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Since its introduction, the pointwise asymptotic properties of the kernel estimator f n of a probability density function f on R d , as well as the asymptotic behaviour of its integrated errors, have been studied in great detail. Its weak convergence in functional spaces, however, is a more dicult problem. In this paper, we show that if

measurable weak limit in a weighted L p space on R d , with 1 ≤ p < ∞, the limit must be 0. We also provide simple conditions for proving or disproving the existence of this Borel measurable weak limit.

Introduction

Let (X n ) be a sequence of independent random copies of a random variable X, such that X has a probability density function f on R d , d ≥ 1. The Parzen-Rosenblatt estimator of f is [START_REF] Parzen | On estimation of a probability density function and mode[END_REF][START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF]:

f n (x) = 1 n n i=1 K h (x -X i )
where h = h(n) → 0 as n → ∞ and K h (u) = h -d K(u/h) with K : R d → R an integrable function whose integral over R d is equal to 1. The random function x → f n (x) can be seen as the

1 empirical counterpart of the function x → f n (x) = E[ f n (x)] = E[K h (x -X)]
which is well-dened almost everywhere on R d and integrable. It is well-known that under some conditions on K, the random process x → √ nh d ( f n (x) -f n (x)) converges pointwise to a Gaussian distribution provided nh d → ∞, f (x) > 0 and f is continuous at x, see e.g. the discussion pp. 10691070 in [START_REF] Parzen | On estimation of a probability density function and mode[END_REF].

Our focus in this paper is rather the study of the convergence properties of the random process

x → r n ( f n (x) -f n (x))
, where (r n ) is a nonrandom sequence of positive real numbers, in L p spaces. This is interesting for many purposes, such as examining the asymptotics of the global integrated error of the estimator f n , which can then be used to construct asymptotic condence bands for the function f . For instance, since K is a probability density function, the random function r n ( f n -f n )

belongs to the space L 1 (R d ) of Borel measurable functions which are integrable on R d . Let further µ be a nontrivial absolutely continuous measure with respect to the Lebesgue measure on R d and,

for any p ∈ [1, ∞), L p (R d , µ) be the space of the Borel measurable functions H : R d → R such that

H p,µ = R d |H(x)| p dµ(x) 1/p < ∞.
Then, assuming for instance that |K| p is integrable on R d and µ has a bounded Radon-Nikodym derivative with respect to the Lebesgue measure, the random function r n ( f n -f n ) belongs to L p (R d , µ). The convergence of f n -f n p,µ has been studied by [START_REF] Bickel | On some global measures of the deviations of density function estimates[END_REF] for p = 2 and [START_REF] Devroye | Nonparametric density estimation: the L 1 view[END_REF] for p = 1; a treatment of the general case 1 ≤ p < ∞ is given in [START_REF] Csörg® | Central limit theorems for L p -norms of density estimators[END_REF], [START_REF] Horváth | On L p -norms of multivariate density estimators[END_REF] and Beirlant and Mason (1995).

However, none of these studies consider the convergence of r n ( f n -f n ) as a random process taking values in an L p space, which is a dicult problem. Recently, [START_REF] Nishiyama | Impossibility of weak convergence of kernel density estimators to a nondegenerate law in L 2 (R d )[END_REF] disproved the existence of a nondegenerate Borel measurable weak limit for r n ( f n -f n ) in the usual L 2 (R d ) space provided r n / √ n → 0, thus generalising a result of [START_REF] Ruymgaart | A note on weak convergence of density estimators in Hilbert spaces[END_REF]. Our focus in this paper is to generalise the results of [START_REF] Nishiyama | Impossibility of weak convergence of kernel density estimators to a nondegenerate law in L 2 (R d )[END_REF] to the convergence of r n ( f n -f n ) in the spaces

L p (R d , µ), for 1 ≤ p < ∞.
In particular, we shall show that when µ has a bounded Radon-Nikodym derivative with respect to the Lebesgue measure then any Borel measurable weak limit of this process in L p (R d , µ) is necessarily 0, and that √ nh d ( f n -f n ) does not converge to a Borel measurable limit in L p (R d , µ) under mild conditions on f , K and µ. Note that this does not contradict the aforementioned results on the asymptotics of f n -f n p,µ , since weak convergence of the norms is necessary but not sucient for weak convergence in L p (R d , µ).

The outline of the paper is as follows: our main results are stated in Section 2. A discussion concerning the convergence of the bias term r n (f n -f ) is given in Section 3. Statements and proofs of the auxiliary results are deferred to the Appendix.

Main results

Let p ∈ [1, ∞). Our rst goal is to obtain a simple necessary and sucient condition to identify the limit of a Borel measurable random process in the space L p (R d , µ). To state such a result, we introduce some notation: let q ∈ (1, ∞] be such that p -1 + q -1 = 1. For any

H ∈ L q (R d , µ), let T H be the continuous linear form on L p (R d , µ) dened by ∀G ∈ L p (R d , µ), T H (G) = R d G(x)H(x)dµ(x).
In the remainder of this paper, we assume that µ is a nontrivial absolutely continuous measure with respect to the Lebesgue measure on R d , having a bounded Radon-Nikodym derivative. We have the following result:

Proposition 1. If G 1 and G 2 are two Borel measurable random elements of L p (R d , µ), then the distributions of G 1 and G 2 are equal if and only if for every bounded function H ∈ L q (R d , µ), the distributions of T H (G 1 ) and T H (G 2 ) are equal.

Proof of Proposition 1. Since for any H ∈ L q (R d , µ), the map T H is a continuous linear form on

L p (R d , µ), it is clear that if G 1 and G 2 have equal distributions then T H (G 1 ) and T H (G 2 ) must have
equal distributions as well. Conversely, assume that for any bounded function

H ∈ L q (R d , µ) the distributions of T H (G 1 ) and T H (G 2 ) are equal. Let F be the class of functions f : L p (R d , µ) → R
for which there exists J ≥ 1 such that

∀ϕ ∈ L p (R d , µ), f (ϕ) = g(T H 1 (ϕ), . . . , T H J (ϕ))
where g is a continuous bounded real-valued function on R J and H 1 , . . . , H J are bounded elements of L q (R d , µ). Observe rst that for all J ≥ 1 and all bounded H 1 , . . . , H J ∈ L q (R d , µ), we have that

∀t 1 , . . . , t J ∈ R, ∀ϕ ∈ L p (R d , µ), J i=1 t i T H i (ϕ) = T J i=1 t i H i (ϕ).
It is thus a consequence of the Cramér-Wold device that the random vectors (T H 1 (G 1 ), . . . , T H J (G 1 ))

and (T H 1 (G 2 ), . . . , T H J (G 2 )) have the same distribution. Let ν 1 and ν 2 be the pushforward probability measures on L p (R d , µ) induced by G 1 and G 2 ; it is then clear that ∀f ∈ F,

L p (R d ,µ) f (ϕ)dν 1 (ϕ) = L p (R d ,µ) f (ϕ)dν 2 (ϕ).
Further, in the sense of [START_REF] Van Der Vaart | Weak convergence and empirical processes with applica[END_REF] (1996), the proof shall be complete provided we show that the class F separates the points of

L p (R d , µ).
Let then ϕ, ψ ∈ L p (R d , µ) be such that ϕ = ψ. It is a corollary of the Hahn-Banach theorem that there exists a continuous linear form

T on L p (R d , µ) such that T (ϕ) = T (ψ). Since p ∈ [1, ∞) and µ is σ-nite, the dual space of L p (R d , µ) is L q (R d , µ), so that T = T h for some h ∈ L q (R d , µ).
Especially

T h (ϕ -ψ) = R d [ϕ(x) -ψ(x)]h(x)dµ(x) = 0.
By the dominated convergence theorem, there is a positive integer N such that:

R d [ϕ(x) -ψ(x)]h(x)I {|h(x)|≤N } dµ(x) ≥ |T h (ϕ -ψ)| 2 > 0.
Therefore, the function H dened by

H(x) = h(x)I {|h(x)|≤N } is a bounded element of L q (R d , µ) such that T H (ϕ) = T H (ψ).
The proof is complete.

A key consequence of this result is that if for any bounded function H ∈ L q (R d , µ), we have

T H (r n ( f n -f n )) → T H (G)
where G is a Borel measurable element of L p (R d , µ), then the Borel measurable weak limit of r n ( f n -f n ) in L p (R d , µ), if it exists, must be G. In some sense, this generalises the approach of [START_REF] Nishiyama | Impossibility of weak convergence of kernel density estimators to a nondegenerate law in L 2 (R d )[END_REF], where an essential element of the proof is that one can nd a countable dense subset of bounded functions (e j ) in L 2 (R d ) and then characterise the possible weak limits of r n ( f n -f n ) by examining the asymptotic properties of T e j (r n ( f n -f n )) for any integer j.

We may now state our rst asymptotic result, which identies the possible Borel measurable limit

of r n ( f n -f n ) in the space L p (R d , µ): Theorem 1. Let (r n ) be a nonrandom sequence of positive real numbers. Assume that K ∈ L p (R d ). If r n / √ n → 0 and the random process r n ( f n -f n ) converges weakly in L p (R d , µ) to a Borel mea- surable random process G then G = 0 almost surely.
Proof of Theorem 1. According to Proposition 1, it is enough to show that for every bounded

function H ∈ L q (R d , µ), one has ∆ n (H) = T H r n ( f n -f n ) → 0 in probability. We now set Z i (x, h) = K h (x -X i ) -E(K h (x -X)) for i = 1, . . . , n and Z(x, h) = K h (x -X) -E(K h (x -X)). For almost every x ∈ R d , E(K h (x -X)
) is well-dened and nite so that the Z i (x, h), i = 1, . . . , n are independent copies of the centred random variable Z(x, h). We may rewrite ∆ n (H) as

∆ n (H) = r n n n i=1 W n,i (H) with W n,i (H) = R d Z i (x, h)H(x)dµ(x).
Observe that the random variables W n,i (H), i = 1, . . . , n are independent copies of the centred

random variable W n (H) = R d Z(x, h)H(x)dµ(x). Lemma 1 thus entails E|∆ n (H)| 2 = r n √ n 2 E|W n (H)| 2 = O r n √ n 2 .
A particular consequence of this inequality is that ∆ n (H) → 0 in probability: the proof is complete.

We point out that Theorem 1 is a generalisation of Theorem 2.1 in [START_REF] Nishiyama | Impossibility of weak convergence of kernel density estimators to a nondegenerate law in L 2 (R d )[END_REF], which was restricted to the case when p = 2 and µ is the Lebesgue measure. This result says that either the process r n ( f n -f n ) converges to a degenerate limit or does not converge to a Borel measurable limit. We proceed by giving some insight on what can happen, depending on the sequence (r n ).

Introduce the hypotheses (H3b) There exist x 0 ∈ R d and δ > 0 such that f is bounded from below by a positive constant on the Euclidean ball B(x 0 , δ) with center x 0 and radius δ, and µ(B(x 0 , δ/2)) > 0.

Hypothesis (H1) was already introduced in Nishiyama ( 2011), while hypothesis (H2) is classical in kernel density estimation. In particular, any one of these two conditions ensure that f n (x) is nite for every x. Hypothesis (H3a) holds in particular if µ is the Lebesgue measure on R d ; hypothesis (H3b) is true if, for instance, there exists x 0 ∈ R d such that both f and the Radon-Nikodym derivative of µ with respect to the Lebesgue measure on R d are positive and continuous at x 0 .

Stronger versions of this latter condition can be found for instance in [START_REF] Csörg® | Central limit theorems for L p -norms of density estimators[END_REF] and [START_REF] Horváth | On L p -norms of multivariate density estimators[END_REF]. Starting with the case p ≥ 2, we can state the following result, which contains Theorem 2.2 in Nishiyama (2011):

Theorem 2. Consider the case p ≥ 2. Let (r n ) be a nonrandom sequence of positive real numbers.

Assume that K ∈ L p (R d ); if p > 2, assume that (H1) holds and that nh d → ∞.

• If r n / √ nh d → 0, then r n ( f n -f n ) → 0 in L p (R d , µ).
Assume further that in case p = 2, condition (H1) holds and that (H3a) or (H3b) holds; when p > 2, assume that (H2) and (H3b) hold as well.

• If r n / √ nh d → c ∈ (0, ∞], then r n ( f n -f n ) does not converge to any Borel measurable random element in L p (R d , µ).
Proof of Theorem 2. Consider rst the case r n / √ nh d → 0. The rst statement shall be proven provided we show that E( r n ( f n -f n ) p p,µ ) → 0. To this end, we note that

E( r n ( f n -f n ) p p,µ ) = r n n p R d E n i=1 Z i (x, h) p dµ(x). (1) 
Observe that the Z i (x, h), i = 1, . . . , n are independent copies of the centred random variable Z(x, h). Moreover, it is a consequence of Lemma 3 that the function x → E|Z(x, h)| p is integrable and thus almost everywhere nite on R d . By Rosenthal's inequality [START_REF] Rosenthal | On the subspaces of L p (p > 2) spanned by sequences of independent random variables[END_REF], we obtain for almost every x ∈ R d :

E n i=1 Z i (x, h) p ≤ B p max nE|Z(x, h)| p , (nE|Z(x, h)| 2 ) p/2 (2)
for some positive constant B p which only depends on p. Besides, we have that

K ∈ L 1 (R d ) ∩ L p (R d ) ⊂ L 2 (R d
) so that we may use together (1), ( 2) and Lemma 3 to get

E( r n ( f n -f n ) p p,µ ) = O r n n p nh -d(p-1) + n p/2 h -dp/2 . Since r n n p nh -d(p-1) + n p/2 h -dp/2 = r n √ nh d p 1 + (nh d ) 1-p/2 → 0 we obtain E( r n ( f n -f n ) p p,µ ) = o(1)
, which concludes the proof of the rst statement.

To prove the second statement, we start by assuming that r n / √ nh d → c ∈ (0, ∞) and we show that for any p ≥ 2,

lim inf n→∞ E( r n ( f n -f n ) p p,µ ) > 0. (3) 
To this aim, we apply Rosenthal's inequality [START_REF] Rosenthal | On the subspaces of L p (p > 2) spanned by sequences of independent random variables[END_REF] to bound the integrand in equation (1) from below: for almost every

x ∈ R d , E n i=1 Z i (x, h) p ≥ A p max nE|Z(x, h)| p , (nE|Z(x, h)| 2 ) p/2 ≥ A p (nE|Z(x, h)| 2 ) p/2 (4)
for some positive constant A p which only depends on p. Especially,

E( r n ( f n -f n ) p p,µ ) ≥ A p r n n p R d (nE|Z(x, h)| 2 ) p/2 dµ(x).
Remark further that since

C = sup R d f < ∞, E|Z(x, h)| 2 = h -d R d K 2 (v)f (x -hv)dv - R d K(v)f (x -hv)dv 2 ≥ h -d R d K 2 (v)f (x -hv)dv -C R d |K(v)|dv R d |K(v)|f (x -hv)dv. (5) 
When p = 2 and (H3a) holds, using (1), ( 4) and ( 5) entails for some m > 0

E( r n ( f n -f n ) 2 2,µ ) ≥ m r n √ n 2 R d E|Z(x, h)| 2 dx ≥ m r n √ nh d 2 R d K 2 (v)dv -Ch d R d |K(v)|dv 2 so that lim inf n→∞ E( r n ( f n -f n ) 2 2,µ ) ≥ mc 2 R d K 2 (v)dv > 0
which proves (3) in this case. Assume now that (H3b) holds and let R > 0 be so large that

B(0,R) K 2 (v)dv > 0.
For n large enough, inequality (5) thus entails

∀x ∈ B(x 0 , δ/2), E|Z(x, h)| 2 ≥ h -d B(0,R) K 2 (v)f (x -hv)dv -C R d |K(v)|dv 2 ≥ mh -d (6) 
where m is a positive constant. Apply (1), ( 4) and ( 6) to get for n large enough

E( r n ( f n -f n ) p p,µ ) ≥ r n n p B(x 0 ,δ/2) (nE|Z(x, h)| 2 ) p/2 dµ(x) ≥ m p/2 r n √ nh d p µ(B(x 0 , δ/2)).
As a consequence

lim inf n→∞ E( r n ( f n -f n ) p p,µ ) ≥ m p/2 c p µ(B(x 0 , δ/2)) > 0
which concludes the proof of (3). We now show the uniform integrability of the sequence of random variables ( r n ( f n -f n ) p p,µ ). For this purpose, it is enough to prove that

E( r n ( f n -f n ) 2p p,µ ) = O(1).
To this end we write

E( r n ( f n -f n ) 2p p,µ ) = r n n 2p R d ×R d E n i,j=1 Z i (x, h)Z j (y, h) p dµ(x)dµ(y).
Observe that by the Cauchy-Schwarz inequality,

|E(Z(x, h)Z(y, h))| 2 ≤ E|Z(x, h)| 2 E|Z(y, h)| 2 .
Consequently, |E(Z(x, h)Z(y, h))| is nite for almost every (x, y) ∈ R d × R d by Lemma 3. We may thus use Lemma 2 to write

E( r n ( f n -f n ) 2p p,µ ) = r n n 2p 2 p-1 [2 p-1 [I 1,n + I 2,n ] + I 3,n ] (7) 
with

I 1,n = R d ×R d |nE(Z(x, h)Z(y, h))| p dµ(x)dµ(y), I 2,n = R d ×R d E n i=1 Z i (x, h)Z i (y, h) -E(Z i (x, h)Z i (y, h)) p dµ(x)dµ(y)
and

I 3,n = R d ×R d E n i,j=1 i =j Z i (x, h)Z j (y, h) p dµ(x)dµ(y).
The sequence I 1,n is controlled by using the Cauchy-Schwarz inequality and Lemma 3:

I 1,n ≤ n p R d (E|Z(x, h)| 2 ) p/2 dµ(x) 2 = O(n p h -dp ). (8) 
To control I 2,n , we let

D i (x, y, h) = Z i (x, h)Z i (y, h) -E(Z(x, h)Z(y, h)) for i = 1, . . . , n. For almost every (x, y) ∈ R d × R d , the D i (x, y, h), i = 1, .
. . , n are well-dened independent copies of the centred random variable D(x, y, h) = Z(x, h)Z(y, h) -E(Z(x, h)Z(y, h)). Furthermore, it is a consequence of Lemma 4 that the function (x, y) → E|D(x, y, h)| p is integrable and thus almost everywhere nite on R d × R d . By Rosenthal's inequality [START_REF] Rosenthal | On the subspaces of L p (p > 2) spanned by sequences of independent random variables[END_REF], we obtain for almost

every (x, y) ∈ R d × R d : E n i=1 D i (x, y, h) p ≤ B p max nE|D(x, y, h)| p , (nE|D(x, y, h)| 2 ) p/2 . ( 9 
)
Using together (9) and Lemma 4 entails

I 2,n = O(nh -2d(p-1) + n p/2 h -d(3p-2)/2 ).
Noting that

nh -2d(p-1) + n p/2 h -d(3p-2)/2 = n p/2 h -d(3p-2)/2 1 + (nh d ) 1-p/2
we obtain

I 2,n = O(n p/2 h -d(3p-2)/2 ). (10) 
We now turn to controlling I 3,n . To this end, we dene

Y (x, y, h, u, v) = [K h (x -u) -E(K h (x -X))][K h (y -v) -E(K h (y -X))] + [K h (y -u) -E(K h (y -X))][K h (x -v) -E(K h (x -X))]
and we observe that

n i,j=1 i =j Z i (x, h)Z j (y, h) = 1≤i<j≤n Y (x, y, h, X i , X j ).
Moreover, the function (u, v) → Y (x, y, h, u, v) is symmetric and is such that for almost every

(x, y) ∈ R d × R d , E|Y (x, y, h, X 1 , X 2 )| p < ∞ and E(Y (x, y, h, X 1 , X 2 )|X 1 ) = 0 almost surely.
An analogue of Rosenthal's inequality for symmetric statistics (see e.g. Theorem 4 in Ibragimov and Sharakhmetov, 1999) thus yields:

E 1≤i<j≤n Z i (x, h)Z j (y, h) p ≤ B p max n 2 E|Y (x, y, h, X 1 , X 2 )| p , n p/2+1 E(E(|Y (x, y, h, X 1 , X 2 )| 2 |X 1 )) p/2 , n p (E|Y (x, y, h, X 1 , X 2 )| 2 ) p/2 (11)
where B p is a positive constant depending only on p. Use Lemma 2 to get

|Y (x, y, h, X 1 , X 2 )| p ≤ 2 p-1 [|Z 1 (x, h)| p |Z 2 (y, h)| p + |Z 1 (y, h)| p |Z 2 (x, h)| p ], E(|Y (x, y, h, X 1 , X 2 )| 2 |X 1 ) ≤ 2 |Z 1 (x, h)| 2 E|Z 2 (y, h)| 2 + |Z 1 (y, h)| 2 E|Z 2 (x, h)| 2 and E|Y (x, y, h, X 1 , X 2 )| 2 ≤ 2 E|Z 1 (x, h)| 2 E|Z 2 (y, h)| 2 + E|Z 2 (x, h)| 2 E|Z 1 (y, h)| 2 .
Applying Lemma 2 once more and using Lemma 3, we obtain

R d ×R d E|Y (x, y, h, X 1 , X 2 )| p dµ(x)dµ(y) = O(h -2d(p-1) ), (12) 
R d ×R d E(E(|Y (x, y, h, X 1 , X 2 )| 2 |X 1 )) p/2 dµ(x)dµ(y) = O(h -d(3p-2)/2 ) (13)
and

R d ×R d (E|Y (x, y, h, X 1 , X 2 )| 2 ) p/2 dµ(x)dµ(y) = O(h -dp ). (14) 
I 3,n = O(n 2 h -2d(p-1) + n p/2+1 h -d(3p-2)/2 + n p h -dp ).
Since

n 2 h -2d(p-1) + n p/2+1 h -d(3p-2)/2 + n p h -dp = n p h -dp 1 + (nh d ) 1-p/2 + (nh d ) 2-p
we have that

I 3,n = O(n p h -dp ). ( 15 
)
Use together ( 7), ( 8), ( 10) and ( 15) to obtain

E( r n ( f n -f n ) 2p p,µ ) = O r n √ nh d 2p 1 + n -1 (nh d ) 1-p/2 = O(1). (16) Now, if r n ( f n -f n ) did converge in distribution to a Borel measurable random element in L p (R d , µ),
then the weak limit would be 0 by Theorem 1. This would entail that the sequence of random

variables ( r n ( f n -f n ) p p,µ ) converges to 0 in probability; since this sequence is uniformly integrable, this implies E r n ( f n -f n ) p p,µ → 0, which, in view of (3), is a contradiction. Finally, if r n / √ nh d →
∞, the existence of a weak Borel measurable limit for r n ( f n -f n ) in L p (R d , µ) would entail, by Slutsky's lemma, that √ nh d ( f n -f n ) p,µ converges in probability to 0, which is a contradiction.

The proof is complete.

We now turn to the case p ∈ [1, 2) which is dierent since Rosenthal-type inequalities cannot be applied. We introduce the following classical assumption in kernel density estimation:

(C1) The function K has a compact support.

We also introduce an integrability condition:

(C2) There exist α ≥ 0 and R > 0 such that if • is the standard Euclidean norm on R d :

sup x∈R d f (x) I { x ≤2R} + x α I { x >R/2} < ∞ and x >R x -α/2 dµ(x) < ∞. If f is bounded on R d , then hypothesis (C2) is for instance satised if x → x 2d+ε f (x) is bounded
in a neighborhood of innity for some ε > 0: this latter condition can also be found in [START_REF] Horváth | Asymptotics of the L p -norms of density estimators in the rst-order autoregressive models[END_REF]. We can now state the analogue of Theorem 2 in the case p ∈ [1, 2).

Theorem 3. Consider the case p ∈ [1, 2). Let (r n ) be a nonrandom sequence of positive real numbers. Assume that K ∈ L 2 (R d ) and that (C1) and (C2) hold.

• If r n / √ nh d → 0, then r n ( f n -f n ) → 0 in L p (R d , µ).
Assume now that (H1), ( H2) and (H3b) hold and that nh d → ∞.

• If r n / √ nh d → c ∈ (0, ∞], then r n ( f n -f n ) does not converge to any Borel measurable random element in L p (R d , µ).
Proof of Theorem 3. We start by proving the rst statement in the case p = 1; to this end, we

shall show that E( r n ( f n -f n ) 1,µ ) → 0.
By the Cauchy-Schwarz inequality,

E( r n ( f n -f n ) 1,µ ) ≤ r n √ nh d R d h d E 1 √ n n i=1 Z i (x, h) 2 dµ(x).
Since the Z i (x, h), i = 1, . . . , n are independent copies of the centred random variable Z(x, h) which

is such that E|Z(x, h)| 2 ≤ E|K 2 h (x -X)|, we get E( r n ( f n -f n ) 1,µ ) ≤ r n √ nh d J n with J n = R d h d E|K 2 h (x -X)| dµ(x).
It is then enough to show that J n = O(1). A change of variables yields

J n = R d R d K 2 (v)f (x -hv)dv dµ(x).
Pick now α ≥ 0 and R > 0 as in (C2) and write

J n = J n,1 + J n,2 (17) 
with

J n,1 = x ≤R R d K 2 (v)f (x -hv)dv dµ(x) and J n,2 = x >R R d K 2 (v)f (x -hv)dv dµ(x).
Since K has a compact support, we have for n large enough

J n,1 ≤ µ(B(0, R)) R d K 2 (v)dv sup x ≤2R f (x) < ∞ (18) 
and

J n,2 ≤ sup x >R/2 x α f (x) x >R R d K 2 (v) x -hv -α dv dµ(x) ≤ 2 α/2 R d K 2 (v)dv sup x >R/2
x α f (x)

x >R

x -α/2 dµ(x) < ∞.

Collecting ( 17), ( 18) and ( 19) proves that J n = O(1), which is the desired result. To show the rst statement for any p ∈ (1, 2), note that for all 1 ≤ p 0 < p 1 < ∞ and every p θ ∈ (p 0 , p 1 ), if θ ∈ (0, 1)

is such that 1 p θ = 1 -θ p 0 + θ p 1 then Hölder's inequality entails ∀H ∈ L p 0 (R d , µ) ∩ L p 1 (R d , µ), H p θ ,µ ≤ H 1-θ p 0 ,µ H θ p 1 ,µ . (20) 
Use then inequality (20) with p 0 = 1, p θ = p and p 1 = 2 to obtain

r n ( f n -f n ) p,µ ≤ r n ( f n -f n ) 1-θ 1,µ r n ( f n -f n ) θ 2,µ
for some θ ∈ (0, 1). Since r n ( f n -f n ) 1,µ → 0 and (by Theorem 2) r n ( f n -f n ) 2,µ → 0 in probability, we obtain r n ( f n -f n ) p,µ → 0 in probability, which completes the proof of the rst statement.

We now turn to the second statement. Observe rst that K ∈ L r (R d ) for all r ≥ 1 because K is a bounded integrable function. We may thus apply inequality (20) with p 0 = p, p θ = 2 and p 1 = 2 + δ for an arbitrary δ > 0 to obtain

r n ( f n -f n ) 2,µ ≤ r n ( f n -f n ) 1-θ p,µ r n ( f n -f n ) θ 2+δ,µ
for some θ ∈ (0, 1). In the case

r n / √ nh d → c ∈ (0, ∞), it holds that E r n ( f n -f n ) 4+2δ 2+δ,µ = O(1), see (16) in the proof of Theorem 2. Consequently r n ( f n -f n ) 2+δ,µ = O P (1) and thus r n ( f n -f n ) 2,µ = O P r n ( f n -f n ) 1-θ p,µ . Now, if r n ( f n -f n ) did converge in distribution to a Borel measurable random element in L p (R d , µ),
then the weak limit would be 0 by Theorem 1. Therefore r n ( f n -f n ) p,µ → 0 in probability and thus r n ( f n -f n ) 2,µ → 0 in probability as well, which is a contradiction. We can nally handle the case r n / √ nh d → ∞ as in the proof of Theorem 2: the proof is complete.

Remark. When µ is a nite measure on R d , Hölder's inequality entails for any p ∈ [1, 2)

r n ( f n -f n ) p,µ ≤ r n ( f n -f n ) 2,µ µ(R d ) (2-p)/2p
so that by Theorem 2, we have

r n f n -f n → 0 provided r n / √ nh d → 0. Hypotheses (C1) and
(C2) thus need not be satised in this particular setting for the rst statement of Theorem 3 to hold.

We close this section by mentioning that in the case d = 1, these results are very dierent from those which can be obtained for the empirical cumulative distribution process

F n (x) = 1 n n i=1 I {X i ≤x} .
It can indeed be shown that if F denotes the cumulative distribution function of X then the random process √ n( F n -F ) converges to a centred Gaussian limit in any L 2 (R, µ) space provided µ is a nite measure on R, see Theorem 1.8.4 and Example 1.8.6 in van der [START_REF] Van Der Vaart | Weak convergence and empirical processes with applica[END_REF].

Analogue results on the convergence of this empirical process in L p (R, µ), p ∈ [1, ∞), may be obtained by using necessary and sucient conditions such as the ones presented in [START_REF] Van Der Vaart | Weak convergence and empirical processes with applica[END_REF], p.92 and Theorem 10.10 in [START_REF] Ledoux | Probability in Banach spaces: Isoperimetry and processes[END_REF].

3 The bias term

Our main results consider the centred random process r n ( f n -f n ). Of course, in statistical applications, the process of interest would rather be r n ( f n -f ); observe that if the norm r n (f n -f ) p,µ of the bias term r n (f n -f ) converges to 0, then our main results also hold with r n ( f n -f n ) replaced by r n ( f n -f ). When d = 1, the pointwise behavior of this bias term is well documented. It can be analysed for instance under the assumption that f is m ≥ 2 times continuously dierentiable and

K is such that ∀j ∈ {1, . . . , m -1}, R v j K(v)dv = 0 and R |v m K(v)|dv < ∞.
See for instance [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] when m = 2: in this case, it turns out that the bias term asymptotically vanishes when r n h 2 → 0. Interestingly, this is still true for the integrated bias term r n (f n -f ) p,µ for any p ∈ [1, ∞) under some further assumptions on f , see Lemma 9 in [START_REF] Csörg® | Central limit theorems for L p -norms of density estimators[END_REF]. When p = 2 and m > 2, this condition can be weakened to r n h m → 0 provided the m-th order derivative of f is square integrable, see Theorem 24.2 p.346 in [START_REF] Van Der Vaart | Asymptotic statistics[END_REF] and the discussion in [START_REF] Nishiyama | Impossibility of weak convergence of kernel density estimators to a nondegenerate law in L 2 (R d )[END_REF].

Our aim here is to state a result on the integrated bias term r n (f n -f ) p,µ for an arbitrary dimension d under analogue assumptions on f and K. In order to achieve this, we need some additional notation. For x = (x 1 , . . . , x d ) ∈ R d and α = (α 1 , . . . , α d ) ∈ N d , we introduce the multi-index notation

x α = d i=1 x α i i , α! = d i=1 α i ! and |α| = d i=1 α i .
We then introduce the class K m of the integrable functions K : R d → R which integrate to 1 over R d and are such that

∀α ∈ N d , |α| ∈ {1, . . . , m -1} ⇒ R d v α K(v)dv = 0 and |α| = m ⇒ R d |v α K(v)|dv < ∞.
We denote the space of the m times continuously dierentiable real-valued functions on R d by C m (R d ). Furthermore, for all f ∈ C m (R d ) and k ≤ m, we denote the k-th order partial derivatives of f by

∂ α f = ∂ |α| f ∂x α 1 1 • • • ∂x α d d , |α| = k.
Our result is the following:

Proposition 2. Assume that f ∈ C m (R d ) is such that all its m-th order derivatives belong to L p (R d ). Then for all K ∈ K m there exists a positive constant C such that for n large enough:

f n -f p,µ ≤ Ch m .
Proof of Proposition 2. The proof is largely based on the proof of Theorem 24.1 p.345 in van der Vaart (1998). For all x, v ∈ R d , Taylor's formula with the remainder in an integral form entails:

f (x -hv) -f (x) = m-1 k=1 (-1) k h k |α|=k ∂ α f (x) α! v α + R m (x, x -hv) where R m (a, b) = m |α|=m (b -a) α α! 1 0 (1 -t) m-1 ∂ α f (a + t(b -a))dt.
Since K ∈ K m , we may thus write

(f n -f )(x) = R d [f (x -hv) -f (x)]K(v)dv = R d R m (x, x -hv)K(v)dv.
By Lemma 2, it follows that there exists a positive constant c 1 such that

f n -f p p,µ h pm ≤ c 1 |α|=m R d R d 1 0 (1 -t) m-1 ∂ α f (x -thv)v α K(v)dt dv p dµ(x). ( 21 
) Let q ∈ (1, ∞] be such that p -1 + q -1 = 1. For any α ∈ N d such that |α| = m, Hölder's inequality applied to the functions (t, v) → (1 -t) m-1 |∂ α f (x -thv)||v α K(v)| 1/p and (t, v) → |v α K(v)| 1/q (in the case p = 1 and q = ∞, we set 1/q = 0) entails R d R d 1 0 (1 -t) m-1 ∂ α f (x -thv)v α K(v)dt dv p dµ(x) ≤ R d |v α K(v)|dv p/q R d R d 1 0 (1 -t) p(m-1) |∂ α f (x -thv)| p |v α K(v)|dt dv dµ(x) ≤ c 2 R d |v α K(v)|dv 1+p/q R d |∂ α f (x)| p dx = c 3 < ∞ (22)
where c 2 and c 3 are positive constants. Combining ( 21) and ( 22) and summing over α yields the desired result.

A consequence of Proposition 2 is that if r n h m → 0, then r n (f n -f ) p,µ → 0. This generalises the aforementioned results of [START_REF] Csörg® | Central limit theorems for L p -norms of density estimators[END_REF] and van der Vaart (1998).

Appendix: preliminary results and their proofs

Recall from the proof of Theorem 1 the notation Z Proof of Lemma 2. When p = 1, this is just the triangle inequality. When p ∈ (1, ∞), apply Hölder's inequality to the functions ϕ : i → x i and ψ : i → 1 on the space {1, . . . , n} endowed with the counting measure.

(x, h) = K h (x -X) -E(K h (x -X)).
The third lemma is a technical result we shall use repeatedly in the proof of the rst part of Theorem 2.

Lemma 3. Let ϕ be a nonnegative bounded Borel measurable function on R d and p, q ∈ [1, ∞).

Assume that K ∈ L p (R d ); if either p / ∈ {1, 2} or q > 1, assume further that (H1) holds. Then the function x → (E|Z(x, h)| p ) q is integrable on R d and we have R d

(E|Z(x, h)| p ) q ϕ(x)dx = O(h -dq(p-1) ).

Proof of Lemma 3. The case p = q = 1 is an immediate consequence of Lemma 1. When p = 2 and q = 1, we have

R d E|Z(x, h)| 2 ϕ(x)dx ≤ R d E(K 2 h (x -X))ϕ(x)dx. ( 23 
)
Proof of Lemma 4. In the case p = q = 1, the result is an immediate consequence of the triangle inequality and Lemma 1: 

R d |Z(x, h)| 2 ϕ(x)dx ≤ 2 R d K 2 h (x -X) + [E(K h (x -X))] 2 ϕ(x)dx ≤ 2 Bh -d R d K 2 (v)dv + R d (E|K h (x -X)|) 2 ϕ(x)dx
almost surely. The result thus follows from (25) (see the proof of Lemma 3) and (26). When p / ∈ {1, 2} or q > 1, we use Lemma 2 to get (E|D(x, y, h)| p ) q ≤ 2 q(p-1) [E|Z(x, h)Z(y, h)| p + (E|Z(x, h)Z(y, h)|) p ] q ≤ 2 pq-1 [(E|Z(x, h)Z(y, h)| p ) q + (E|Z(x, h)Z(y, h)|) pq ] .

The result shall then be proven provided we show that for any r, s ≥ 1 the function x → (E|Z(x, h)Z(y, h)| r ) s is integrable and we have that 

(

  H1) The function f is a bounded function on R d . (H2) The function K is a bounded function on R d . (H3a) The Radon-Nikodym derivative of µ with respect to the Lebesgue measure on R d is bounded from below by a positive constant.

  The rst result is a simple bound we shall use in the proof of Theorem 1.Lemma 1. Let ϕ be a bounded Borel measurable function on R d . Then there exists a positive constant C such that for any n,R d |Z(x, h)||ϕ(x)|dx ≤ C almost surely. Proof of Lemma 1. Let B = sup R d |ϕ|.Remark that by a change of variables:R d |K h (x -X)||ϕ(x)|dx = R d |K(v)||ϕ(X + hv)|dv ≤ B R d |K(v)|dv almost surely.Using the triangle inequality concludes the proof of the result.The second result is a classical consequence of Hölder's inequality and the triangle inequality for sums of real numbers.Lemma 2. Let m ≥ 2 be an integer and x 1 , . . . , x m be real numbers. For any p ∈ [1, ∞),

R

  d ×R d E|D(x, y, h)|ϕ(x)ϕ(y)dx dy ≤ 2E When p = 2 and q = 1, we haveE|D(x, y, h)| 2 ≤ E|Z(x, h)Z(y, h)| 2 because D(x, y, h) is a centred random variable. As a consequence R d ×R d E|D(x, y, h)| 2 ϕ(x)ϕ(y)dx dy ≤ E R d |Z(x, h)| 2 ϕ(x)dx 2 . (26)Besides, if B = sup R d ϕ then Lemma 2 and a change of variables yield

R

  d ×R d (E|Z(x, h)Z(y, h)| r ) s ϕ(x)ϕ(y)dx dy = O(h -d[2s(r-1)+s-1] ).

  , p.25, the class F is a vector lattice of continuous bounded functions on L p (R d , µ) which contains the constant functions. Let B(R d ) be the usual Borel σ-algebra on R d : since µ is absolutely continuous with respect to the Lebesgue measure and has a bounded Radon-Nikodym derivative, the space (R d , B(R d ), µ) is a separable measure space. This makes L p (R d , µ) a separable metric space; since L p (R d , µ) is complete, it follows that G 1 and G 2 dene tight Borel probability measures on L p (R d , µ), see Lemma 1.3.2 p.17 in[START_REF] Van Der Vaart | Weak convergence and empirical processes with applica[END_REF]. Thanks to Lemma 1.3.12 p.25 in van der Vaart and Wellner

provided K ∈ L r (R d ). In this case, the result is then a consequence of ( 23) and ( 24) with r = 2.

When p / ∈ {1, 2} or q > 1, we start by remarking that Lemma 2 yields

The proof shall then be complete provided we prove that for any r ≥ 1 and

To this end, note that since

Consequently, there exists a constant C > 0 such that

Using ( 24) yields ( 25) and completes the proof.

Recall the notation D(x, y, h

The last lemma is a key bound to prove the second part of this result.

Lemma 4. Let ϕ be a nonnegative bounded Borel measurable function on R d and p, q ∈ [1, ∞).

Assume that K ∈ L p (R d ) and (H1) holds; if either p / ∈ {1, 2} or q > 1, assume further that (H2) holds. Then the function (x, y) → (E|D(x, y, h)| p ) q is integrable on R d × R d and we have

To this aim, we use Lemma 2 to get

Note further that since

Moreover,

Collecting ( 29) and (30) entails:

Using (25) along with ( 28) and ( 31) yields ( 27): the proof is complete.