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ON QUATERNIONIC FUNCTIONS: I. LOCAL THEORY
PIERRE DOLBEAULT

ABSTRACT. Several sets of quaternionic functions are described and
studied with respect to hyperholomorphy, addition and (non commuta-
tive) multiplication, on open sets of H. The aim is to get a local function

theory.
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1. INTRODUCTION

We first recall the definition of the non commutative field H of quater-
nions using pairs of complex numbers and a modified Cauchy-Fueter op-
erator (section 2) that have been introduced in [2]. We will only use right
multiplication; the (right) inverse of a nonzero quaternion being defined.
We will consider C'**° H-valued quaternionic functions defined on an open
set U of H, whose behavior mimics the behavior of holomorphic functions
near their zeroes on an open set of C. If such a function does not identically
vanish over U, it has an (algebraic) inverse which is defined almost every-
where on U. Finally, we describe properties of hyperholomorphic functions
with respect to addition and multiplication.

In section 3, we characterize the quaternionic functions which are, almost
everywhere, hyperholomorphic and whose inverses are hyperholomorphic
almost everywhere, on U, as the solutions of a system of two non linear PDE.
We find non trivial examples of a solution, showing that the considered space
of functions is significant: we will call these functions hypermeromorphic.
There is a preliminary announcement in [4]
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2 P. DOLBEAULT

In section 4, we describe a subspace Hy of hyperholomorphic and hy-
permeromorphic functions defined almost everywhere on U, having “good
properties for addition and multiplication”; we obtain again systems of non
linear PDE, and we give first results on spaces of functions of strictly posi-
tive dimension as vector spaces.

In the next paper II. Global theory, we will consider globalization of
the introduced notions, define Hamilton 4-manifolds analogous to Riemann
manifolds for H instead of C, and give examples of such manifolds; our

ultimate aim is to describe a class of four dimensional manifolds.

2. QUATERNIONS. H-VALUED FUNCTIONS. HYPERHOLOMORPHIC
FUNCTIONS

Quaternions, H-valued functions have been defined in [2].

2.1. Quaternions. If ¢ € H, then ¢ = 2z; + 25 where 21,2, € C, hence
H =~ C? =~ R* as complex or real vector space. We have: z1j = jz; (by
computation in real coordinates); by definition, the modulus of ¢ is | ¢ |=
(|21 + [2f*) 2.

Let * denote the (right) multiplication in H:

Recall the noncommutativity of the multiplication:

qq' = (21 + 22J) * (21 + 25)) = (2121 — 2275) + (2125 + 2271)j = a + bj

qq=(212] — 2275) + (2122 + 2571)] = a + V],

where b = 212}, + 20Z)) and b’ = 2] 29 + 25Z;.

Commutativity when ¢ and ¢’ € R.

The conjugate of q is § = Z1 — 29§. ¢ % q = (21 + 29) * (Z1 — 22)) =
|21|% — 2120 + 22§71 — 20j22] = |21]® + |22|> = |q|, then: the (right) inverse of
¢=zn+njis g = (|l +12P) 77 = (lal* + |27 (21 - 2)) = ld ™7
Moreover: (|21]? + |22]?) 1 (Z1 — 22j) * (21 + 22)) = 1, so the right inverse of

g tisq.

2.2. Quaternionic functions. Let U be an open set of H = C? and f €
C>*(U,H), then f = fi+ faj, where fi, fo € C*°(U,C). The complex valued
functions fi, fo will be called the components of f.

Remark that H is a real vector space in which real analysis is valid, in

particular differential forms, distributions and currents are defined in H.

ofi. .0f

Remark that —j = j=— and analogous relations.
821 21



ON QUATERNIONIC FUNCTIONS: I. 3

2.3. Definitions. Let U be an open neighborhood of 0 in H = C2.
(a) From now on, we will consider the quaternionic functions f = fi + fa]

having the following properties:

(i) when f; and f, are not holomorphic, the set Z(f1)NZ(f2) is discrete
on U;

(4i) for every ¢ € Z(f1) N Z(f2), J;'(.) denoting the jet of order o at q
[6], let m; = sup J;"(fi) = 0; my, i = 1,2, is finite.

Define: my = iI}f m; as the order of the zeroe q of f.
(b) We will also consider the quaternionic functions defined almost every-
where on U (i.e. outside of a subset of U of Lebesgue measure 0, more

precisely outside a finite set of C'™° hypersurfaces).

2.4. Modified Cauchy-Fueter operator D. Hyperholomorphic func-
tions. The modified Cauchy-Fueter operator D and hyperholomorphic func-
tions have been defined in [2, 5].

For f € C>*(U,H), with f = f1 + faj, where fi, fo € C*(U,C),

1,0 .9 1.0fi 9, 1.0fi  Of,

D — o = (=L _ 22 — (2L 222 ().
1@ =5 (55 Higg )@ =507 — 5@ +i5 (G5 +5,) @
A function f € C*°(U,H) is said to be hyperholomorphic if Df = 0.
Characterization of the hyperholomorphic function f on U:

ofi  8f, ofi | 0fy
1 — - ——==0; =+===0 U.
( ) 821 822 ’ 852 821 » on
The conditions: f; is holomorphic and f5 is holomorphic are equivalent.
So holomorphic functions with values in C will be identified with hyperholo-

morphic functions f such that fy = 0.

Proposition 2.1. The set H of hyperholomorphic functions such that the
sum of two of them satisfies the above conditions (i), (i7) is an H-right vector

space.

Proof. Let f" = fi+ f53, [" = f{ + fJj be two hyperholomorphic functions
satisfying the above conditions (i), (i), then, for N, X" € H, X' f"+ A" f” has
the same properties. ]

Proposition 2.2. The set H' of almost everywhere defined hyperholomor-
phic functions is an H-right vector space.

Proposition 2.3. Let [, f" be two almost everywhere defined hyperholo-
morphic functions. Then, their product ' x f" satisfies:

D'« ') = D #if" + (f1(-) + Fi2

oz ) T lig)]
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Proof. "= fi+ f53, [" = fI' + fj be two hyperholomorphic functions.

We have: f'x f" = (f{ + f53)(f + £13) = fLf1 — f5Fs + (FLF5 + 570
Compute
1,0 - .
5o i ) (L~ ST+ LA+ 2iT0)
By derivation of the first factors of the sum f’' x f”, we get the first term:

—I

1 .aff .0f] 1,0f) .9
5(8—§1 +J;§l)( {’+f;’j>+§(852 fz)u<f2 f1d)
1,0ff .0 o, 1,0 .0 " )
= S OL iy gy i+ 5 G s+ 11y = s
By derivation in
1,0

o+ (L7 + Ji83+ (LT3 + 130)
of the second factors of the sum f’ % f” we get the second term (up to

factor 3):

0 /8 ,Of
a 8f af
+f2~]a 852

a 0
= (fi+ féJ')(a_zl)( |+ fé’j) + (L + fﬂ)ja—z?( 1+ f33)

= (U + B )+ Tt T )7+ J23)

= (g2 + g )"
U

If the components of f/ and f” are real, the second term is:

SULH DG + i)+ 23) = 1 5 D
le.

Corollary 2.4. The set Hgr of almost everywhere defined hyperholomorphic
functions whose components are real is an R-right algebra.

2.5. Remark. The hyperholomorphic functions f = f; + foj such that

fa = 0 satisty: 5 5 5
1 1
DI(0) = 3 (pe +Hige) @) = 52

in (21, z2) with values in (C More generally, we will consider their product

(q) +j===(q) i.e. are holomorphic
2

with a quaternion. Their set is the H-right algebra of holomorphic functions.
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3. ALMOST EVERYWHERE HYPERHOLOMORPHIC FUNCTIONS WHOSE
INVERSES ARE ALMOST EVERYWHERE HYPERHOLOMORPHIC

3.1. Null set and inverse of a quaternionic function. Let f = f;+ fo]
be a quaternionic function on U. The null set Z(f) satisfies: f; = 0; fo = 0,
then Z(f) is of measure 0 in U.

Ex.: fi = Z1; fo = Z2, then Z(f) = {0}.

Note that if f is holomorphic, then, fo = 0 and Z(f) is a complex
hypersurface in C2.

We call inverse of a function f : ¢ — f(q), the function, defined almost
everywhere on U: f~' : ¢ — f(q)™'; then: f=' = |f|7'f, where f is the
(quaternionic) conjugate of f, and f=' = (|f1|> + | f2|2) ' (f, — f2i)-

3.2. Inversion and hyperholomorphy. Assume f to be hyperholomor-
1

phic and Z(f) = {0}, then ? is not necessarily hyperholomorphic out-
side {0}.

Ex.: f =72, + Z5j, then

1 ) 1
I (2171 + 20%2) 7' (21 — Zaj); D(?) # 0,
3.2.1. Definition. Behavior of f~' at ¢ € Z(f) = Z(f1) N Z(f2). Denoting
. B | o _

J&(.) the jet of order a at q [6], let ny = sup J¢(|ff1 ) na = sup J&(|f]f2 1)

Define: ng = supn;, i = 1,2 as the order of the pole q of fL

3.2.2. Inverse of a holomorphic function. Let f = f; + 0j be a hyperholo-
morphic function. Then f~! = f;' 4+ 0j and f~! is hyperholomorphic out-
side of the complex hypersurface Z(f). Remark that Z(f) is a subvariety
of complex dimension 1, then of measure zero, in U.

We will consider almost everywhere defined hyperholomorphic functions
on U. Ex.: holomorphic, meromorphic functions.

Let f = fi1 4+ faj be a hyperholomorphic function and g = g1 + g2 =
[FI7H (1 = foj) its inverse; so g1 = [f]7'f1; g2 = —|f[7" f2, where |f] =
(frf1 =+ fafa)-

3.2.3. A chacracterisation.

Proposition 3.1. The following conditions are equivalent

(1) the function f = fi1+ foj and its right inverse are hyperholomorphic,
when they are defined:
(17) we have the equations:

of — 0 of
7 - ma—Q - fa—f - faé o,
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- 0f  OF fy _
Fogrt g h) = fog 2 =0,

Proof. Let f = f1 + foj be a hyperholomorphic function and ¢ = ¢; +
923 = |fI7'(fy — fod) its inverse; so g1 = |f| f1; g2 = —|f|"' fo, where
[fl=(fifi + faf2)

_ 19 .0 1 991 _ 09, 1991 09,
Dy(q) = 2(821+J8§2)9(Q) (az1 a22)() (832+821)(q)
dg1

Iy L7 p O Oy 00
1

Jq
T2 o,

of, o )
5 f1+ﬁf2+f2 f2)
dg1 0f1

d9: oF, ot afz)
0%

of
U (R

(af1f1+f1

Of1+
( f

= |fI7! —|f17? f1+f_+—f2+f2

ah f1 3ﬁ

Jq (9
a—ij = —\f\l PTG T+ higt

2| fI*Dyg
- (f1f1 + f2f2)(

of
o flfzaf Rl - hTg

R (A AT E D ) flgfl fnh

0z
dfi dfa 8f2>

L, + fzan)

TRk

f2

f Of2

07

3f1 3fz
" o5

Oy Funoh af 1 A 2T,

S o

fr 9fa

S A VAL

+f1f2a "’flfza 1+f2f20 + fofs

Use the fact: f is hyperholomorphic:

ofh 9fy _ 0f  Ofy _
(1) R R

of 0
e O A s A

3 0 of 0
eSS 8f S D BN ALYy

f being hyperholomorphic, g hyperholomorphlc is equivalent to the Sys-

f,

2’f’2D9_f1f1 +fzf2(9

tem of two equations:

0 of 0
RN AT AT NI A T S A O KL TR SR

of of 0 of —=
T T T, 85 T2+, afl<f1 TS 1T 1+f2fza—fj:0
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f1 and f, satisfy, by conjugation of the second equation:

0 of 0 0 of
+f2f28f1 fl f1f26fj+f2 fz(fl f1)+f1f1£—f1f2i—f2f2 fQ:

+Fi f2§f1+f1f2ff1 2 12 0 00 <o

Using (1), we get:

—hhig

of 0 of of of
BT (=R - RS 5 o=t -ni S0 RS2 = 0
of
T AT YA TR A N S AR AL fQ—
Assume f; #0, fo #0
TR IR ATy A Sy MR A T A D
0 0 0 0 0 0
RACE ST Sy TR S X LTI SRS AT NI
By sum:
— of 0 of of
fl(fl(f fl) fl flfzafi‘f'fz fz(f = fi) = fife fl)
of 0 of of
~((fi - f)fgaf1+f2fzaf2—flaf2(f T+ faTagt) =0
l.e.
(Fofr+ Lo fo) ((F1 — fl)af1 - fz% - fzgfl) =
21 Z2
0 of 0 0 0 0
LR G B b 22 - 2D 2 <o
—— Ofy — 0 0
F g T, af1+fzfzaf2 S AT AR AUTS N O
1 21 21
By sum _
0 0 0
ATA R R iy R A
0 of 0
Hh(RTag - f18f2<f1 T~ T l) -
l.e.
_0f OF o _
f2321 azf(fl—fl) Frgs 2*

g

Corollary 3.2. If f satisfies the conditions of the Proposition, the same is
true for af with o € R.
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3.2.4. Let f = f1+0j be an almost everywhere holomorphic function, then
the condition (i¢) of Proposition 3.1 is satisfied.

Proposition 3.3. Let f = fi + fo] be a quaternionic function such that fy
and fo are real.

Then, the following conditions are equivalent:

(1) the function f = fi1+ foj and its right inverse are hyperholomorphic,
when they are defined;

(17) f1, fo satisfy the equations:

of2  Ofi
821 * (952 =0
of _ 0k _
821 822

Proof. Assume f; and f5 real: condition (i7) of Proposition 3.1 reduces to:

Of2 ofi ofi 9fs

22 g 2L g2
f2 821 + f2 832 ' f2 (921 2 (932
i.e.: fo =0 and the linear system:
0 0
o 4 =0;
821 822
on _on
821 852
The solution fo = 0 means f = fi=real; since f; is holomorphic and
real, then f; = real constant: no interest. U

Numerical example. Let fi = 214214+ 20+ 22+ A, fo=—21—Z1+ 20+ 722+ B,
A, B € R, then: f and f~* outside the zero set of f, are hyperholomorphic.

The the null set of f = f1 + f2], for fi, fa as above, for A= B =0, is:
271+zZ1+22+22=0
—21— 21+ 2 +Z22=0
i.e, by difference and sum:
Z1+21=0;29 + 29 = 0,
ie.
1 =0;29=0

in R*.
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3.3. Definition. We will call w-hypermeromorphic function (w- for weak)
any almost everywhere defined hyperholomorphic function whose right in-

verse is hyperholomorphic almost everywhere.

Recall: the conjugate (in the sense of quaternions) of f = f; + fof is
f=17T1—faj,and f7H = [f|7'].

4. ON THE SPACES OF HYPERMEROMORPHIC FUNCTIONS.

4.1. Sum of two w-hypermeromorphic functions. Let f, g be two al-
most everywhere hyperholomorphic functions whose inverses have the same
property, then:

1) f + g is almost everywhere hyperholomorphic;

2) the inverse of f+g, (f+g¢)~! has to be almost everywhere hyperholo-
morphic.

1

Recall D = 0 ; 0

2055 Tiag)
(f+g9)t=1f+4g7"(f+9); |f +9]", being real, is transparent with
respect to D because z1j = jz; for z; € C;

D((f+9)7") ==If + 9’ D(f + 9))(F+9) +1f + 9 ' D(F +9)
We must have:

1f+9'D((f+9)") = =DUf +9))(F+9) +|f +9D(f+9) =0
Proposition 4.1. If f and g are two w-hypermeromorphic functions, then

the following conditions are equivalent:

(1) the sum h = f + g is w-hypermeromorphic;
(17) h satisfies the following PDE:

olh| .0|h| 0 0 .\ — .
(Gzl ‘]8_ )(hl )+|h|( +Ja )(hl_hQJ):O

If f and g are holomorphic, the condition (7) is trivially satisfied.
Proof. Explicit the condition:
A" D(hY) = =D(|B)])(R) + [h[D(R) = 0

Ohy  Ohy Ohy  Ohy\.

9
2Dh = (g5 +ige) (= haj) = = + 572 = (5= — 5 7)]
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_ _ 1,0 .0 _

D(|h|) = D(h1hy + hohy) = 5(a—El +Ja—22)(h1h1 + hahs)
1 8}11 - 8h2 851 ahZ
§(hla—1 M T, hQazl)

— Ohy  — Ohy Ohy Ohs. .
h h =0.
62’2 82’2 th 822 +h 822 )J 0

U

Remark on functions of complex variables z,Z with real values. We assume

0,00
such a function f(z,Z) a convergente series in (z,%), E a7, From f =
0,0

7 | of 0
f,we get: ay = Q. —— Zlamzil 1. J;:Zkﬁkﬁ zlle—f— f.

Jz 0z
The result remains vahd if fis C*.

Proposition 4.2. If f and g are two w-hypermeromorphic functions whose

components are real, then the following propeeties are equivalent:

(1) the sum h = f + g is w-hypermeromorphic;
(13) f and g satisfy the following condition: hy = Ay(z2,Z2); ha = Aa(21,%1)
and Ay + Ay = B, const.

Consider the full condition: |h|>?D(h~') = —D(|h|)h + |h|Dh =0

Proof. From Proposition 3.3, we have

ofy  0fi
9z Tz, 0
of _on_,
821 872
fi. .Of
Recall a5, J 9,
0 .0 o Ohy  Ohy  Ohy Ol .
2Dh = (5 +ig ) —had) = oo+ 50— (5 = 5,))i
B 22_li.i22_8h Ohs Ohq Ohs
D(|h]) = D(hi+h3) = 5 (851 +']822)(h1+h2) = 821 +h23 (h1 92 +ho az2) )
— ohy Oh, Ohq Oh
WP D(h™") = —=D(|h))h+|h|D(h) = — (hi o +hom—t (h 5 —+ha—~—)§) (1 —haj)
071 0z, 029 07y
2 218h1 8h2_6h2_8h1,_
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0hq Oho Ohs Ohq
2 >~ (— hi— + 3h3 hi— + h3 =0
@) (=higs +3hg )+ (=g +hags )
From (2)
Ohq Ohs Ohq oh
201 20N 201 202
Then: either h] — 3h‘2l =0, or:
Ohy Ohs
—=0,=—=0
621 ’ 822
and, previously
oy __ohy
02’2 N 821
Then: hl = Al(ZQ,zg); hg = AQ(Zl,Zl) and Al + A2 = B, const. Ul

4.2. Product of two w-hypermeromorphic functions.

Proposition 4.3. Let f, g be two w-hypermeromorphic functions on U,
then the following conditions are equivalent:

(1) the product f * g is w-hypermeremorphic;

(17) f and g satisfy the system of PDE:

dfi | 9f, N 91, 09, _
(aZ1+822) (fl f)a— +f28 2821—0
dfi  Of, 59 5 O9¢ 07,
(822 821 ) + (fl fl)(‘?EQ f2 821 f2 652 =0

Proof. Let f = f1 + foj and g = g1 + g2j two hypermeromorphic functions
and f* g = fig1 — fogs + (f1g92 — f2g,)j their product, then

851 822 ’
I(frg1 — f295) 0192 — [291)
831 822
_0fi  Of, f, | 0fs dg1 J9, 991,99,
_gl(azl—i_aZ) g2(8 +a—)+f1 fl +f28 2821—0
ofi  Ofsy 00 5 09: O _ % _
91(8_ +82)+f1 fl +f282 2831—0-
(flgl —f292) + (f192_f291)
822 821
0fi _0f, 0_71_% 091 - O 09> _
(822 8zl)+92(8zl ) fl fl 82 +f2821 f2822 =0
df1 - 8f2 g1 a91 - a92 _
(8_22 8—Z1)+f1 +fla f28 f2822_
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g

Remark. If f and g are holomorphic, or meromorphic, the condition (%)

is trivially satisfied.

Proposition 4.4. Let f, g be two w-hypermeromorphic functions on U,

whose component are real, then the following conditions are equivalent:

(1) the product f x g is w-hypermeremorphic;
(17) f and g satisfy the PDE:

afl 5’92 L9 ofi 892

821 822 622 821 =0
Proof. Assume that fi, fo, g1, g2 are real; then:
dfi | 0fs dg1  O0ga
(621 622) fz(aZQ 82’1)
@) aofi  Of 0 0
1 2 g1 92
(622 (921) 2(621 + 832)
f being w-hypermeromorphic satisfies:
Ofa  O0fi
821 * 852 N O’
(4)
of _ 0k _
(92!1 622
the same for g. Using (4), we get, from (3)
afl 092 .
+ for o = 0
df 092 .
N B2 — fomz— B2 0

To get fy, g1 not both 0, , we need the relation:

8fl 592 L 9N 3f1 892 _
821 322 62:2 87:1

=0

g

4.3. Definition. We will call hypermeromorphic the w-hypermeromorphic

functions whose sum and product are w-hypermeromorphic. Their space is

nonempty, since the product 1 of a w-hypermeromorphic and its inverse is

w-hypermeromorphic; moreover this space contains the right H-algebra of

the meromorphic functions.
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4.4. Hypermeromorphic functions whose two components are real.
Let f, g be two hypermeromorphic functions on U.
From Proposition 3.3, they satisfy:

f2 | 0N ofr  0f

o T Ve om0
0% 00 _ 90 _ 9%
(921 822 821 822

The properties: the sum h = f + g is hypermeromorphic, is equivalent to:
hl = A1(22,32>; hg = AQ(Zl,El) and Al + A2 = B, COHSt.;
the product f x ¢ is hypermeremorphic, is equivalent to:

0f1092 | 041992

= = =0
(9z1 822 822 821

Proposition 4.5. Let f and g be quaternionic functions such that their
components be real. The following conditions are equivalent:

(1) f,g, their sum and their product are w-hypermeromorphic;
(13) f,g satisfy the following relations:

0 0 0 0

Oh | Of O )

0z 07 N ,821 029

992 , O _ 09 992 _
821 822 ’ 821 822

0f1 0q Of1 O

2z 2 EI

821 621 82’2 822
fit g1 = A1(29,22); fo + g2 = As(21,Z1) where Ay and Ay are given and
satisfy Ay + Ay = B, const.

Altogether we have 10 variables and 8 relations.

Proposition 4.6. The set of hypermeromorphic functions whose two com-

ponents are real is an R-right algebra.

Proposition 4.7. The set M of hypermeromorphic functions on U is a

subalgebra of the algebra of quaternionic functions.

Proposition 4.8. The set A of hypermeromorphic functions on U is a
“field” with only associativity of the multiplication.

4.5. Meromorphic functions and Hypermeromorphic functions.
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4.5.1. Motivation. Meromorphic functions satisfy all PDE satisfied by hy-
permeromorphic functions.

Meromorphic functions have, classically, behavior on their domain of
definition U compatible with the behavior of hypermeromorphic functions
on U. In the same way the sum and the product of a hypermeromorphic

function and a meromorphic function is a hypermeromorphic function

4.5.2. Conclusion. The H-algebra and the field of meromorphic functions
are substructures of the set of hypermeromorphic functions.

In particular the union of the set of meromorphic functions and the set of
hypermeromorphic functions whose components are real give a large number

of examples of hypermeromorphic functions.

4.6. Acknowledgement. Guy Roos pointed out to me that quaternions

whose components are real are complex numbers.
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