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On the weak convergence of kernel density estimators in Lp spaces

Gilles Stup�er

Aix Marseille Université, CERGAM, EA 4225,

15-19 allée Claude Forbin, 13628 Aix-en-Provence Cedex 1, France

Abstract. Since its introduction, the pointwise asymptotic properties of the kernel estimator

f̂n of a probability density function f on Rd, as well as the asymptotic behaviour of its integrated

errors, have been studied in great detail. Its weak convergence in functional spaces, however, is a

more di�cult problem. In this paper, we show that if fn(x) = E(f̂n(x)) and (rn) is any nonrandom

sequence of positive real numbers such that rn/
√
n → 0 then if rn(f̂n − fn) converges to a Borel

measurable weak limit in a weighted Lp space on Rd, with 1 ≤ p <∞, the limit must be 0. We also

provide simple conditions for proving or disproving the existence of this Borel measurable weak limit.

AMS Subject Classi�cations: 62G07, 62G20, 60F17.
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1 Introduction

Let (Xn) be a sequence of independent random copies of a random variable X, such that X has

a probability density function f on Rd, d ≥ 1. The Parzen-Rosenblatt estimator of f is (Parzen,

1962, Rosenblatt, 1956):

f̂n(x) =
1

n

n∑
i=1

Kh(x−Xi)

where h = h(n) → 0 as n → ∞ and Kh(u) = h−dK(u/h) with K : Rd → R an integrable

function whose integral over Rd is equal to 1. The random function x 7→ f̂n(x) can be seen as the
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empirical counterpart of the function x 7→ fn(x) = E[f̂n(x)] = E[Kh(x−X)] which is well-de�ned

almost everywhere on Rd and integrable. It is well-known that under some conditions on K, the

random process x 7→
√
nhd(f̂n(x)− fn(x)) converges pointwise to a Gaussian distribution provided

nhd → ∞, f(x) > 0 and f is continuous at x, see e.g. the discussion pp. 1069�1070 in Parzen

(1962).

Our focus in this paper is rather the study of the convergence properties of the random process

x 7→ rn(f̂n(x)− fn(x)), where (rn) is a nonrandom sequence of positive real numbers, in Lp spaces.

This is interesting for many purposes, such as examining the asymptotics of the global integrated

error of the estimator f̂n, which can then be used to construct asymptotic con�dence bands for the

function f . For instance, since K is a probability density function, the random function rn(f̂n−fn)

belongs to the space L1(Rd) of Borel measurable functions which are integrable on Rd. Let further

µ be a nontrivial absolutely continuous measure with respect to the Lebesgue measure on Rd and,

for any p ∈ [1,∞), Lp(Rd, µ) be the space of the Borel measurable functions H : Rd → R such that

‖H‖p,µ =

[∫
Rd
|H(x)|pdµ(x)

]1/p
<∞.

Then, assuming for instance that |K|p is integrable on Rd and µ has a bounded Radon-Nikodym

derivative with respect to the Lebesgue measure, the random function rn(f̂n − fn) belongs to

Lp(Rd, µ). The convergence of ‖f̂n − fn‖p,µ has been studied by Bickel and Rosenblatt (1973) for

p = 2 and Devroye and Györ� (1985) for p = 1; a treatment of the general case 1 ≤ p <∞ is given

in Csörg® and Horváth (1988), Horváth (1991) and Beirlant and Mason (1995).

However, none of these studies consider the convergence of rn(f̂n− fn) as a random process taking

values in an Lp space, which is a di�cult problem. Recently, Nishiyama (2011) disproved the

existence of a nondegenerate Borel measurable weak limit for rn(f̂n−fn) in the usual L2(Rd) space

provided rn/
√
n → 0, thus generalising a result of Ruymgaart (1998). Our focus in this paper

is to generalise the results of Nishiyama (2011) to the convergence of rn(f̂n − fn) in the spaces

Lp(Rd, µ), for 1 ≤ p < ∞. In particular, we shall show that when µ has a bounded Radon-

Nikodym derivative with respect to the Lebesgue measure then any Borel measurable weak limit

of this process in Lp(Rd, µ) is necessarily 0, and that
√
nhd(f̂n − fn) does not converge to a Borel

measurable limit in Lp(Rd, µ) under mild conditions on f , K and µ. Note that this does not

2



contradict the aforementioned results on the asymptotics of ‖f̂n − fn‖p,µ, since weak convergence

of the norms is necessary but not su�cient for weak convergence in Lp(Rd, µ).

The outline of the paper is as follows: our main results are stated in Section 2. A discussion

concerning the convergence of the bias term rn(fn−f) is given in Section 3. Statements and proofs

of the auxiliary results are deferred to the Appendix.

2 Main results

Let p ∈ [1,∞). Our �rst goal is to obtain a simple necessary and su�cient condition to identify

the limit of a Borel measurable random process in the space Lp(Rd, µ). To state such a result, we

introduce some notation: let q ∈ (1,∞] be such that p−1 + q−1 = 1. For any H ∈ Lq(Rd, µ), let TH

be the continuous linear form on Lp(Rd, µ) de�ned by

∀G ∈ Lp(Rd, µ), TH(G) =

∫
Rd
G(x)H(x)dµ(x).

In the remainder of this paper, we assume that µ is a nontrivial absolutely continuous measure with

respect to the Lebesgue measure on Rd, having a bounded Radon-Nikodym derivative. We have

the following result:

Proposition 1. If G1 and G2 are two Borel measurable random elements of Lp(Rd, µ), then the

distributions of G1 and G2 are equal if and only if for every bounded function H ∈ Lq(Rd, µ), the

distributions of TH(G1) and TH(G2) are equal.

Proof of Proposition 1. Since for any H ∈ Lq(Rd, µ), the map TH is a continuous linear form on

Lp(Rd, µ), it is clear that if G1 and G2 have equal distributions then TH(G1) and TH(G2) must have

equal distributions as well. Conversely, assume that for any bounded function H ∈ Lq(Rd, µ) the

distributions of TH(G1) and TH(G2) are equal. Let F be the class of functions f : Lp(Rd, µ) → R

for which there exists J ≥ 1 such that

∀ϕ ∈ Lp(Rd, µ), f(ϕ) = g(TH1(ϕ), . . . , THJ (ϕ))

where g is a continuous bounded real-valued function on RJ and H1, . . . ,HJ are bounded elements
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of Lq(Rd, µ). Observe �rst that for all J ≥ 1 and all bounded H1, . . . ,HJ ∈ Lq(Rd, µ), we have that

∀t1, . . . , tJ ∈ R, ∀ϕ ∈ Lp(Rd, µ),
J∑
i=1

tiTHi(ϕ) = T∑J
i=1 tiHi

(ϕ).

It is thus a consequence of the Cramér-Wold device that the random vectors (TH1(G1), . . . , THJ (G1))

and (TH1(G2), . . . , THJ (G2)) have the same distribution. Let ν1 and ν2 be the pushforward proba-

bility measures on Lp(Rd, µ) induced by G1 and G2; it is then clear that

∀f ∈ F ,
∫
Lp(Rd,µ)

f(ϕ)dν1(ϕ) =

∫
Lp(Rd,µ)

f(ϕ)dν2(ϕ).

Further, in the sense of van der Vaart and Wellner (1996), p.25, the class F is a vector lattice of

continuous bounded functions on Lp(Rd, µ) which contains the constant functions. Let B(Rd) be

the usual Borel σ−algebra on Rd: since µ is absolutely continuous with respect to the Lebesgue

measure and has a bounded Radon-Nikodym derivative, the space (Rd,B(Rd), µ) is a separable

measure space. This makes Lp(Rd, µ) a separable metric space; since Lp(Rd, µ) is complete, it

follows that G1 and G2 de�ne tight Borel probability measures on Lp(Rd, µ), see Lemma 1.3.2 p.17

in van der Vaart and Wellner (1996). Thanks to Lemma 1.3.12 p.25 in van der Vaart and Wellner

(1996), the proof shall be complete provided we show that the class F separates the points of

Lp(Rd, µ).

Let then ϕ, ψ ∈ Lp(Rd, µ) be such that ϕ 6= ψ. It is a corollary of the Hahn-Banach theorem that

there exists a continuous linear form T on Lp(Rd, µ) such that T (ϕ) 6= T (ψ). Since p ∈ [1,∞) and

µ is σ−�nite, the dual space of Lp(Rd, µ) is Lq(Rd, µ), so that T = Th for some h ∈ Lq(Rd, µ).

Especially

Th(ϕ− ψ) =

∫
Rd

[ϕ(x)− ψ(x)]h(x)dµ(x) 6= 0.

By the dominated convergence theorem, there is a positive integer N such that:∣∣∣∣∫
Rd

[ϕ(x)− ψ(x)]h(x)I{|h(x)|≤N}dµ(x)

∣∣∣∣ ≥ |Th(ϕ− ψ)|
2

> 0.

Therefore, the function H de�ned by H(x) = h(x)I{|h(x)|≤N} is a bounded element of Lq(Rd, µ)

such that TH(ϕ) 6= TH(ψ). The proof is complete.

A key consequence of this result is that if for any bounded function H ∈ Lq(Rd, µ), we have

TH(rn(f̂n − fn)) → TH(G) where G is a Borel measurable element of Lp(Rd, µ), then the Borel
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measurable weak limit of rn(f̂n − fn) in Lp(Rd, µ), if it exists, must be G. In some sense, this

generalises the approach of Nishiyama (2011), where an essential element of the proof is that one

can �nd a countable dense subset of bounded functions (ej) in L2(Rd) and then characterise the

possible weak limits of rn(f̂n − fn) by examining the asymptotic properties of Tej (rn(f̂n − fn)) for

any integer j.

We may now state our �rst asymptotic result, which identi�es the possible Borel measurable limit

of rn(f̂n − fn) in the space Lp(Rd, µ):

Theorem 1. Let (rn) be a nonrandom sequence of positive real numbers. Assume that K ∈ Lp(Rd).

If rn/
√
n → 0 and the random process rn(f̂n − fn) converges weakly in Lp(Rd, µ) to a Borel mea-

surable random process G then G = 0 almost surely.

Proof of Theorem 1. According to Proposition 1, it is enough to show that for every bounded

function H ∈ Lq(Rd, µ), one has

∆n(H) = TH

(
rn(f̂n − fn)

)
→ 0

in probability. We now set Zi(x, h) = Kh(x−Xi)− E(Kh(x−X)) for i = 1, . . . , n and Z(x, h) =

Kh(x−X)− E(Kh(x−X)). For almost every x ∈ Rd, E(Kh(x−X)) is well-de�ned and �nite so

that the Zi(x, h), i = 1, . . . , n are independent copies of the centred random variable Z(x, h). We

may rewrite ∆n(H) as

∆n(H) =
rn
n

n∑
i=1

Wn,i(H) with Wn,i(H) =

∫
Rd
Zi(x, h)H(x)dµ(x).

Observe that the random variables Wn,i(H), i = 1, . . . , n are independent copies of the centred

random variable Wn(H) =
∫
Rd Z(x, h)H(x)dµ(x). Lemma 1 thus entails

E|∆n(H)|2 =

[
rn√
n

]2
E|Wn(H)|2 = O

([
rn√
n

]2)
.

A particular consequence of this inequality is that ∆n(H)→ 0 in probability: the proof is complete.

We point out that Theorem 1 is a generalisation of Theorem 2.1 in Nishiyama (2011), which was

restricted to the case when p = 2 and µ is the Lebesgue measure. This result says that either the
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process rn(f̂n − fn) converges to a degenerate limit or does not converge to a Borel measurable

limit. We proceed by giving some insight on what can happen, depending on the sequence (rn).

Introduce the hypotheses

(H1) The function f is a bounded function on Rd.

(H2) The function K is a bounded function on Rd.

(H3a) The Radon-Nikodym derivative of µ with respect to the Lebesgue measure on Rd is

bounded from below by a positive constant.

(H3b) There exist x0 ∈ Rd and δ > 0 such that f is bounded from below by a positive constant

on the Euclidean ball B(x0, δ) with center x0 and radius δ, and µ(B(x0, δ/2)) > 0.

Hypothesis (H1) was already introduced in Nishiyama (2011), while hypothesis (H2) is classical in

kernel density estimation. In particular, any one of these two conditions ensure that fn(x) is �nite

for every x. Hypothesis (H3a) holds in particular if µ is the Lebesgue measure on Rd; hypothesis

(H3b) is true if, for instance, there exists x0 ∈ Rd such that both f and the Radon-Nikodym

derivative of µ with respect to the Lebesgue measure on Rd are positive and continuous at x0.

Stronger versions of this latter condition can be found for instance in Csörg® and Horváth (1988)

and Horváth (1991). Starting with the case p ≥ 2, we can state the following result, which contains

Theorem 2.2 in Nishiyama (2011):

Theorem 2. Consider the case p ≥ 2. Let (rn) be a nonrandom sequence of positive real numbers.

Assume that K ∈ Lp(Rd); if p > 2, assume that (H1) holds and that nhd →∞.

• If rn/
√
nhd → 0, then rn(f̂n − fn)→ 0 in Lp(Rd, µ).

Assume further that in case p = 2, condition (H1) holds and that (H3a) or (H3b) holds; when p > 2,

assume that (H2) and (H3b) hold as well.

• If rn/
√
nhd → c ∈ (0,∞], then rn(f̂n−fn) does not converge to any Borel measurable random

element in Lp(Rd, µ).

Proof of Theorem 2. Consider �rst the case rn/
√
nhd → 0. The �rst statement shall be proven
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provided we show that E(‖rn(f̂n − fn)‖pp,µ)→ 0. To this end, we note that

E(‖rn(f̂n − fn)‖pp,µ) =
[rn
n

]p ∫
Rd

E

∣∣∣∣∣
n∑
i=1

Zi(x, h)

∣∣∣∣∣
p

dµ(x). (1)

Observe that the Zi(x, h), i = 1, . . . , n are independent copies of the centred random variable

Z(x, h). Moreover, it is a consequence of Lemma 3 that the function x 7→ E|Z(x, h)|p is integrable

and thus almost everywhere �nite on Rd. By Rosenthal's inequality (Rosenthal, 1970), we obtain

for almost every x ∈ Rd:

E

∣∣∣∣∣
n∑
i=1

Zi(x, h)

∣∣∣∣∣
p

≤ Bp max
[
nE|Z(x, h)|p, (nE|Z(x, h)|2)p/2

]
(2)

for some positive constant Bp which only depends on p. Besides, we have that K ∈ L1(Rd) ∩

Lp(Rd) ⊂ L2(Rd) so that we may use together (1), (2) and Lemma 3 to get

E(‖rn(f̂n − fn)‖pp,µ) = O
([rn

n

]p [
nh−d(p−1) + np/2h−dp/2

])
.

Since [rn
n

]p [
nh−d(p−1) + np/2h−dp/2

]
=

[
rn√
nhd

]p [
1 + (nhd)1−p/2

]
→ 0

we obtain E(‖rn(f̂n − fn)‖pp,µ) = o(1), which concludes the proof of the �rst statement.

To prove the second statement, we start by assuming that rn/
√
nhd → c ∈ (0,∞) and we show

that for any p ≥ 2,

lim inf
n→∞

E(‖rn(f̂n − fn)‖pp,µ) > 0. (3)

To this aim, we apply Rosenthal's inequality (Rosenthal, 1970) to bound the integrand in equa-

tion (1) from below: for almost every x ∈ Rd,

E

∣∣∣∣∣
n∑
i=1

Zi(x, h)

∣∣∣∣∣
p

≥ Ap max
[
nE|Z(x, h)|p, (nE|Z(x, h)|2)p/2

]
≥ Ap(nE|Z(x, h)|2)p/2 (4)

for some positive constant Ap which only depends on p. Especially,

E(‖rn(f̂n − fn)‖pp,µ) ≥ Ap
[rn
n

]p ∫
Rd

(nE|Z(x, h)|2)p/2dµ(x).

Remark further that since C = supRd f <∞,

E|Z(x, h)|2 = h−d
∫
Rd
K2(v)f(x− hv)dv −

[∫
Rd
K(v)f(x− hv)dv

]2
≥ h−d

∫
Rd
K2(v)f(x− hv)dv − C

∫
Rd
|K(v)|dv

∫
Rd
|K(v)|f(x− hv)dv. (5)
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When p = 2 and (H3a) holds, using (1), (4) and (5) entails for some m > 0

E(‖rn(f̂n − fn)‖22,µ) ≥ m

[
rn√
n

]2 ∫
Rd

E|Z(x, h)|2dx

≥ m

[
rn√
nhd

]2(∫
Rd
K2(v)dv − Chd

[∫
Rd
|K(v)|dv

]2)

so that

lim inf
n→∞

E(‖rn(f̂n − fn)‖22,µ) ≥ mc2
∫
Rd
K2(v)dv > 0

which proves (3) in this case. Assume now that (H3b) holds and let R > 0 be so large that∫
B(0,R)K

2(v)dv > 0. For n large enough, inequality (5) thus entails

∀x ∈ B(x0, δ/2), E|Z(x, h)|2 ≥ h−d
∫
B(0,R)

K2(v)f(x− hv)dv −
[
C

∫
Rd
|K(v)|dv

]2
≥ mh−d (6)

where m is a positive constant. Apply (1), (4) and (6) to get for n large enough

E(‖rn(f̂n − fn)‖pp,µ) ≥
[rn
n

]p ∫
B(x0,δ/2)

(nE|Z(x, h)|2)p/2dµ(x)

≥ mp/2

[
rn√
nhd

]p
µ(B(x0, δ/2)).

As a consequence

lim inf
n→∞

E(‖rn(f̂n − fn)‖pp,µ) ≥ mp/2cpµ(B(x0, δ/2)) > 0

which concludes the proof of (3). We now show the uniform integrability of the sequence of random

variables (‖rn(f̂n − fn)‖pp,µ). For this purpose, it is enough to prove that

E(‖rn(f̂n − fn)‖2pp,µ) = O(1).

To this end we write

E(‖rn(f̂n − fn)‖2pp,µ) =
[rn
n

]2p ∫
Rd×Rd

E

∣∣∣∣∣∣
n∑

i,j=1

Zi(x, h)Zj(y, h)

∣∣∣∣∣∣
p

dµ(x)dµ(y).

Observe that by the Cauchy-Schwarz inequality,

|E(Z(x, h)Z(y, h))|2 ≤ E|Z(x, h)|2E|Z(y, h)|2.
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Consequently, |E(Z(x, h)Z(y, h))| is �nite for almost every (x, y) ∈ Rd ×Rd by Lemma 3. We may

thus use Lemma 2 to write

E(‖rn(f̂n − fn)‖2pp,µ) =
[rn
n

]2p
2p−1[2p−1[I1,n + I2,n] + I3,n] (7)

with I1,n =

∫
Rd×Rd

|nE(Z(x, h)Z(y, h))|p dµ(x)dµ(y),

I2,n =

∫
Rd×Rd

E

∣∣∣∣∣
n∑
i=1

Zi(x, h)Zi(y, h)− E(Zi(x, h)Zi(y, h))

∣∣∣∣∣
p

dµ(x)dµ(y)

and I3,n =

∫
Rd×Rd

E

∣∣∣∣∣∣∣∣
n∑

i,j=1
i 6=j

Zi(x, h)Zj(y, h)

∣∣∣∣∣∣∣∣
p

dµ(x)dµ(y).

The sequence I1,n is controlled by using the Cauchy-Schwarz inequality and Lemma 3:

I1,n ≤ np
[∫

Rd
(E|Z(x, h)|2)p/2dµ(x)

]2
= O(nph−dp). (8)

To control I2,n, we let Di(x, y, h) = Zi(x, h)Zi(y, h) − E(Z(x, h)Z(y, h)) for i = 1, . . . , n. For

almost every (x, y) ∈ Rd × Rd, the Di(x, y, h), i = 1, . . . , n are well-de�ned independent copies of

the centred random variable D(x, y, h) = Z(x, h)Z(y, h) − E(Z(x, h)Z(y, h)). Furthermore, it is a

consequence of Lemma 4 that the function (x, y) 7→ E|D(x, y, h)|p is integrable and thus almost

everywhere �nite on Rd × Rd. By Rosenthal's inequality (Rosenthal, 1970), we obtain for almost

every (x, y) ∈ Rd × Rd:

E

∣∣∣∣∣
n∑
i=1

Di(x, y, h)

∣∣∣∣∣
p

≤ Bp max
[
nE|D(x, y, h)|p, (nE|D(x, y, h)|2)p/2

]
. (9)

Using together (9) and Lemma 4 entails

I2,n = O(nh−2d(p−1) + np/2h−d(3p−2)/2).

Noting that

nh−2d(p−1) + np/2h−d(3p−2)/2 = np/2h−d(3p−2)/2
[
1 + (nhd)1−p/2

]
we obtain

I2,n = O(np/2h−d(3p−2)/2). (10)
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We now turn to controlling I3,n. To this end, we de�ne

Y (x, y, h, u, v) = [Kh(x− u)− E(Kh(x−X))][Kh(y − v)− E(Kh(y −X))]

+ [Kh(y − u)− E(Kh(y −X))][Kh(x− v)− E(Kh(x−X))]

and we observe that
n∑

i,j=1
i 6=j

Zi(x, h)Zj(y, h) =
∑

1≤i<j≤n
Y (x, y, h,Xi, Xj).

Moreover, the function (u, v) 7→ Y (x, y, h, u, v) is symmetric and is such that for almost every

(x, y) ∈ Rd × Rd,

E|Y (x, y, h,X1, X2)|p <∞ and E(Y (x, y, h,X1, X2)|X1) = 0 almost surely.

An analogue of Rosenthal's inequality for symmetric statistics (see e.g. Theorem 4 in Ibragimov

and Sharakhmetov, 1999) thus yields:

E

∣∣∣∣∣∣
∑

1≤i<j≤n
Zi(x, h)Zj(y, h)

∣∣∣∣∣∣
p

≤ B′p max
[
n2E|Y (x, y, h,X1, X2)|p, np/2+1E(E(|Y (x, y, h,X1, X2)|2|X1))

p/2,

np(E|Y (x, y, h,X1, X2)|2)p/2
]

(11)

where B′p is a positive constant depending only on p. Use Lemma 2 to get

|Y (x, y, h,X1, X2)|p ≤ 2p−1[|Z1(x, h)|p|Z2(y, h)|p + |Z1(y, h)|p|Z2(x, h)|p],

E(|Y (x, y, h,X1, X2)|2|X1) ≤ 2
[
|Z1(x, h)|2E|Z2(y, h)|2 + |Z1(y, h)|2E|Z2(x, h)|2

]
and E|Y (x, y, h,X1, X2)|2 ≤ 2

[
E|Z1(x, h)|2E|Z2(y, h)|2 + E|Z2(x, h)|2E|Z1(y, h)|2

]
.

Applying Lemma 2 once more and using Lemma 3, we obtain∫
Rd×Rd

E|Y (x, y, h,X1, X2)|pdµ(x)dµ(y) = O(h−2d(p−1)), (12)∫
Rd×Rd

E(E(|Y (x, y, h,X1, X2)|2|X1))
p/2dµ(x)dµ(y) = O(h−d(3p−2)/2) (13)

and

∫
Rd×Rd

(E|Y (x, y, h,X1, X2)|2)p/2dµ(x)dµ(y) = O(h−dp). (14)
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Collecting (11), (12), (13) and (14), we get

I3,n = O(n2h−2d(p−1) + np/2+1h−d(3p−2)/2 + nph−dp).

Since

n2h−2d(p−1) + np/2+1h−d(3p−2)/2 + nph−dp = nph−dp
[
1 + (nhd)1−p/2 + (nhd)2−p

]
we have that

I3,n = O(nph−dp). (15)

Use together (7), (8), (10) and (15) to obtain

E(‖rn(f̂n − fn)‖2pp,µ) = O

([
rn√
nhd

]2p [
1 + n−1(nhd)1−p/2

])
= O(1). (16)

Now, if rn(f̂n−fn) did converge in distribution to a Borel measurable random element in Lp(Rd, µ),

then the weak limit would be 0 by Theorem 1. This would entail that the sequence of random

variables (‖rn(f̂n−fn)‖pp,µ) converges to 0 in probability; since this sequence is uniformly integrable,

this implies E‖rn(f̂n− fn)‖pp,µ → 0, which, in view of (3), is a contradiction. Finally, if rn/
√
nhd →

∞, the existence of a weak Borel measurable limit for rn(f̂n − fn) in Lp(Rd, µ) would entail, by

Slutsky's lemma, that ‖
√
nhd(f̂n − fn)‖p,µ converges in probability to 0, which is a contradiction.

The proof is complete.

We now turn to the case p ∈ [1, 2) which is di�erent since Rosenthal-type inequalities cannot be

applied. We introduce the following classical assumption in kernel density estimation:

(C1) The function K has a compact support.

We also introduce an integrability condition:

(C2) There exist α ≥ 0 and R > 0 such that if ‖ · ‖ is the standard Euclidean norm on Rd:

sup
x∈Rd

f(x)
[
I{‖x‖≤2R} + ‖x‖αI{‖x‖>R/2}

]
<∞ and

∫
‖x‖>R

‖x‖−α/2dµ(x) <∞.

If f is bounded on Rd, then hypothesis (C2) is for instance satis�ed if x 7→ ‖x‖2d+εf(x) is bounded

in a neighborhood of in�nity for some ε > 0: this latter condition can also be found in Horváth and

Zitikis (2004). We can now state the analogue of Theorem 2 in the case p ∈ [1, 2).
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Theorem 3. Consider the case p ∈ [1, 2). Let (rn) be a nonrandom sequence of positive real

numbers. Assume that K ∈ L2(Rd) and that (C1) and (C2) hold.

• If rn/
√
nhd → 0, then rn(f̂n − fn)→ 0 in Lp(Rd, µ).

Assume now that (H1), (H2) and (H3b) hold and that nhd →∞.

• If rn/
√
nhd → c ∈ (0,∞], then rn(f̂n−fn) does not converge to any Borel measurable random

element in Lp(Rd, µ).

Proof of Theorem 3. We start by proving the �rst statement in the case p = 1; to this end, we

shall show that E(‖rn(f̂n − fn)‖1,µ)→ 0. By the Cauchy-Schwarz inequality,

E(‖rn(f̂n − fn)‖1,µ) ≤ rn√
nhd

∫
Rd

√√√√hdE

∣∣∣∣∣ 1√
n

n∑
i=1

Zi(x, h)

∣∣∣∣∣
2

dµ(x).

Since the Zi(x, h), i = 1, . . . , n are independent copies of the centred random variable Z(x, h) which

is such that E|Z(x, h)|2 ≤ E|K2
h(x−X)|, we get

E(‖rn(f̂n − fn)‖1,µ) ≤ rn√
nhd

Jn with Jn =

∫
Rd

√
hdE|K2

h(x−X)| dµ(x).

It is then enough to show that Jn = O(1). A change of variables yields

Jn =

∫
Rd

√∫
Rd
K2(v)f(x− hv)dv dµ(x).

Pick now α ≥ 0 and R > 0 as in (C2) and write

Jn = Jn,1 + Jn,2 (17)

with Jn,1 =

∫
‖x‖≤R

√∫
Rd
K2(v)f(x− hv)dv dµ(x)

and Jn,2 =

∫
‖x‖>R

√∫
Rd
K2(v)f(x− hv)dv dµ(x).

Since K has a compact support, we have for n large enough

Jn,1 ≤ µ(B(0, R))

√∫
Rd
K2(v)dv sup

‖x‖≤2R
f(x) <∞ (18)
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and

Jn,2 ≤
√

sup
‖x‖>R/2

‖x‖αf(x)

∫
‖x‖>R

√∫
Rd
K2(v)‖x− hv‖−αdv dµ(x)

≤ 2α/2
√∫

Rd
K2(v)dv sup

‖x‖>R/2
‖x‖αf(x)

∫
‖x‖>R

‖x‖−α/2dµ(x) <∞. (19)

Collecting (17), (18) and (19) proves that Jn = O(1), which is the desired result. To show the �rst

statement for any p ∈ (1, 2), note that for all 1 ≤ p0 < p1 <∞ and every pθ ∈ (p0, p1), if θ ∈ (0, 1)

is such that
1

pθ
=

1− θ
p0

+
θ

p1

then Hölder's inequality entails

∀H ∈ Lp0(Rd, µ) ∩ Lp1(Rd, µ), ‖H‖pθ,µ ≤ ‖H‖
1−θ
p0,µ‖H‖

θ
p1,µ. (20)

Use then inequality (20) with p0 = 1, pθ = p and p1 = 2 to obtain

‖rn(f̂n − fn)‖p,µ ≤ ‖rn(f̂n − fn)‖1−θ1,µ ‖rn(f̂n − fn)‖θ2,µ

for some θ ∈ (0, 1). Since ‖rn(f̂n − fn)‖1,µ → 0 and (by Theorem 2) ‖rn(f̂n − fn)‖2,µ → 0 in

probability, we obtain ‖rn(f̂n − fn)‖p,µ → 0 in probability, which completes the proof of the �rst

statement.

We now turn to the second statement. Observe �rst that K ∈ Lr(Rd) for all r ≥ 1 because K is a

bounded integrable function. We may thus apply inequality (20) with p0 = p, pθ = 2 and p1 = 2+δ

for an arbitrary δ > 0 to obtain

‖rn(f̂n − fn)‖2,µ ≤ ‖rn(f̂n − fn)‖1−θp,µ ‖rn(f̂n − fn)‖θ2+δ,µ

for some θ ∈ (0, 1). In the case rn/
√
nhd → c ∈ (0,∞), it holds that

E‖rn(f̂n − fn)‖4+2δ
2+δ,µ = O(1),

see (16) in the proof of Theorem 2. Consequently ‖rn(f̂n − fn)‖2+δ,µ = OP(1) and thus

‖rn(f̂n − fn)‖2,µ = OP

(
‖rn(f̂n − fn)‖1−θp,µ

)
.
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Now, if rn(f̂n−fn) did converge in distribution to a Borel measurable random element in Lp(Rd, µ),

then the weak limit would be 0 by Theorem 1. Therefore ‖rn(f̂n − fn)‖p,µ → 0 in probability and

thus ‖rn(f̂n − fn)‖2,µ → 0 in probability as well, which is a contradiction. We can �nally handle

the case rn/
√
nhd →∞ as in the proof of Theorem 2: the proof is complete.

Remark. When µ is a �nite measure on Rd, Hölder's inequality entails for any p ∈ [1, 2)

‖rn(f̂n − fn)‖p,µ ≤ ‖rn(f̂n − fn)‖2,µ
[
µ(Rd)

](2−p)/2p
so that by Theorem 2, we have rn‖f̂n − fn‖p,µ → 0 provided rn/

√
nhd → 0. Hypotheses (C1) and

(C2) thus need not be satis�ed in this particular setting for the �rst statement of Theorem 3 to

hold.

We close this section by mentioning that in the case d = 1, these results are very di�erent from

those which can be obtained for the empirical cumulative distribution process

F̂n(x) =
1

n

n∑
i=1

I{Xi≤x}.

It can indeed be shown that if F denotes the cumulative distribution function of X then the random

process
√
n(F̂n − F ) converges to a centred Gaussian limit in any L2(R, µ) space provided µ is a

�nite measure on R, see Theorem 1.8.4 and Example 1.8.6 in van der Vaart and Wellner (1996).

Analogue results on the convergence of this empirical process in Lp(R, µ), p ∈ [1,∞), may be

obtained by using necessary and su�cient conditions such as the ones presented in van der Vaart

and Wellner (1996), p.92 and Theorem 10.10 in Ledoux and Talagrand (1991).

3 The bias term

Our main results consider the centred random process rn(f̂n−fn). Of course, in statistical applica-

tions, the process of interest would rather be rn(f̂n−f); observe that if the norm ‖rn(fn−f)‖p,µ of

the bias term rn(fn − f) converges to 0, then our main results also hold with rn(f̂n − fn) replaced

by rn(f̂n− f). When d = 1, the pointwise behavior of this bias term is well documented. It can be
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analysed for instance under the assumption that f is m ≥ 2 times continuously di�erentiable and

K is such that

∀j ∈ {1, . . . ,m− 1},
∫
R
vjK(v)dv = 0 and

∫
R
|vmK(v)|dv <∞.

See for instance Parzen (1962) when m = 2: in this case, it turns out that the bias term asymp-

totically vanishes when rnh
2 → 0. Interestingly, this is still true for the integrated bias term

‖rn(fn − f)‖p,µ for any p ∈ [1,∞) under some further assumptions on f , see Lemma 9 in Csörg®

and Horváth (1988). When p = 2 andm > 2, this condition can be weakened to rnh
m → 0 provided

the m−th order derivative of f is square integrable, see Theorem 24.2 p.346 in van der Vaart (1998)

and the discussion in Nishiyama (2011).

Our aim here is to state a result on the integrated bias term ‖rn(fn − f)‖p,µ for an arbitrary

dimension d under analogue assumptions on f and K. In order to achieve this, we need some

additional notation. For x = (x1, . . . , xd) ∈ Rd and α = (α1, . . . , αd) ∈ Nd, we introduce the

multi-index notation

xα =
d∏
i=1

xαii , α! =
d∏
i=1

αi! and |α| =
d∑
i=1

αi.

We then introduce the class Km of the integrable functions K : Rd → R which integrate to 1 over

Rd and are such that

∀α ∈ Nd, |α| ∈ {1, . . . ,m− 1} ⇒
∫
Rd
vαK(v)dv = 0

and |α| = m⇒
∫
Rd
|vαK(v)|dv <∞.

We denote the space of the m times continuously di�erentiable real-valued functions on Rd by

Cm(Rd). Furthermore, for all f ∈ Cm(Rd) and k ≤ m, we denote the k−th order partial derivatives

of f by

∂αf =
∂|α|f

∂xα1
1 · · · ∂x

αd
d

, |α| = k.

Our result is the following:

Proposition 2. Assume that f ∈ Cm(Rd) is such that all its m−th order derivatives belong to

Lp(Rd). Then for all K ∈ Km there exists a positive constant C such that for n large enough:

‖fn − f‖p,µ ≤ Chm.
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Proof of Proposition 2. The proof is largely based on the proof of Theorem 24.1 p.345 in van

der Vaart (1998). For all x, v ∈ Rd, Taylor's formula with the remainder in an integral form entails:

f(x− hv)− f(x) =
m−1∑
k=1

(−1)khk
∑
|α|=k

∂αf(x)

α!
vα +Rm(x, x− hv)

where Rm(a, b) = m
∑
|α|=m

(b− a)α

α!

∫ 1

0
(1− t)m−1∂αf(a+ t(b− a))dt.

Since K ∈ Km, we may thus write

(fn − f)(x) =

∫
Rd

[f(x− hv)− f(x)]K(v)dv =

∫
Rd
Rm(x, x− hv)K(v)dv.

By Lemma 2, it follows that there exists a positive constant c1 such that

‖fn − f‖pp,µ
hpm

≤ c1
∑
|α|=m

∫
Rd

∣∣∣∣∫
Rd

∫ 1

0
(1− t)m−1∂αf(x− thv)vαK(v)dt dv

∣∣∣∣p dµ(x). (21)

Let q ∈ (1,∞] be such that p−1 + q−1 = 1. For any α ∈ Nd such that |α| = m, Hölder's inequality

applied to the functions (t, v) 7→ (1− t)m−1|∂αf(x− thv)||vαK(v)|1/p and (t, v) 7→ |vαK(v)|1/q (in

the case p = 1 and q =∞, we set 1/q = 0) entails∫
Rd

∣∣∣∣∫
Rd

∫ 1

0
(1− t)m−1∂αf(x− thv)vαK(v)dt dv

∣∣∣∣p dµ(x)

≤
[∫

Rd
|vαK(v)|dv

]p/q ∫
Rd

∫
Rd

∫ 1

0
(1− t)p(m−1)|∂αf(x− thv)|p|vαK(v)|dt dv dµ(x)

≤ c2

[∫
Rd
|vαK(v)|dv

]1+p/q [∫
Rd
|∂αf(x)|pdx

]
= c3 <∞ (22)

where c2 and c3 are positive constants. Combining (21) and (22) and summing over α yields the

desired result.

A consequence of Proposition 2 is that if rnh
m → 0, then ‖rn(fn− f)‖p,µ → 0. This generalises the

aforementioned results of Csörg® and Horváth (1988) and van der Vaart (1998).

Appendix: preliminary results and their proofs

Recall from the proof of Theorem 1 the notation Z(x, h) = Kh(x−X)− E(Kh(x−X)). The �rst

result is a simple bound we shall use in the proof of Theorem 1.
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Lemma 1. Let ϕ be a bounded Borel measurable function on Rd. Then there exists a positive

constant C such that for any n,∫
Rd
|Z(x, h)||ϕ(x)|dx ≤ C almost surely.

Proof of Lemma 1. Let B = supRd |ϕ|. Remark that by a change of variables:∫
Rd
|Kh(x−X)||ϕ(x)|dx =

∫
Rd
|K(v)||ϕ(X + hv)|dv ≤ B

∫
Rd
|K(v)|dv almost surely.

Using the triangle inequality concludes the proof of the result.

The second result is a classical consequence of Hölder's inequality and the triangle inequality for

sums of real numbers.

Lemma 2. Let m ≥ 2 be an integer and x1, . . . , xm be real numbers. For any p ∈ [1,∞), we have

that ∣∣∣∣∣
m∑
i=1

xi

∣∣∣∣∣
p

≤ mp−1
m∑
i=1

|xi|p.

Proof of Lemma 2. When p = 1, this is just the triangle inequality. When p ∈ (1,∞), apply

Hölder's inequality to the functions ϕ : i 7→ xi and ψ : i 7→ 1 on the space {1, . . . , n} endowed with

the counting measure.

The third lemma is a technical result we shall use repeatedly in the proof of the �rst part of

Theorem 2.

Lemma 3. Let ϕ be a nonnegative bounded Borel measurable function on Rd and p, q ∈ [1,∞).

Assume that K ∈ Lp(Rd); if either p /∈ {1, 2} or q > 1, assume further that (H1) holds. Then the

function x 7→ (E|Z(x, h)|p)q is integrable on Rd and we have∫
Rd

(E|Z(x, h)|p)qϕ(x)dx = O(h−dq(p−1)).

Proof of Lemma 3. The case p = q = 1 is an immediate consequence of Lemma 1. When p = 2

and q = 1, we have ∫
Rd

E|Z(x, h)|2ϕ(x)dx ≤
∫
Rd

E(K2
h(x−X))ϕ(x)dx. (23)
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Let B = supRd ϕ and note that for any r ≥ 1, a change of variables entails∫
Rd

E|Kh(x−X)|rϕ(x)dx ≤ Bh−d(r−1)
∫
Rd
|K(v)|rdv = O(h−d(r−1)) (24)

provided K ∈ Lr(Rd). In this case, the result is then a consequence of (23) and (24) with r = 2.

When p /∈ {1, 2} or q > 1, we start by remarking that Lemma 2 yields

(E|Z(x, h)|p)q ≤ 2q(p−1) [E|Kh(x−X)|p + (E|Kh(x−X)|)p]q

≤ 2pq−1 [(E|Kh(x−X)|p)q + (E|Kh(x−X)|)pq] .

The proof shall then be complete provided we prove that for any r ≥ 1 and s > 1, if K ∈ Lr(Rd)

then x 7→ (E|Kh(x−X)|r)s is integrable on Rd and we have∫
Rd

(E|Kh(x−X)|r)sϕ(x)dx = O(h−ds(r−1)). (25)

To this end, note that since C = supRd f <∞,

(E|Kh(x−X)|r)s−1 =

[
h−d(r−1)

∫
Rd
|K(v)|rf(x− hv)dv

]s−1
≤ Cs−1

[∫
Rd
|K(v)|rdv

]s−1
h−d(r−1)(s−1).

Consequently, there exists a constant C ′ > 0 such that∫
Rd

(E|Kh(x−X)|r)sϕ(x)dx ≤ C ′h−d(r−1)(s−1)
∫
Rd

E|Kh(x−X)|rϕ(x)dx.

Using (24) yields (25) and completes the proof.

Recall the notation D(x, y, h) = Z(x, h)Z(y, h) − E(Z(x, h)Z(y, h)) from the proof of Theorem 2.

The last lemma is a key bound to prove the second part of this result.

Lemma 4. Let ϕ be a nonnegative bounded Borel measurable function on Rd and p, q ∈ [1,∞).

Assume that K ∈ Lp(Rd) and (H1) holds; if either p /∈ {1, 2} or q > 1, assume further that (H2)

holds. Then the function (x, y) 7→ (E|D(x, y, h)|p)q is integrable on Rd × Rd and we have∫
Rd×Rd

(E|D(x, y, h)|p)qϕ(x)ϕ(y)dx dy = O(h−d[2q(p−1)+q−1]).
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Proof of Lemma 4. In the case p = q = 1, the result is an immediate consequence of the triangle

inequality and Lemma 1:∫
Rd×Rd

E|D(x, y, h)|ϕ(x)ϕ(y)dx dy ≤ 2E
[∫

Rd
|Z(x, h)|ϕ(x)dx

]2
= O(1).

When p = 2 and q = 1, we have

E|D(x, y, h)|2 ≤ E|Z(x, h)Z(y, h)|2

because D(x, y, h) is a centred random variable. As a consequence∫
Rd×Rd

E|D(x, y, h)|2ϕ(x)ϕ(y)dx dy ≤ E
[∫

Rd
|Z(x, h)|2ϕ(x)dx

]2
. (26)

Besides, if B = supRd ϕ then Lemma 2 and a change of variables yield∫
Rd
|Z(x, h)|2ϕ(x)dx ≤ 2

∫
Rd

[
K2
h(x−X) + [E(Kh(x−X))]2

]
ϕ(x)dx

≤ 2

[
Bh−d

∫
Rd
K2(v)dv +

∫
Rd

(E|Kh(x−X)|)2ϕ(x)dx

]
almost surely. The result thus follows from (25) (see the proof of Lemma 3) and (26). When

p /∈ {1, 2} or q > 1, we use Lemma 2 to get

(E|D(x, y, h)|p)q ≤ 2q(p−1) [E|Z(x, h)Z(y, h)|p + (E|Z(x, h)Z(y, h)|)p]q

≤ 2pq−1 [(E|Z(x, h)Z(y, h)|p)q + (E|Z(x, h)Z(y, h)|)pq] .

The result shall then be proven provided we show that for any r, s ≥ 1 the function x 7→

(E|Z(x, h)Z(y, h)|r)s is integrable and we have that∫
Rd×Rd

(E|Z(x, h)Z(y, h)|r)sϕ(x)ϕ(y)dx dy = O(h−d[2s(r−1)+s−1]). (27)
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To this aim, we use Lemma 2 to get

(E|Z(x, h)Z(y, h)|r)s ≤ 4s(r−1) [E|Kh(x−X)Kh(y −X)|r

+ E|Kh(x−X)|r(E|Kh(y −X)|)r

+ E|Kh(y −X)|r(E|Kh(x−X)|)r

+ (E|Kh(x−X)|)r(E|Kh(y −X)|)r]s

≤ 4rs−1 [(E|Kh(x−X)Kh(y −X)|r)s

+ (E|Kh(x−X)|r)s(E|Kh(y −X)|)rs

+ (E|Kh(y −X)|r)s(E|Kh(x−X)|)rs

+ (E|Kh(x−X)|)rs(E|Kh(y −X)|)rs] . (28)

Note further that since C = supRd(|K|rf) <∞ then for all s > 1

(E|Kh(x−X)Kh(y −X)|r)s−1 ≤ Cs−1h−dr(s−1)
[∫

Rd
|Kh(x− u)|rdu

]s−1
= Cs−1

[∫
Rd
|K(v)|rdv

]s−1
h−d(2r−1)(s−1). (29)

Moreover,∫
Rd×Rd

E|Kh(x−X)Kh(y −X)|rϕ(x)ϕ(y)dx dy ≤ B2h−2d(r−1)
[∫

Rd
|K(v)|rdv

]2
= O(h−2d(r−1)). (30)

Collecting (29) and (30) entails:∫
Rd×Rd

(E|Kh(x−X)Kh(y −X)|r)sϕ(x)ϕ(y)dx dy = O(h−d[2s(r−1)+s−1]). (31)

Using (25) along with (28) and (31) yields (27): the proof is complete.
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