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Abstract

We address the problem of characterizing H-coloring problems that are first-order defin-
able on a fixed class of relational structures. In this context, we give several characteri-
zations of a homomorphism dualities arising in a class of structure.
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1. Introduction

Recall that classical model theory studies properties of abstract mathematical struc-
tures (finite or not) expressible in first-order logic [19], and finite model theory is the
study of first-order logic (and its various extensions) on finite structures [10], [26].

Constraint Satisfaction Problems (CSPs), and more specifically H-coloring problems,
are standard examples of problems which can be expressed in monadic second order
logic but usually not in first-order logic. Of course, expressing a H-coloring problem
in first-order logic would be highly appreciable, as it would allow fast checking (in at
most polynomial time) although problems expressed in monadic second order logic are
usually NP-complete. In this direction, it has been proved by Hell and Nešetřil [17]
that in the context of finite undirected graphs the H-coloring problem is NP-complete
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unless H is bipartite, in which case the H-coloring problem belongs to P. This, and a
similar dichotomy result of Schaefer [39] led Feder and Vardi [13, 14] to formulate the
celebrated Dichotomy Conjecture which asserts that, for every constraint language over
an arbitrary finite domain, the corresponding constraint satisfaction problems are either
solvable in polynomial time, or are NP-complete. It was soon noticed that this conjecture
is equivalent to the existence of a dichotomy for (general) H-coloring problems, and in
fact it suffices to prove it for oriented graphs (see [14] and [18]).

Alternately, the class P can be described as the class of problems expressible (on
ordered structures) in first-order logic with a least fixed point operator [42, 20]. On the
other hand the class NP may be characterized (up to polynomial equivalence) as the
class of all problems which have a lift determined by forbidden homomorphisms from
a finite set [24]. Hence , we are led naturally to the question of descriptive complexity
of classes of structures corresponding to H-coloring problems. Particular case is the
question whether a H-coloring problem may be expressed in first-order logic or not.

In this paper, we will consider the relativized version of the problem of first-order
definability of H-coloring problems to graphs (or structures) belonging to a fixed class
C:

Problem 1. Given a fixed class C of graphs (directed graphs, relational structures),
determine which H-coloring problems are first-order definable in C, that is for which
graphs (directed graphs, relational structures) H there exists a first-order sentence φH

such that
∀G ∈ C : (G |= φH) ⇐⇒ (G → H).

The case where C is the whole class of all finite graphs (all finite directed graphs, all
finite relational structures with given finite signature) is well understood. Atserias [1, 2]
and Rossman [37] proved that in this case first-order definable H-colorings correspond
exactly to finite homomorphism dualities, and these dualities have been fully character-
ized (for undirected graphs, by Nešetřil and Pultr [34]; for directed graphs, by Komárek
[21]; for general finite structures, by Nešetřil and Tarif [35]):

Theorem 1 ([35]). For any signature σ and any finite set F of σ-structures the following
two statements are equivalent:

1. There exists D such that F and D form a finite duality, that is:

∀ finite G : (∀F ∈ F , F 9 G) ⇐⇒ (G → D)

2. F is homomorphically equivalent to a set of finite (relational) trees.

An example of such a duality for finite directed graphs is the Gallai-Hasse-Roy-Vitaver
theorem [15, 16, 38, 43], which states that for every directed graph ~G it holds:

~Pk+1 9 ~G ⇐⇒ ~G → ~Tk.

For general classes of graphs the answer is more complicated . For instance, let C be
the class of toroidal graphs and let φ be the sentence

∀x0 ∀x1 . . . ∀x10

10∨

i=0

¬(xi ∼ xi+1) ∨ ¬(xi ∼ xi+2) ∨ ¬(xi ∼ xi+3),
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where additions are considered modulo 11 and where u ∼ v denotes that u and v are
adjacent. Then, it follows from [41] that a graph G ∈ C satisfies φ if and only if it is
5-colourable. This property can be alternatively be expressed by the following restricted
duality:

∀G ∈ C : −6−→ G ⇐⇒ G −→

The situation, for general classes of graphs or structures, is quite complex. The
problem can be split into two sub-problems. Namely, with respect to a fixed class C:

1. Are first-order definable H-colorings the same as finite restricted dualities?

2. How to characterize finite restricted dualities?

Although characterizing those graphs H such that H-coloring is first-order definable
in the class C is undoubtedly a complex and difficult goal, characterizing those graphs
(directed graphs, structures) F such that forbidding homomorphisms from F is equivalent
to some coloring problem (that is: templates of restricted singleton dualities) may be
easier.

Furthermore, as such a generality might well still be out of reach, we may also restrict
ourselves and consider which classes are “nice” in the sense that they contain all the first-
order coloring we should intuitively expect, that is all those coloring problems, which arise
from forbidding a connected template. In this direction, we proved in [29] (and we sketch
a proof below in Section 3) that classes with bounded expansion (a concept introduced
in [28]) have all such restricted dualities. In this paper we prove here that the converse
holds: Under some mild assumptions, a class has all restricted dualities if and only if it
is a class with bounded expansion. The characterization of those classes that have all
restricted dualities is the subject of Section 3 to 6.

Then we address in Section 7 the problem of determining whether first-order definable
H-colorings are the same as finite restricted dualities in a class C. This is related to a
classical model theoretical topic: homomorphism preservation theorems. Finally, we
relate the problem of characterizing first-order definable colorings of hereditary addable
topologically closed class of graphs to classical conjectures of Thomassen [40] and Erdős–
Hajnal [12].

2. Preliminaries

2.1. Taxonomy of Classes of Graphs

In the following, we denote by Graph the class of all finite graphs. A class of graphs C
is monotone (resp. hereditary, topologically closed) if every subgraph (resp. every induced
subgraph, every subdivision) of a graph in C also belongs to C. Notice that if a class C
is both hereditary and topologically closed it is also monotone: If H is a subgraph of a
graph G ∈ C, the graph H is an induced subgraph of the graph G′ ∈ C obtained from G
by subdividing every edge not in H , hence H ∈ C. For a graph G, we denote by ω(G)
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its clique number, by χ(G) its chromatic number, and by d(G) the average degree of its
vertices. By extension, for a class of graphs C we define

ω(C) = sup{ω(G), G ∈ C}

χ(C) = sup{χ(G), G ∈ C}

d(C) = sup{d(G), G ∈ C}

We proposed in [30, 32, 28] a general classification scheme for graph classes which is
based on the density of shallow (topological) minors (we refer the interested reader to
the monography [33]). This classification can be defined in several very different ways
and we give here one of the simplest definitions:

Let p be a half-integer. A graph H is a shallow topological minor of a graph G at depth
p if some ≤ 2p-subdivision of H is a subgraph of G; the set of all shallow topological
minors of G at depth p is denoted by G ▽̃ p and, more generally, C ▽̃ p denotes the class
of all shallow topological minors at depth p of graphs in C.

A class of undirected graphs C is somewhere dense if there exists an integer p such
that the p-th subdivision of every finite graph H may be found as a subgraph of some
graph graph in C; it is nowhere dense otherwise.

In other words, the class C is nowhere dense if

∀p ∈ N, ω(C ▽̃ p) < ∞.

A particular type of nowhere dense classes will be of particular importance in this
paper: A class C has bounded expansion [28] if

∀p ∈ N, d(C ▽ p) < ∞.

Among the numerous equivalent characterizations that can be given for the property
of having bounding expansion, we will make use of a characterization based on the
chromatic numbers of the shallow topological minors of the graphs in the class. This
characterization can be deduced from the following result of Dvořák [8, 9] (see also [33]):

Lemma 2. Let c ≥ 4 be an integer and let G be a graph with minimum degree d >

56(c−1)2 log(c−1)
log c−log(c−1) . Then the graph G contains a subgraph G′ that is the 1-subdivision

of a graph with chromatic number c.

Hence the following characterization of classes having bounded expansion:

Lemma 3. A class C has bounded expansion if and only if it holds

∀p ∈ N, χ(C ▽̃ p) < ∞. (1)

Proof. According to Lemma 2, for every graph G and every integer p there exists an
integer C such that:

d(G ▽̃ p) ≤ C χ(G ▽̃ (2p + 1/2))4.

Moreover, as every graph G is (⌊d(G ▽̃ 0)⌋+1)-colorable, every graph in G ▽̃ p is (⌊d(G ▽̃ p)⌋+
1)-colorable, that is:

d(G ▽̃ p) ≥ χ(G ▽̃ p) − 1.

The result follows from these two inequalities.

Thus we see that all three parameters d, ω, and χ can be used to define bounded
expansion classes.
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2.2. Relational Structures
We recall some basic definitions, notations and result of model theory. Our terminol-

ogy is standard, cf [10, 25]:
A signature σ is a finite set of relation symbols, each with a specified arity. A σ-

structure A consists of a universe A, or domain, and an interpretation which associates
to each relation symbol R ∈ σ of some arity r, a relation RA ⊆ Ar.

A σ-structure B is a substructure of A if B ⊆ A and RB ⊆ RA for every R ∈ σ. It is
an induced substructure if RB = RA ∩Br for every R ∈ σ of arity r. Notice the analogy
with the graph-theoretical concept of subgraph and induced subgraph. A substructure
B of A is proper if A 6= B. If A is an induced substructure of B, we say that B is an
extension of A. If A is a proper induced substructure, then B is a proper extension.
If B is the disjoint union of A with another σ-structure, we say that B is a disjoint
extension of A. If S ⊆ A is a subset of the universe of A, then A ∩ S denotes the
induced substructure generated by S; in other words, the universe of A ∩ S is S, and the
interpretation in A ∩ S of the r-ary relation symbol R is RA ∩ Sr.

The Gaifman graph Gaifman(A) of a σ-structure A is the graph with vertex set A
in which two vertices x 6≃ y are adjacent if and only if there exists a relation R of arity
k ≥ 2 in σ and v1, . . . , vk ∈ A such that {x, y} ⊆ {v1, . . . , vk} and (v1, . . . , vk) ∈ RA.

A block of a σ-structure A is a tuple (R, x1, . . . , xk) such that R ∈ σ has arity k and
(x1, . . . , xk) ∈ RA. The incidence graph Inc(A) is the bipartite graph (A,B,E) where
A is the universe of A, B is the set of all blocks of A, and E is the set of the pairs
{(R, x1, . . . , xk), y} ⊆ B ×A such that y ∈ {x1, . . . , xk}. Thus for us Inc(A) is a simple
graph. No multiple edges are needed for our purposes.

For k ≥ 2, a circuit in a relational structure A is a cycle (x1, y1, . . . , xk, yk) of Inc(A)
where for every 1 ≤ a ≤ k if ya = (Ra, z

a
1 , . . . , z

a
k) then there exist 1 ≤ i < j ≤ ra (where

ra is the arity of Ra) such that xa = zai and xa+1 = zaj (where we define xk+1 = x1); the
integer k is the length of the circuit. A structure without a circuit is acyclic. In the case
where A is an undirected structure, a circuit is called a cycle.

A homomorphism A → B between two σ-structure is defined as a mapping f : A → B
which satisfies for every relational symbol R ∈ σ the following:

(x1, . . . , xk) ∈ RA =⇒ (f(x1), . . . , f(xk)) ∈ RB.

The class of all σ-structures is denoted by Rel(σ).
The definition of bounded expansion extends to classes of relational structures: a class

C of relational structures has bounded expansion if the class of the Gaifman graphs of the
structures in C has bounded expansion. It is immediate that two relational structures
have the same Gaifman graph if they have the same incidence graph, but that the converse
does not hold in general. For a class of relational structures C, denote by Inc(C) the class
of all the incidence graphs Inc(A) of the relational structures A ∈ C.

Proposition 4 ([33]). Assume that the arities of the relational symbols in σ are bounded,
and let C be an infinite class of σ-structures. Then the class C has bounded expansion if
and only if the class Inc(C) has bounded expansion.

3. Classes with All Restricted Dualities

A class of σ-structures A has all restricted dualities if every non-empty connected σ-
structure has a restricted dual for C, that is: for every non-empty connected σ-structure

5



F there exists a σ-structure D such that F 9 D and

∀A ∈ C : (F → A) ⇐⇒ (A 9 D).

Note that this definition implies that also for any finite set F1,F2, . . . ,Ft of connected
σ-structures there exists a σ-structure D such that Fi 9 D (for 1 ≤ i ≤ t) and

∀A ∈ C : (∃i ≤ t : Fi → A) ⇐⇒ (A 9 D).

We proved in [29] that bounded expansion classes have all restricted dualities:

Theorem 5. Let C be a class with bounded expansion. Then for every connected graph
F there exists a graph D such that (F,D) is a restricted homomorphism duality for C:

∀G ∈ C (F → G) ⇐⇒ (G 9 H). (2)

Theorem 5 naturally extends to relational structures by considering Gaifman graphs:

Theorem 6. let K be a class of relational structures. If the class of the Gaifman graphs
of the structures in K has bounded expansion then the class K has all restricted dualities.

How far is Theorem 6 from a characterization of classes with all restricted dualities?
Can one characterize classes with all restricted dualities?

Below we give several characterization theorems which provide answers to these ques-
tions. These characterizations use various tools and various restrictions on classes, and
perhaps indicate the rich context of this phenomenon: In Section 4 we present a charac-
terization by means of metric and approximations. in Section 5 we present characteriza-
tion of reorientation-closed classes having all restricted dualities; in Section 6 we present
characterization of topologically closed classes having all restricted dualities.

While an application of the first characterization leads to an alternative proof of
Theorem 6 (using [27, 28]), which we present in Section 4, the second and third charac-
terizations are on the way of a characterization of first-order definable coloring, either
by considering lifts (reorientations) or interpretations (subdivisions). This leads us to a
study of relativized homomorphisms preservation theorems, which we review in Section 7.
Combining this with the characterization of topological classes having all restricted du-
alities, this leads to interesting problems in the spirit of classical combinatorial problems
of Thomassen [40] and Erdős–Hajnal [12].

Remark 7. The metric characterization is interesting in itself and fits to broader context
which can be outlined as follows: The finite dualities are equivalently characterized
by properties of the homomorphism quasi-order (Rel(σ),≤) (where we put A ≤ B iff
A −→ B, cf. [18]): The dual pairs F,D are in 1− 1 correspondence with connected gaps
i.e. with pairs (A,B) where B is connected, A < B and there is no C with A < C < B.
For restricted dualities we do not have such a nice correspondence. However the role of
the homomorphism order is taken by the completion of the homomorphism order and
by the approximation as explained in Section 4. However for the completion of the
homomorphism order we have full characterization of dualities (see [31, 33]). Details will
appear elsewhere.
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4. Characterization by Approximations

For a structure A and an integer t, define Θt(A) as the minimum order of a structure
B such that

• A → B,

• every substructure F of B with order |F | < t has a homomorphism to A.

Intuitively, such a structure B can be seen as approximate core of A: For t ≥ |B|, A and
B are homomorphism-equivalent and B is the core of A (alternately, B is the minimal
retract of A). A structure B with the above properties and order Θt(A) is called a
t-approximation of (the homomorphism equivalence class of) A.

Theorem 8. Let C be a class of σ-structures. Then C is bounded and has all restricted
dualities if and only if C for every integer t we have supA∈C Θt(A) < ∞.

Proof. Assume C is bounded and has all restricted dualities and let t ∈ N be an integer.
Let Z be a strict bound of C, that is a structure such that for every A ∈ C it holds
A → Z but Z 9 A. As the sequence (Θt(A))t∈N is obviously non-decreasing, we may
assume without loss of generality that t ≥ |Z|. For a structure A ∈ C, let Ft(A) be
the set of all connected cores T of order at most t such that T 9 A. This set is not
empty as it contains the core of Z. For T ∈ Ft(A), let DT be the dual of T relative to
C and let A′ be the product of all the DT for T ∈ Ft(A). First notice that for every
T ∈ Ft(A) we have T 9 A hence A → DT. It follows that A → A′. Let T′ be a
connected substructure of order at most t of A′. Assume for contradiction that T′ 9 A.
Then Core(T′) ∈ Ft(A) hence A′ → DT′ thus T′ 9 A′ (as for otherwise T′ → DT′), a
contradiction. Thus T′ → A. It follows that Θt(A) ≤ |A′| ≤ C(t) for some suitable finite
constant C(t) independent of A (for instance, one can choose C(t) to be the product of
the orders of all the duals relative to C of connected cores of order at most t).

Conversely, assume that we have supA∈C Θt(A) < ∞ for every t ∈ N. The class
C is obviously bounded by the disjoint union of all non-isomorphic minimal order 1-
approximations of the structures in C. Let F be a connected σ-structure, let t ≥ |F |, and
let D be a set of t-approximations of all the structures A ∈ C such that F 9 A. As all
the Θt(A) are bounded by some constant C(t), the set D is finite. If D, let Dt(F) be the
empty substructure. Otherwise, let Dt(F) be the disjoint union of all the graphs in D.
First notice that F 9 Dt(F) as for otherwise F would have a homomorphism to some
structure in D (as F is connected), that is to some t-approximation B′ of a structure B

such that F 9 B (this would contradict F → B′). Also, if F → A then A 9 Dt(F) (for
otherwise F → Dt(F)) and if F 9 A then D contains a t-approximation A′ of A thus
A → Dt(F). Altogether, Dt(F) is a dual of F relative to C.

As an application of this characterization, we can outline a proof of Theorem 6.

Proof of Theorem 6 (sketch). Let K be a class of relational structures. Assume the class
of the Gaifman graphs of the structures in K has bounded expansion. Let A ∈ K, and
let t ∈ N be at least as large as the maximum arity of a relation in the signature of A.

The tree-depth td(G) of a graph G is the minimum height of a rooted forest whose
closure includes G as a subgraph. A property of tree-depth is that there exists a function
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̥ : N → N with the property that if the Gaifman graph of a structure B has tree-depth
at most t then there exists a homomorphism f : B → B such that |f(B)| ≤ ̥(t) [27].
For integer t, we defined in [27] the graph invariant χt as follows: for a graph G, χt(G)
is the minimum number of colors need in a coloring of G such that the union of every
subset of k ≤ t color classes induces a subgraph with tree-depth at most k. It has been
proved in [28] that a class of graphs C has bounded expansion if and only if for every
integer t it holds sup{χt(G) : G ∈ C} < ∞ (this is related to Lemma 3 above).

We consider a coloring c of the Gaifman graph of A by N = χt(Gaifman(A)) colors,
which is such that the union of every subset of k ≤ t color classes induces a subgraph with
tree-depth at most k. It follows that I for each I ∈

(
[N ]
t

)
there exists a homomorphism

fI : AI → AI such that |fI(AI)| ≤ ̥(t), where AI denotes the substructure of A

induced by elements with color in I. Define the equivalence relation ∼ on the domain of
A by

x ∼ y ⇐⇒ c(x) = c(y) and ∀I ∈

(
[N ]

t

)
fI(x) = fI(y).

Define the structure Â (with same signature as A) whose domain is the set of the
equivalence classes [x] ∈ A/ ∼, and relations are defined by

([x1], . . . , [xki
]) ∈ RÂ

i ⇐⇒ ∀I ∈

(
[N ]

t

)
(fI(x1), . . . , fI(xki

)) ∈ RA

i .

We also define a N -coloration of Â by ĉ([x]) = c(x). One checks easily that Â and ĉ

are well defined. By construction, x 7→ [x] is a homomorphism A → Â. Moreover, for

every I ∈
(
[N ]
t

)
the mapping [x] 7→ fI(x) is a homomorphism ÂI → AI (where ÂI is the

substructure of Â induced by colors in I). It follows that

|Θt(A)| ≤ |Â| ≤ ̥(t)N
t

≤ ̥(t)χt(Gaifman(K))t .

According to Theorem 8, this implies that the class K has all restricted dualities.

For an alternate proof, we refer the reader to [29, 33].

5. Classification by Orientations

Let A,B be two structures. The structure B is a weak reorientation of A is

• for all (x1, . . . , xri) ∈ RA

i , there exists a permutation π of {1, . . . , ri} such that
(xπ(1), . . . , xπ(ri)) ∈ RB

i ;

• for all (y1, . . . , yri) ∈ RB

i , there exists a permutation ρ of {1, . . . , ri} such that
(yρ(1), . . . , yρ(ri)) ∈ RA

i .

Notice that this obviously defines an equivalence relation, and that RA
i and RB

i can have
different cardinality. For instance, the symmetric orientation and any simple orientation
of an undirected graph G are weak-reorientation of each other.

Let A be the universe of A and let < be a linear order on A. Then B is the linear
<-reorientation of A if B is a weak reorientation of A satisfying

∀(y1, . . . , yri) ∈ RB

i y1 < y2 < · · · < yri .
8



(Notice that A has a unique linear <-reorientation for each linear order <.) Extending
the well known topological sorting of graphs, it is easily checked that a structure A is
acyclic (see definition in Section 2.2) if and only if there exists a linear order < on A
such that A is its own linear <-reorientation.

For a class C we define

• the class Cwor has the class of all weak reorientations of structures in C;

• the class Cacyc has the class of all acyclic weak reorientations of structures in C.

Theorem 9. Let C be a class. The following properties are equivalent:

1. the class C has bounded expansion;

2. the class Cwor has all restricted dualities;

3. for every integer p, there is Dp with no circuits of length at most p such that

∀A ∈ Cacyc, A → Dp.

Proof. We prove the equivalence by means of three implications:

(1) ⇒ (2) is a direct consequence of Theorem 6.

(2) ⇒ (3) is straightforward (consider the product of the duals of all the minimal struc-
tures with a circuit of length at most p).

(3) ⇒ (1) is proved by contradiction: Assume that (3) holds and that C does not have
bounded expansion. According to Proposition 4 the class Inc(C) does not have bounded
expansion. According to Lemma 3 there exists an integer p such that Inc(C) ▽̃ p has
unbounded chromatic number. Let N be the order of Dp+1. There exists in Inc(C) a
graph G which contains the ≤ p-subdivision S of a graph H having chromatic number
strictly greater than N . We may further assume that the minimum degree of H is strictly
greater than the maximum arity of a relational symbol in σ. Let A ∈ C be such that G
is isomorphic to the incidence graph of A. By the assumptions on the minimal degree
of H , the branching vertices of G correspond to vertices of A. Consider a linear order
< on the universe A of A such that every branch of S will correspond to a monotone
sequence. Consider the linear <-reorientation B of A. According to (3), there exists a
homomorphism f : B → Dp+1. Moreover, the two endpoints of a branch of S cannot
have the same image by f as then a circuit of length at most p would exist in Dp+1. It
follows that any two adjacent vertices in H are mapped by f to distinct vertices of Dp+1

hence χ(H) ≤ |Dp+1|, a contradiction.

6. Characterization by Subdivisions

Theorem 10. Let C be a topologically closed class of undirected graphs.
Then the following properties are equivalent:

1. the class C has bounded expansion;

2. the class C has all restricted dualities;

9



3. for every odd integer g there exists a non-bipartite graph Hg with odd-girth at least
g such that every graph G ∈ C with odd-girth at least g has a homomorphism to Hg

Proof. The proof follows from the next three implications:

• (1) ⇒ (2) is a direct consequence of Theorem 5.

• (2) ⇒ (3) is straightforward (consider for Hg a dual of Cg for C).

• (3) ⇒ (1) is proved by contradiction: assume that (3) holds and that C does not
have bounded expansion. According to Lemma 3 there exists an integer p such that
C ▽̃ p has unbounded chromatic number. As C is topologically closed there exists
an odd integer g ≥ p and a graph G0 ∈ C such that G0 is the (g− 1)-subdivision of
a graph H0 with chromatic number χ(H0) > |Hg|. According to (3), there exists
a homomorphism f : G0 → Hg. As Cg 9 Hg, the ends of a path of length g
cannot have the same image by f . It follows that any two adjacent vertices in H0

correspond to branching vertices of G0 which are mapped by f to distinct vertices
of Hg. It follows that χ(H0) ≤ |Hg|, a contradiction.

7. Homomorphism Preservation Theorems

Suppose that an H-coloring problem is first-order definable. By this we mean that
there is a first-order sentence Φ such that

G → H ⇐⇒ G |= Φ.

It immediately follows that ¬Φ is preserved by homomorphisms:

G � ¬Φ and G → G′ =⇒ G′
� ¬Φ

(for otherwise G → G′ → H hence G � Φ, a contradiction).
Such a property suggests that such a formula Φ could be equivalent to a formula with

a specific syntactic form. Indeed the classical Homomorphism Preservation Theorem
asserts that a first-order formula is preserved under homomorphisms on all structures
if, and only if, it is logically equivalent to an existential-positive formula. The terms
“all structures”, which means finite and infinite structures, is crucial in the statement of
these theorems.

It was not known until recently whether this theorem would hold when relativized
to the finite. In fact other well known theorems relating preservation under some speci-
fied algebraic operation and certain syntactic forms, like  Loś-Tarski theorem or Lyndon’s
theorem, fail in the finite. However, the finite relativization of the homomorphism preser-
vation has been proved to hold by B. Rossman [37]. In its “graph form” the result may
be stated as follows:

Theorem 11 ([37]). Let φ be a first order formula. Then,

G → H and G � φ =⇒ H � φ

holds for all finite graphs G and H if and only if for finite graphs φ is equivalent to an
existential first-order formula.

10



It follows that for finite structures, the only H-coloring problems which are expressible
in first-order logic are those for which there exists a finite family F of finite structures
with the property that for every graph G the following finite homomorphism duality
holds:

∃F ∈ F F → G ⇐⇒ G 9 H. (3)

If we want to relativize Theorem 11, we should consider each relativization as a
new problem. The  Loś-Tarski theorem, for instance, holds in general, yet fails when
relativized to the finite, but holds when relativized to hereditary classes of structures
with bounded degree which are closed under disjoint union [3]. These examples stress
again that some properties of structures (in general) and graphs (in particular) need, at
times, to be studied in the context of a fixed class, in order to state a relativized version
of a general statement which could fail in general.

In this context Atserias, Dawar and Kolaitis defined classes of graphs called wide,
almost wide and quasi-wide (cf. [6] for instance). It has been proved in [3] that the
extension preservation theorem holds in any class C that is wide, hereditary (i.e. closed
under taking substructures) and closed under disjoint unions, that is hereditary classes
with bounded degree which are closed under disjoint unions. Also, it has been proved in
[4] [5] that the homomorphism preservation theorem holds in any class C that is almost
wide, hereditary and closed under disjoint unions. Almost wide classes of graphs include
classes of graphs which exclude a minor [22].

In [7] Dawar proved that the homomorphism preservation theorem holds in any hered-
itary quasi-wide class that is closed under disjoint unions. This is a strengthening of the
result proved in [4].

Theorem 12 ([7]). Let C be a hereditary addable quasi-wide class of graphs. Then the
homomorphism preservation theorem holds for C.

However, we have proved that hereditary quasi-wide classes of graphs are exactly
hereditary nowhere dense classes [30]:

Theorem 13. A hereditary class of graphs C is quasi-wide if and only if it is nowhere
dense.

Thus it follows from Theorems 12 and 13 that the relativization of the homomor-
phism preservation theorem holds for every hereditary addable nowhere dense class of
graphs. But nowhere dense classes are not the only classes with relativized homomor-
phism preservation theorem. We now show that relativized homomorphism preservation
theorems are preserved by particular interpretations, from which will deduce that rel-
ativized homomorphism preservation theorems hold for the classes Subq(Graph) of all
q-subdivisions of finite graphs. This is of particular interest as somewhere dense classes
(i.e. classes which fail to be nowhere dense) are characterized by containment of classes
Subq(Graph) for some q.

In the framework of the model theoretical notion of interpretation (see, for instance
[25, pp. 178-180]), we can construct the q-subdivision I(G) of a graph G by means of
first-order formulas on the q-tuples of vertices of G:

• vertices of I(G) are the equivalence classes x of the (q + 1)-tuples (v1, . . . , vq+1)
with form

(

j︷ ︸︸ ︷
u, . . . , u,

q+1−j︷ ︸︸ ︷
v, . . . , v)

11



where u and v are adjacent vertices in G (and 0 ≤ j ≤ q + 1), where tuples of the
form

(

j︷ ︸︸ ︷
u, . . . , u,

q+1−j︷ ︸︸ ︷
v, . . . , v) and (

q+1−j︷ ︸︸ ︷
v, . . . , v,

j︷ ︸︸ ︷
u, . . . , u)

are identified;

• edges of I(G) are those pairs {x, y} where x and y have representative of the form

(

j︷ ︸︸ ︷
u, . . . , u,

q+1−j︷ ︸︸ ︷
v, . . . , v) and (

j+1︷ ︸︸ ︷
u, . . . , u,

q−j︷ ︸︸ ︷
v, . . . , v)

(for some u, v ∈ G and 0 ≤ j ≤ q + 1).

A main interest of such an logical construction (called interpretation) lies in the
following property:

Proposition 14 (See, for instance [25], p. 180). For every first-order formula F [v1, . . . , vk]
there exists a formula I(f)[w1, . . . , wk] with k(q + 1) free variables (each wi represents a
succession of (q + 1) free variables) such that for every graph G and every (x1, . . . , xk) ∈
I(G)k the three following conditions are equivalent:

1. I(G) � F [x1, . . . , xk];

2. there exist b1 ∈ x1, . . . , bk ∈ xk such that G � I(F )[b1, . . . , bk];

3. for all b1 ∈ x1, . . . , bk ∈ xk it holds G � I(F )[b1, . . . , bk].

In particular, it holds:

Corollary 15. For every closed first order formula Φ (in the language of graphs) there
exists a closed first order formula Ψ such that for every graph G we have

G � Ψ ⇐⇒ Sub2p(G) � Φ. (4)

Lemma 16. If the homomorphism preservation theorem holds for a hereditary class of
graphs C, it also holds for the class Subq(C) of all q-subdivisions of the graphs in C.

Proof. If q is odd then the property is obvious as C contains at most two homomorphism
equivalence classes, the one of K1 and the one of K2. Hence we can assume q is even
and we define p = q/2.

Let Φ be a first order formula preserved by homomorphisms on Sub2p(C), where C
is a hereditary class of graphs on which the homomorphism preservation theorem holds.
Then we shall prove that there exists a finite family of 2p-subdivided graphs F , all of
which satisfy Φ, and such that for any graph G it holds

Sub2p(G) � Φ ⇐⇒ ∃F ∈ F Sub2p(F ) → Sub2p(G). (5)

According to Corollary 15 there exists a first order formula Ψ such that for every
graph G it holds

G � Ψ ⇐⇒ Sub2p(G) � Φ.

Assume that G � Ψ and G → H , with G,H ∈ C. Then Sub2p(G) � Φ and Sub2p(G) →
Sub2p(H). As Φ is preserved by homomorphisms on Sub2p(C) we get Sub2p(H) � Φ

12



hence H � Ψ. Thus Ψ is preserved by homomorphisms on C. As the homomorphism
preservation theorem holds by assumption on C, Ψ is equivalent on C with a positive
first-order formula, that is: there exits a finite family F0 of finite graphs such that for
every G ∈ C it holds:

G � Ψ ⇐⇒ ∃F ∈ F0 F → G.

Moreover, by considering the subgraphs induced by the homomorphic images of the
graphs F ∈ F0 and as C is hereditary, we can assume F0 ⊆ C. Thus every F ∈ F0

satisfies Ψ hence the 2p-subdivision of the graphs in F0 satisfy Φ. Let F be the set of the
2p-subdivisions of the graphs in F0. As Φ is preserved by homomorphisms on Sub2p(C)
it follows that for every graph G ∈ C if there exists F ∈ F such that F → Sub2p(G) then
Sub2p(G) satisfies Φ. Conversely, if Sub2p(G) satisfies Φ for some G ∈ C then G satisfies
Ψ, thus there exists F ∈ F0 such that F → G hence Sub2p(F ) → Sub2p(G).

We deduce this extension of Rossman’s theorem to the class of p-subdivided graphs:

Corollary 17. For every integer p, the homomorphism preservation theorem holds for
Subp(Graph).

For a discussion on relativization of the homomorphism preservation theorem, we
refer the reader to [33, Chapter 10].

8. On First-Order Definable H-colorings

Corollary 17 has the following negative consequence:

Lemma 18. Let p be a positive integer, let C be a class of graphs which includes
Sub2p(Graph), and let H be a non-bipartite graph (different from K1) of odd-girth strictly
greater than 2p+ 1. Then there exists no first order formula Φ such that for every graph
G ∈ C holds

(G � Φ) ⇐⇒ (G → H).

Proof. Assume for contradiction that such a formula Φ exists. As ¬Φ is preserved by
homomorphisms on C (hence on Sub2p(Graph)) it is equivalent on Sub2p(Graph) with an
existential first-order formula, that is: there exists a finite family F such that for every
graph G it holds:

∀F ∈ F F 9 Sub2p(G) ⇐⇒ Sub2p(G) → H.

Clearly, the graphs in F are non-bipartite. Let g be the maximum of girth of graphs in F
and let G be a graph with chromatic number χ(G) > |H | and odd-girth odd − girth(G) >
g. Then for every F ∈ F we have F 9 Sub2p(G) hence Sub2p(G) → H . However, has
the odd-girth of H is strictly greater than 2p + 1 two branching vertices of Sub2p(G)
corresponding to adjacent vertices of G cannot be mapped to a same vertex. It follows
that |H | ≥ χ(G), a contradiction.

Corollary 19. Let C be a hereditary addable topologically closed class of graphs.
Assume that for every integer p there is a non-bipartite graph Hp of odd-girth strictly

greater than 2p + 1 and a first order formula Φp such that for every graph G ∈ C holds

(G � Φp) ⇐⇒ (G → Hp).

Then C is nowhere dense.
13



To the opposite, if C has bounded expansion, there exists for every integer p a non-
bipartite graph Hp of odd-girth strictly greater than 2p+ 1 and a first order formula Φp

such that for every graph G ∈ C holds

(G � Φp) ⇐⇒ (G → Hp).

Indeed, consider for Φp the formula asserting that G contains an odd cycle of length at
most 2p + 1, and for Hp the restricted dual of the cycle C2p+1 with respect to C (whose
existence follows from Theorem 5.

Thus we are naturally led to the following conjecture.

Conjecture 1. Let C be a hereditary addable topologically closed class of graphs. The
following properties are equivalent:

1. for every integer p there is a non-bipartite graph Hp of odd-girth strictly greater
than 2p + 1 and a first order definable class Dp such that a graph G ∈ C is Hp-
colorable if and only if G ∈ Dp. Explicitly, there exists a formula Φp such that for
every graph G ∈ C holds

(G � Φp) ⇐⇒ (G → Hp);

2. the class C has bounded expansion.

Note that the hypothesis of the conjecture is only a bit weaker than the one of Theo-
rem 10, which asserts that a topologically closed class of graphs has bounded expansion if
and only if for every integer p there exists a non-bipartite graph Hp with odd-girth at least
2p + 1 such that every graph G ∈ C with odd-girth at least 2p + 1 has a homomorphism
to Hp.

To prove Conjecture 1 we are missing a property allowing extract obstructions in
nowhere dense classes that do not have bounded expansion. Existence of such obstruc-
tions is the core of the following conjecture, which (if true) would imply Conjecture 1.
This (structural conjecture) is, we believe, very interesting on its own.

Conjecture 2. Let C be a monotone nowhere dense class that does not have bounded
expansion. Then there exists an integer p such that C includes p-subdivisions of graphs
with arbitrarily large chromatic number and girth.

In support to Conjecture 2, note that it would follow from a positive solution to any
of the following two well known conjectures.

Conjecture 3 (Erdős and Hajnal [12]). For every integers g and n there exists an integer
N = f(g, n) such that every graph G with chromatic number at least N has a subgraph
H with girth at least g and chromatic number at least n.

The case g = 4 of the conjecture was proved by Rödl [36], while the general case
is still open. Remark that the existence of graphs of both arbitrarily high chromatic
number and high girth is a well known result of Erdös [11].

Conjecture 4 (Thomassen [40]). For all integers c, g there exists an integer f(c, g) such
that every graph G of average degree at least f(c, g) contains a subgraph of average
degree at least c and girth at least g.

The case g = 4 of this conjecture is a direct consequence of the simple fact that every
graph can be made bipartite by deleting at most half of its edges. The case g = 6 has
been proved in [23].

That Conjecture 2 follows from Conjecture 4 is a direct consequence of Lemma 2.
14
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