 26], consider the steady bi-dimensional
smoothed driven cavity benchmark with Ω = ]0, L[2 with L > 0. The boundary velocity uΓ is zero
except on the top boundary {y = L} where uΓ(x, L) = (16Ux2(L− x)2/L2, 0) with U > 0. The
fluid parameters are a = 1 and ηp = ηv and the dimensionless Weissenberg number isWe = λU/L.
Despite its simple geometry, this is a very difficult benchmark: to our knowledge, most numerical
methods based on the initial formulation failed for We 6 0.1. Due to singularities near corners
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Figure 3: Convergence of the damped Newton algorithm, starting from the solution at We = 0
for the Oldroyd-B problem on the driven cavity with ηp = ηv: (a) versus We for an uniform mesh
with h = 1/10 ; (b) versus mesh refinement h for We = 0.1.

between the lid and the side walls, the lid-driven cavity may encounter the high We number
problem or offer many challenges in the form of singularity points in the flow. Therefore, it is
known as a very stringent test problem for a numerical methods.

Fig. 3.a plots the residual term ‖F (λ, U)‖L2 versus the iteration number niter of the damped
Newton method. The loop is initialized from the Newtonian solution, associated to We = 0 and
the solution is then computed directly for a specific We. Observe the quadratic convergence in
log scale, up to We = 0.5. The algorithm is stopped when the machine precision is reached. For
the last test case We = 0.6, the damped strategy still allows the convergence of the algorithm at
the price of a larger number of iteration and the loss of the quadratic convergence. In that case,
the Euler-Newton continuation algorithm, that restarts from a previous computed solution at a
smallerWe is more efficient: we used a Weissenberg step ∆We = 0.1 in the present computations.
Moreover, the Euler-Newton continuation algorithm is more robust and allows to reach solutions
at much higher Weissenberg numbers. With this algorithm, each step uses about fives resolution
of the Jacobian linear system and the solution at We = 1 can be reached from the solution at
We = 0 with about fifty resolutions of linear systems. This convergence property ismesh-invariant,
as showed by Fig. 3.b (for the mesh-invariance property of nonlinear algorithms, see [59, chap. 8]).
This algorithm provides also all the intermediate solutions atWe = 0.1, . . . , 0.9. Such very efficient
viscoelastic computations for large Weissenberg numbers can be compared with the thousand
of steps involving linear systems and required by all the actual time-dependent approaches for
reaching the steady solution [16, 26, 33, 13]. Moreover, the number of time steps required by these
methods increases with the Weissenberg number, and also with mesh refinement when non-fully
implicit time schemes are used.

The current implementation uses the Rheolef free software FEM library [59, 60] that is available
as standard package under the Debian and Ubuntu GNU/Linux systems. The Jacobian matrix
∂F

∂U
is large and sparse: the linear system is solved by a direct method with the help of the parallel

and massively distributed memory linear solver mumps [2] together with the scotch [51] ordering
algorithm for minimizing the fill-in of the sparse matrix. For the largest meshes (h = 1/80,
1/160 and the adaptive meshes), the computations is run with 32 processors on a BullX DLC
supercomputer (Bull Newsca) composed of nodes having two intel sandy-bridge processors and
connected to a FDR infiniband non-blocking low latency network. The computation of a whole
branch of solutions is performed in less than one hour of real time.
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h Wemax

1/20 3.74
1/40 2.19
1/80 2.21
1/160 2.08

hmin Wemax Wec

10−2 3.13 2.33
5× 10−3 2.78 2.03

Table 1: The Oldroyd-B problem on the driven cavity with ηp = ηv. Maximal and critical
Weissenberg number versus mesh refinement: (left) uniform mesh ; (right) adapted mesh.

Table 1 (left) groups the maximal Weissenberg number, denoted as Wemax, reached by the Euler-
Newton continuation algorithm: for higher We, the algorithm stops, due to a singular solution

where the Jacobian matrix
∂F

∂U
is non-invertible. When such a singularity occurs in the contin-

uation algorithm, the Weissenberg step is divided by two and the iteration restarted. The Weis-
senberg step is limited to 10−7. When using adaptive mesh, we observes that the Euler-Newton
continuation algorithm is able to jump behind the singular point and continues its progression
on a branch of solution until a second singular point is reached near We = 3. In that case, the
determinant of the Jacobian matrix exhibits a change of sign after the first singular point (see
e.g. [64]). The Weissenberg number where this change of sign occurs is denoted as Wec on table 1
(right). Observe that for the finest uniform mesh (h = 1/160), the singular point is Wec = 2.08
and for the finest adapted one, Wec = 2.03. Then Wec seems to becomes mesh insensitive with
mesh refinement. A deeper analysis of singular points is planed for future works: it requires more
advanced tools than the simple continuation Euler-Newton algorithm. The first and second singu-
lar points could be e.g. bifurcation points associated to a loss of stationarity of the solution: for
larger We, the solution becomes non-stationary, as suggested by time-dependent simulations (see
e.g. [16], Fig. 8). Pakdel, Spiegelberg and McKinley also showed by experimental observations [48]
for the motion of viscoelastic fluids in the lid-driven cavity geometry that, at large Weissenberg
numbers, the fluid motion becomes unstable and a three-dimensional flow develops.

0.1

0.2

0 1 2 3 4

We

‖u‖L2

U

h = 1/20
h = 1/40
h = 1/80
h = 1/160
adapted hmin = 10−2

adapted hmin = 5×10−3

0

0.5

1

1.4

0 1 2 3 4

We

L
(ηp+ηv)U

‖ℵ‖L2

h = 1/20
h = 1/40
h = 1/80
h = 1/160
adapted hmin = 10−2

adapted hmin = 5×10−3

Figure 4: The Oldroyd-B problem on the driven cavity with ηp = ηv. Norms of the solution versus
We.

Fig. 4 plots the L2 norm of the velocity and the log-conformation tensor: observe the good
convergence of these quantities versus mesh refinement. There are five uniform meshes from
h = 1/20 to h = 1/160 and two adapted meshes with hmin = 10−2 and 5× 10−3.
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Figs. 5 and 6 show the adapted meshes and stream isovalues of the function for We = 1, 2 and
3. The stream function ϕ is defined as the unique function that satisfies −∆ϕ = ∂yux − ∂xuy in
Ω with ϕ = 0 on ∂Ω. Ten negative and fifteen positive equi-spaced isolines are represented on
each plot. Observe that viscoelastic effects break the symmetry observed for the velocity field of
cavity flows of viscous Newtonian fluids at zero Reynolds number. At low Weissenberg number,
the flow remains two-dimensional but the center of the primary recirculating vortex in the cavity
shifts progressively upstream (left). These results are qualitatively in agreement with experimental
results [48]. Notice also that the inertial effects for viscous Newtonian fluids (i.e. We = 0 and
Re > 0) has opposite effects (see e.g. [60, part 2]): the center of the primary recirculating vortex
in the cavity shifts downstream (right).

xm ym reference

0.439 0.816 Pan, Hao & Glowinski [49]
0.433 0.803 Su, Ouyang, Wang, Yang & Zhou [65]
0.429 0.818 present

Table 2: The Oldroyd-B problem on the driven cavity with ηp = ηv. Comparison of the dimen-
sionless main vortex center position for We = 1 with others authors.

Furthermore, our results are compared quantitatively with respect to the previous works: the
location of the primary vortex center for We = 1 are listed in table 2. Our results are evaluated
comparing with the results of time-dependent flow using both a finite element method [49] and
a lattice Boltzmann method [65]. It is found that the results of our steady computations are
consistent with those of these authors.

Figs. 7 and. 8 show zooms on the left and right secondary vortex. While the main vortex moves
from left to right when We increases, the left vortex grows and the right one decreases in activity.
Notice that this is also in opposition with inertial effects for viscous Newtonian fluids.

main left right
We

xm ym ϕmin xl yl ϕmax xr yr ϕmax

1 0.429 0.818 −0.0619 0.0364 0.0388 1.31×10−6 0.9637 0.0355 9.97×10−7

2 0.386 0.828 −0.0555 0.0394 0.0411 1.58×10−6 0.9663 0.0363 7.07×10−7

3 0.335 0.824 −0.0531 0.0485 0.0477 3.22×10−6 0.9631 0.0347 7.66×10−7

Table 3: The Oldroyd-B problem on the driven cavity with ηp = ηv. Dimensionless main and
secondary vortex center position and activity for We = 1, 2 and 3.

Table 3 groups the main and secondary vortex center position and activity for We = 1, 2 and 3.
These values are provided future cross validation purpose. Observe that the main vortex goes left
and decreases in activity while the center of the left secondary vortex goes up and right and its
activity increases. Also, the center of the right secondary vortex roughly stays in place while its
activity remains constant. Finally, Fig. 9 plots the cut of the first component ux of the velocity
and the χxx component along the x = 1/2 vertical axis, as computed with the adaptive mesh.
The computations with the finest uniform mesh (h = 1/160) gives similar results: it is not showed
here, as the difference is not graphically perceptible. Observe the excellent quantitative agreement
with both computations obtained by Hao and Pan [26] and Fattal and Kupferman [16].

Conclusion

The new log-conformation formulation of viscoelastic fluid flows presented in this paper allows a
direct steady numerical resolution by a Newton method. Moreover, the use an exact divergence
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free finite element method for velocity-pressure approximation and a discontinuous Galerkin up-
winding treatment for stresses leads to a robust discretization. A demonstration is provided by
the computation of steady solutions at high Weissenberg numbers for the difficult benchmark of
the lid driven cavity flow. Numerical results are in good agreement, both qualitatively with exper-
iment measurements on real viscoelastic flows, and quantitatively with computations performed
by others authors. The numerical algorithm is thus robust. It is also very efficient, as it requires
few and mesh-invariant number of linear systems resolution to reach solutions at high Weissenberg
number. An adaptive mesh procedure is also proposed, in order to catch accurately both boundary
layers and main and secondary vortex.

We provide new data for future cross validation purpose and point out the existence of a singular
point near We = 2, where the determinant of the Jacobian vanishes and then exhibits a change
of sign. This singular point has been founded quite robust with mesh refinement. As suggested
by both experimental measurements and time-dependent simulations, it could be a bifurcation
points associated to a loss of stationarity of the solution. The analysis of this situation by a
steady approach is also possible by the tools of the bifurcation theory. In 2009, a pioneer work
was performed in this direction by Howell [28] and it should be carried on in the context of the
log-conformation formulation.

There are many geometries that could be explored by this approach: contractions, as in the pre-
vious reference, and flow around obstacles are interesting benchmarks, while experimental mea-
surements are also available. The present log-conformation formulation extends naturally to more
complex viscoelastic fluid models, such as Phan-Thien and Tanner, Giesekus or elastoviscoplastic
one [57, 58]. The integration of the Gordon-Schowalter derivative parameter in the present work
also open the door of the numerical modeling of liquid crystals, fiber suspension or active fluid.

23



We = 1:

We = 2:

Figure 5: The Oldroyd-B problem on the driven cavity with ηp = ηv. Adapted mesh and stream
function isovalues for We = 1 and 2.
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We = 3:

Figure 6: The Oldroyd-B problem on the driven cavity with ηp = ηv. Adapted mesh and stream
function isovalues for We = 3.
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Figure 7: The Oldroyd-B problem on the driven cavity with ηp = ηv. Zoom around vortex for
We = 1.

26



We = 2

ϕmax=1.58×10−6
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Figure 8: The Oldroyd-B problem on the driven cavity with ηp = ηv. Zoom around vortex for
We = 2 and 3.
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Figure 9: The Oldroyd-B problem on the driven cavity with ηp = ηv. Cuts along the x = 1/2
vertical line: (top) ux(1/2, y) ; (bottom) χxx(1/2, y). Comparisons with results obtained by Hao
and Pan [26], Fig. 2 for We = 1 and by Fattal and Kupferman [16], Figs. 7 and 10 for We = 2
and 3, respectively.
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A Appendices

This appendix groups explicit computations of some complex expressions, nammely the exponen-
tial of a matrix, the κ function and their derivatives with respect to coefficient matrix.

A.1 The matrix exponential and its derivatives

The present work uses the free software formal calculus system maxima [44]. With this system,
the computation of the exponential of a 2× 2 symmetric matrix writes:

load(linearalgebra);

domxexpt : false;

chi : matrix([a,b],[b,c]);

exp_chi : factor(matrixexp(chi));

The derivative exp′(χ) of this expression with respect to the coefficients of the matrix χ are then
treated without any difficulty by this formal calculus system. Notice that Kane, Guénette, and
Fortin [33, p. 50] proposed some explicit expressions for exp(χ) and exp′(χ), based on the mapple
software: these expressions contained some errors and, for completeness, the correct expression
are provided here.

χ =

(

a b
b c

)

, exp(χ) = α2







α4 +
(a− c)α3

α1

2bα3

α1
2bα3

α1
α4 −

(a− c)α3

α1







where α1 =
√

(a− c)2 + 4b2, α2 = exp((a+ c)/2), α3 = sinh(α1/2), and α4 = cosh(α1/2). Notice
that the expression in [33] for exp′(χ) should also be fixed in a similar way.
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Observe that the obtained expression degenerates when both a = c and b = 0, i.e. when the
matrix is proportional to the identity. In that case χ = a I and exp(χ) = exp(a) I. This possible
degeneracy is decided when both |a − c| < εm and |b| < εm where εm stands for the machine
epsilon, i.e. the higher positive floating number such that 1 + εm = 1. Finally, the expressions
produced by maxima are simplified and optimized in an automatic way: they are then formatted
in fortran, C or C++ languages for a direct use by the Euler-Newton continuation algorithm.

A.2 The κ function and its derivatives

Magnus and Neudecker [41, p. 177] showed that the eigenvalues and eigenvectors are differentiable
provided that eigenvalues are simple. Otherwise, when there is multiple eigenvalues, there is a
serious problem. Let us study this difficulty by considering the 2× 2 matrix function:

β(ε, δ) =

(

α+ ε δ
δ α− ε

)

where α is some fixed constant and ε and δ are two variables at the vicinity of zero. The two
eigenvalues and the two associated unnormalized eigenvectors are

β± = α±
√

ε2 + δ2 and v± =





1

−
(ε

δ

)

±
√

1 +
(ε

δ

)2





Both eigenvalues are continuous in ε and δ but not differentiable: the conical surface formed by
the eigenvalues has a singularity at (ε, δ) = (0, 0) (see Fig. 10.a). For instance

∂β±
∂ε

= ±
(

1 +

(

δ

ε

)2
)− 1

2

For a fixed ratio c = δ/ε however, we can pass through (0, 0) without noticing the singularity, but

the derivative depends upon c. Thus, the derivative
∂β±
∂ε

are multi-valued in (0, 0) and the two

eigenvalues are not derivable at the origin. Notice that the two eigenvectors depends upon c only.

Figure 10: (a) The eigenvalue function β± = α ±
√
ε2 + δ2; (b) The κ(β,γ)1,1 function, with

γ = ((1, 2), (2, 3)).

Nevertheless, the situation is not hopeless for the κ function: Fig. 10.b plots the κ(β,γ)1,1 com-
ponent as a function of (ε, δ) for a specific γ value. Other components or γ values show a similar
behavior. This observation suggests that κ is differentiable at (ε, δ) = (0, 0) and that its derivative
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is zero. Let us prove this conjecture. A careful eye of the definition (6a)-(6c) of the κ function
shows that κ̃ depends only upon (β+−β−)/2 =

√
ε2 + δ2 and is independent of α. More precisely,

from (6b) we have κ̃1,2 = κ̂
(√
ε2 + δ2

)

γ̃1,2 where with κ̂(x) = 1− x/ tanh(x). Then

∂κ̃1,2
∂ε

= ε g
(

√

ε2 + δ2
)

γ̃1,2 + κ̂
(

√

ε2 + δ2
) ∂γ̃1,2

∂ε
(17)

with g(x) = κ̂′(x)/x. Observe that limx→0 g(x) = −2/3. Let us fix the direction c = δ/ε and do
ε→ 0. By this way v± depend only upon c and so is the unitary matrix q whose columns are the
normalized eigenvectors v±/|v±|. Thus γ̃ = qTγq is independent upon ε. Then, the first term of
the right-hand side of (17) behaves has O(ε). We now turn to the second term of the right-hand
side of (17): From one hand, we have κ̂(x) = −x2/3 + O(x3) and then κ̂

(√
ε2 + δ2

)

= O(ε2).

From other hand,
∂v±

∂ε
= O(δ−1) = O(ε−1) and so are

∂q

∂ε
and

∂γ̃1,2
∂ε

. Then, the second term of

the right-hand side of (17) also behaves has O(ε). Finally, κ̃1,2 is differentiable in (0, 0) and its
derivative is zero. Now, let us turn to κ = qκ̃qT . We have:

∂κ

∂ε
=
∂q

∂ε
κ̃qT + q

∂κ̃

∂ε
qT + qκ̃

∂qT

∂ε

Recall that q depends only upon the constant direction c. Each term behaves as O(ε) and finally
∂κ

∂ε
= 0 at (0, 0). As ε and δ are interchangeable in the expression of κ, a similar deduction leads

to
∂κ

∂δ
= 0. Remark that, since the derivative is zero, it do not depends upon the direction c. In

conclusion, κ is fully differentiable with respect to β, even when β admits multiple eigenvalues.

The maxima code for computing κ(β,γ) writes:

beta : matrix([a,b],[b,c]);

gamma : matrix([g00,g01],[g10,g11]);

eig : eigenvectors(beta);

beta1 : eig[1][1][1];

beta2 : eig[1][1][2];

do_unitary(v) := v/sqrt(v[1]**2 + v[2]**2);

v1 : do_unitary(eig[2][1][1]);

v2 : do_unitary(eig[2][2][1]);

q : matrix([v1[1],v2[1]], [v1[2],v2[2]]);

tilde_gamma : transpose(q).gamma.q;

hat_kappa(x) := 1 - x/tanh(x);

k12 : hat_kappa((beta1-beta2)/2)*tilde_gamma[1][2];

tilde_kappa : matrix([0, k12],[k12,0]);

kappa : q.tilde_kappa.transpose(q);

The derivatives of this expression with respect to the matrix coefficients are then treated without
any difficulty. As shown in this section, there are two different degeneracy cases, either when a = c
or b = 0. These and these special cases are decided up to the machine precision and are treated
separately. Finally, the expressions produced by maxima are simplified, optimized and formatted
in fortran, C or C++ for a direct use by the Euler-Newton continuation algorithm.

34


	Continuous setting
	Conformation tensor formulation
	A new log-conformation formulation
	Variational formulation of the steady problem

	Discretization and numerical resolution
	Space approximation
	Approximation of the transport term
	Newton method
	Euler-Newton continuation algorithm
	Automatic adaptive mesh

	Tests on the smoothed driven cavity flow
	Appendices
	The matrix exponential and its derivatives
	The  function and its derivatives


