Two-Gap Superconductivity in 2H-NbS2 Z. Pribulova, Maxime Leroux, J. Kacmarcík, C. Marcenat, Thierry Klein, Pierre Rodière, Laurent Cario, P. Samuely ### ► To cite this version: Z. Pribulova, Maxime Leroux, J. Kacmarcík, C. Marcenat, Thierry Klein, et al.. Two-Gap Superconductivity in 2H-NbS2. 14th Czech and Slovak Conference on Magnetism, Jul 2010, Kosice, Slovakia. pp.1024. hal-00957209 HAL Id: hal-00957209 https://hal.science/hal-00957209 Submitted on 10 Mar 2014 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 14th Czech and Slovak Conference on Magnetism, Košice, Slovakia, July 6-9, 2010 ## Two-Gap Superconductivity in 2H-NbS₂ Z. Pribulová^a, M. Leroux^b, J. Kačmarčík^a, C. Marcenat^c, T. Klein^{b,d}, P. Rodière^b, L. Cario^e and P. Samuely^a ^aCentre of Low Temperature Physics, IEP Slovak Academy of Sciences and P.J. Šafárik University Watsonova 47, SK-04353 Košice, Slovakia ^bInstitut Néel, CNRS, F-38042 Grenoble Cedex 9, France ^cCEA, Institut Nanosciences et Cryogénie, SPSMS — LaTEQS, F-38054 Grenoble Cedex 9, France ^dInstitut Universitaire de France and Université Joseph Fourier, F-38041 Grenoble Cedex 9, France ^eInstitut des Matériaux Jean Rouxel, Université de Nantes-CNRS, F-44322 Nantes Cedex 3, France We performed specific heat measurements of the superconducting single crystal of 2H-NbS₂ in the temperature range down to 0.6 K and magnetic fields up to 14 T. The temperature and magnetic field dependence of the electronic specific heat consistently indicate existence of two superconducting energy gaps in the system. The superconducting anisotropy depends on both temperature and magnetic field. Moreover, the angular dependence of the upper critical field deviates from the Ginzburg–Landau behavior and rather reminds that of MgB₂. All these features point to a multigap superconductivity in 2H-NbS₂. Our measurements are in a perfect agreement with the previous scanning tunneling spectroscopy of Guillamón et al. ### PACS numbers: 74.25.Bt, 74.70.Ad #### 1. Introduction The case of multiple electronic bands crossing the Fermi level can lead under certain circumstances to an interesting existence of multiple superconducting energy gaps in one system. The most spectacular example of this phenomenon is MgB₂ with different gaps in the three dimensional π -band and the 2D σ one. Superconducting dichalcogenides have also multiple bands at the Fermi energy but completely different symmetry and coupling among them than in MgB₂. Nevertheless, experimental indications are cumulating that two-gap superconductivity can be present also here. #### 2. Experimental 2H-NbS_2 single-crystal with the superconducting transition at $T_c = 6.05$ K was prepared as described elsewhere [1]. Crystal used for our measurements comes from the same batch as those studied previously by scanning tunneling microscopy (STM) [2]. The specific heat measurements were performed using an ac technique [3]. This method is based on applying periodically modulated power and measuring resulting temperature oscillations of the sample. Magnetization measurements were performed using a set of miniature GaAs-based quantum-well Hall sensors. Procedure of upper critical field (H_{c2}) determination by this method is described for example in [4]. #### 3. Results In Fig. 1a we present an effective superconducting anisotropy $\Gamma_{\rm eff}$ in the system (full symbols). This data were derived from measurements of the Sommerfeld coefficient γ (actually C/T at T=0.6 K) for two perpendicular orientations of magnetic field with respect to the crystallographic structure of the sample (H parallel and)perpendicular to the ab planes). Details and data can be found elsewhere [5]. The effective anisotropy Γ_{eff} is defined as a ratio of the fields applied in the two major crystallographic orientations corresponding to the same value of the Sommerfeld coefficient γ . Let us note that this Γ_{eff} tends towards the usual anisotropy of H_{c2} , $\Gamma = H_{c2}^{ab}/H_{c2}^{c}$ at large magnetic fields. As can be seen in Fig. 1a, $\Gamma_{\rm eff}$ is strongly field-dependent. The figure includes the curve obtained on MgB₂ (open symbols) for comparison [6]. In MgB_2 at low fields, the $\gamma(H)$ curves for the two principal directions are practically identical which gives $\Gamma_{\rm eff} = 1$. At larger fields, $\Gamma_{\rm eff}$ increases reflecting a reduced contribution from the isotropic π -band, reaching $\Gamma_{\rm eff} \approx 5$ which is the anisotropy of the σ -band dominant here. In NbS_2 , one observes an opposite field dependence of Γ_{eff} which starts from a highly anisotropic value $\Gamma_{\text{eff}} \approx 10$ at low fields and decreases to $\Gamma_{\rm eff} \approx 5.5$ at our maximum A field dependent superconducting anisotropy is a typical signature of multigap superconductivity where a role of bands with different gaps can significantly vary with magnetic field [7]. In contrast to MgB₂, in NbS₂ both bands could be anisotropic, as suggested by analogy with NbSe₂ [8]. Moreover, anisotropy can be different in the two bands. This can explain a qualitatively different behavior of $\Gamma_{\rm eff}(H)$ in NbS₂ as compared to MgB₂ The superconducting anisotropy $\Gamma = H_{\rm c2}^{ab}/H_{\rm c2}^c$ is also temperature dependent in NbS₂, in contrast to one-gap superconductors where it is constant. The full circles in Fig. 1b represent evolution of the anisotropy of $H_{\rm c2}$ Fig. 1. Field (a) and temperature (b) dependence of the superconducting anisotropy (as defined in the text) in NbS_2 and MgB_2 (full and open symbols, respectively). values derived from the temperature and the field-sweep measurements of specific heat; square is taken as an extrapolation of $\Gamma_{\rm eff}$ for $H/H_{\rm c2} \rightarrow 1$ (see Fig. 1a). $\Gamma(T)$ of NbS₂ reveals again an opposite tendency compared to MgB₂ since it exhibits a decrease instead of an increase with decreasing temperature. Behavior of $\Gamma(T)$ results from a subtle balance between the Fermi velocities and the relative weights in the densities of states of the different bands. These precise calculations are still to be carried out in the case of NbS₂. Fig. 2. Angular dependence of $H_{\rm c2}$ from specific heat (open symbols) and magnetization (full symbols) measurements. Line is the Ginzburg–Landau theoretical expectation for the single gap superconductor. Inset: ratio $[H_{\rm c2}(\theta)/H_{\rm c2}^{\rm GL}(\theta)]^2$ plotted as a function of $\cos^2\theta$. Two-gap nature of NbS₂ is manifested also in anomalous angular dependence of $H_{\rm c2}$. Figure 2 presents results of $H_{\rm c2}$ measured at T=5.5 K at different angles θ between magnetic field and ab planes of the sample ($\theta=0^{\circ}$ for $H\parallel ab$ and 90° for $H\parallel c$) extracted from specific heat (open symbols) and magnetization (full sym- bols) measurements. For comparison we show theoretical Ginzburg–Landau behavior of $H_{\rm c2}$ (line) in the form of $H_{\rm c2}^{\rm GL}(\theta) = H_{\rm c2}^{ab}/\sqrt{\cos^2\theta + \Gamma^2\sin^2\theta}$ with parameters set to correspond to the data at the both extremes (at 0° and 90°). It is obvious from the figure that the observed behavior of $H_{\rm c2}$ deviates from that expected from the theory. The deviation is emphasized in the inset of Fig. 2 where the ratio $[H_{\rm c2}(\theta)/H_{\rm c2}^{\rm GL}(\theta)]^2$ is plotted as a function of $\cos^2\theta$. Similar tendency was observed also in the case of MgB₂ where it was proved to be related to the two-gap character of the system [9]. #### 4. Conclusions Our measurements presented here show a strong field and temperature dependence of the superconducting anisotropy of NbS₂. Moreover, the angular dependence of $H_{\rm c2}$ deviates from the GL theory in a similar manner as in MgB₂. This strongly supports previous result of the surface sensitive technique — scanning tunneling microscopy (STM), pointing to existence of two gaps in the system. Therefore, we conclude that NbS₂ is another example of a two-band superconductor. #### Acknowledgments The work was supported by the Science and Technology Agency, the contracts No. APVT-51-0166, VVCE-0058-07, Sk-Fr-0024-09, by Slovak scientific agency (VEGA 2/0148/10) and by the U.S. Steel Košice. CLTP is operated as the Centre of Excellence of SAS. #### References - [1] W. Fisher, M. Sienko, *Inorg. Chem.* **19**, 39 (1980). - [2] I. Guillamón, H. Suderow, S. Vieira, L. Cario, P. Diener, P. Rodière, *Phys. Rev. Lett.* **101**, 166407 (2008). - [3] P.F. Sullivan, G. Seidel, *Phys. Rev.* **173**, 679 (1968). - [4] J. Kačmarčík, C. Marcenat, T. Klein, Z. Pribulová, C.J. van der Beek, M. Konczykowski, S.L. Buďko, M. Tillman, N. Ni, P.C. Canfield, *Phys. Rev. B* 80, 014515 (2009). - [5] J. Kačmarčík et al., Phys. Rev. B, submitted for publication. - [6] L. Lyard, P. Samuely, P. Szabo, T. Klein, C. Marcenat, L. Paulius, K.H.P. Kim, C.U. Jung, H.-S. Lee, B. Kang, S. Choi, S.-I. Lee, J. Marcus, S. Blanchard, A.G.M. Jansen, U. Welp, G. Karapetrov, W.K. Kwok, Phys. Rev. B 66, 180502(R) (2002). - V.G. Kogan, S.I. Bud'ko, Physica C 385 131 (2003); T. Dahm, N. Schopohl, Phys. Rev. Lett. 91, 017001 (2003); A.A. Golubov, A. Brinkman, O.V. Dolgov, J. Kortus, O. Jepsen, Phys. Rev. B 66, 054524 (2002). - [8] M.D. Johannes, I.I. Mazin, C.A. Howells, *Phys. Rev. B* 73, 205102 (2006). - [9] A. Rydh, U. Welp, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, R. Brusetti, L. Lyard, T. Klein, C. Marcenat, B. Kang, K.H. Kim, K.H.P. Kim, H.-S. Lee, S.-I. Lee, *Phys. Rev. B* 70, 132503 (2004).