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Abstract

Incomplete rankings on a set of items {1, . . . , n} are orderings of the form a1 ≺ · · · ≺ ak,

with {a1, . . . ak} ⊂ {1, . . . , n} and k < n. Though they arise in many modern applications,

only a few methods have been introduced to manipulate them, most of them consisting in rep-

resenting any incomplete ranking by the set of all its possible linear extensions on {1, . . . , n}.
It is the major purpose of this paper to introduce a completely novel approach, which allows

to treat incomplete rankings directly, representing them as injective words over {1, . . . , n}.
Unexpectedly, operations on incomplete rankings have very simple equivalents in this setting

and the topological structure of the complex of injective words can be interpretated in a simple

fashion from the perspective of ranking. We exploit this connection here and use recent results

from algebraic topology to construct a multiresolution analysis and develop a wavelet frame-

work for incomplete rankings. Though purely combinatorial, this construction relies on the

same ideas underlying multiresolution analysis on a Euclidean space, and permits to localize

the information related to rankings on each subset of items. It can be viewed as a crucial step

toward nonlinear approximation of distributions of incomplete rankings and paves the way for

many statistical applications, including preference data analysis and the design of recommender

systems.

Keywords. Incomplete rankings, Multiresolution Analysis, Wavelets, Injective Words.

1 Introduction

Data expressing rankings or preferences have become ubiquitous in the Big Data era. Operating
continuously on still more content, modern applications such as recommendation systems and search
engines generate and/or exploit massive data of this nature. The design of statistical machine-
learning algorithms, tailored to this type of data, is crucial to optimize the performance of such
systems (e.g. rank documents by degree of relevance for a specific query in information retrieval,
propose a sorted list of items/products to a prospect she/he is most liable to buy in e-commerce).

∗This work was supported by Agence Nationale de la Recherche (France) grant ANR-11-IDEX-0003-02.
†Corresponding author - email: eric.sibony@telecom-paristech.fr - postal address: Telecom ParisTech 37-39 rue

Dareau, 75014 Paris, France.
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A well studied situation is when raw data are of the form of “full rankings” on a given set of items
indexed by JnK = {1, . . . , n} and are then described by permutations σ on JnK that map an item to
its rank, a1 ≺ . . . ≺ an with ai = σ−1(i) for i ∈ JnK. The variability of observations is represented
by a probability distribution p on the set Sn of all the permutations on JnK, which can be seen as
an element of the space

L(Sn) = {f : Sn → R},
such that p(σ) ≥ 0 for all σ ∈ Sn and

∑

σ∈Sn
p(σ) = 1. Though empirical estimation of p may

appear as a problem of disarming simplicity at first glance, it is actually a great statistical challenge
because the number of possible rankings (i.e. Sn’s cardinality) explodes as n! with the number
of instances to be ranked. Traditional methods in machine-learning and statistics quickly become
either intractable or inaccurate in practice and many approaches have been proposed these last few
years to deal with preference data and overcome these challenges in different situations (e.g. [9],
[16], [28], [13], [24], [14], [39]). Whatever the type of task considered (supervised, unsupervised),
machine-learning algorithms generally rest upon the computation of statistical quantities such as
averages or medians, summarizing/representing efficiently the data or the performance of a decision
rule candidate applied to the data. However, summarizing ranking variability is far from straight-
forward and extending simple concepts such as an average or a median in the context of preference
data raises a certain number of deep mathematical and computational problems, see [2], and call
for new constructions.

One approach, much documented in the literature, consists in exploiting the algebraic structure
of the (noncommutative) group Sn and perform a harmonic analysis on L(Sn), see for example
[6], [37], [22], [19], [21]. This corresponds to a decomposition of the form

L(Sn) ∼=
⊕

λ

dλS
λ,

where the Sλ’s are irreducible spaces invariant under the action of the translations f 7→ f(σ−1
0 .) for

all σ0 ∈ Sn, the λ’s correspond to “frequencies”, and the dλ’s are positive integers. The sign∼= above
means that the two spaces are isomorphic, the spaces Sλ being not necessarily subspaces of L(Sn).
This decomposition allows to localize the different spectral components of any function f ∈ L(Sn).
Furthermore, it is possible to define a (partial) order on the λ’s that indicates the different level of
“smoothness” of the elements of the corresponding Sλ’s (for instance, the smoothest component is
the space of constant functions), thus providing a natural framework for linear approximation in
L(Sn), see [15] or [18]. This framework also extends to the analysis of full rankings with ties, referred
to as bucket orders (or partial rankings sometimes): for 1 ≤ r ≤ n and µ = (µ1, . . . , µr) ∈ N∗r

such that µ1 + · · ·+ µr = n, orderings of the type a1,1, . . . , a1,µ1
≺ . . . ≺ ar,1, . . . , ar,µr

described
by mappings σ : JnK → {1, . . . , r} such that σ−1({i}) = {ai,1, . . . , ai,µi

} for any i ∈ {1, . . . , r}.
Among bucket orders, top-k rankings received special attention. They correspond to orderings of
the form a1 ≺ · · · ≺ ak ≺ the rest. The same notion of translation can be defined on the space Mµ

of real-valued functions on partial rankings with fixed form µ = (µ1, . . . , µr), leading to a similar
decomposition, called Young’s rule,

Mµ ∼=
⊕

λ

Kλ,µS
λ,

where the Sλ’s are the same as before and the Kλ,µ’s are integers ≥ 0 called the Kotska numbers.
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This “Sn-based” harmonic analysis is however not suited for the analysis of ranked data of the
form a1 ≺ · · · ≺ ak with k < n, i.e. when the rankings do not involve all the items. Such data
shall be referred to as incomplete rankings throughout the article. Indeed, though [22] provides a
remarkable application of Sn-based harmonic analysis to incomplete rankings, the decomposition
into Sn-based translation-invariant components is by essence inadequate to localize the information
relative to incomplete rankings on specific subsets of items. Yet incomplete rankings arise in many
modern applications (such as recommending systems), where the number of objects to be ranked
is very high whereas preferences are generally observed for a small number of objects only. In
statistical signal and image processing, novel harmonic analysis tools such as wavelet bases and
their extensions have recently revitalized structured data analysis and lead to sparse representations
and efficient algorithms for a wide variety of statistical tasks: estimation, prediction, denoising,
compression, clustering, etc. Inspired by advances in computational harmonic analysis and its
applications to high-dimensional data analysis, our goal is to develop new concepts and algorithms to
handle preference data taking the form of incomplete rankings, in order to solve statistical learning
problems, motivated by the applications aforementioned, such as efficient/sparse representation of
rankings, ranking aggregation, prediction of rankings. More precisely, it is the purpose of this paper
to extend the principles of wavelet theory and construct a multiresolution analysis tailored for the
description of incomplete rankings.

Let us introduce some preliminary notations to be more specific. For a finite set E of cardinality
|E| and k ∈ {0, . . . , |E|}, we denote by

(

E
k

)

the set of all subsets of E with k elements and we set

P(E) =
⋃|E|
j=2

(

E
j

)

. By definition, a ranking over a subset A ∈ P(JnK) is described by a bijective

mapping π : A → {1, . . . , |A|} that assigns to each item a ∈ A its rank (with respect to A). The
ensemble S′

A of such mappings can thus be viewed as the set of the incomplete rankings on JnK
involving the items of A solely. Notice that unless A = {1, . . . , k} with k ∈ {2, . . . , n}, this set
is different from – yet in one-to-one correspondence with – the set SA of permutations on A, i.e.
bijective mappings τ : A → A. The variability of incomplete rankings is then represented by a
family (PA)A∈P(JnK), where PA is a probability distribution on S′

A. In order to guarantee that this
family describes the distribution of the preferences of a statistical population, it is unavoidable to
assume that the following “projectivity” property holds: for any A = {a1, . . . , ak} ∈ P(JnK) with
k < n and b ∈ JnK \A,

PA(ai1 ≺ . . . ≺ aik) = PA∪{b}(ai1 ≺ . . . ≺ aik ≺ b) + PA∪{b}(ai1 ≺ . . . ≺ b ≺ aik)+

. . .+ PA∪{b}(ai1 ≺ b ≺ . . . ≺ aik) + PA∪{b}(b ≺ ai1 ≺ . . . ≺ aik). (∗)

It simply means that the probability of a ranking should be conserved when a new item is added.
It is straightforward to see that this assumption is equivalent to that stipulating the existence of a
probability distribution p on Sn such that for all A ∈ P(JnK),

PA(π) =
∑

σ∈Sn(π)

p(σ),

where Sn(π) is the set of all the permutations σ ∈ Sn that extend π, i.e. such that for all
(a, b) ∈ A2, π(a) < π(b) ⇒ σ(a) < σ(b). For a function f ∈ L(Sn), we define its “marginal” on the
subset A ∈ P(JnK) by fA(π) =

∑

σ∈Sn(π)
f(σ). Assumption (∗) then states that the PA’s are the

marginals of a global probability distribution p on Sn. Now, in practical applications, incomplete
rankings are not observed on all the subsets of P(JnK) but only on a collection A ⊂ P(JnK), called
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the observation design, and the variability of the observed incomplete rankings is represented by
the sub-family (PA)A∈A of (PA)A∈P(JnK). Defining the linear operators

MA : L(Sn) → L(S′
A)

f 7→ fA
and

MA =
⊕

A∈A

MA : L(Sn) →
⊕

A∈A

L(S′
A)

f 7→ (fA)A∈A,

the analysis of preference data must then be performed in the space

MA =MA(L(Sn)).

Whereas the space L(Sn) has been thoroughly studied, MA has never been investigated in contrast.
Defining an explicit basis for this space or even simply calculating its dimension is indeed far from
obvious. Furthermore, unlessA is of the form

⋃

j∈J

(

JnK
j

)

with J ⊂ {2, . . . , n}, Sn-based translations
cannot be defined and Sn-based harmonic analysis cannot previously cannot be applied. Instead,
one needs a decomposition that localizes the information related to each subset of items (which is
by nature not invariant under Sn-based translations).

1.1 Main contributions

In this article, we construct for any A ∈ P(JnK), the subspace WA of L(Sn) that localizes the
information that is specific to marginals on A and not to marginals on other subsets. Denoting by
ψ0 the constant function in L(Sn) equal to 1 and by V 0 = Rψ0 the subspace of constant functions,
the major contribution of the present paper is to establish the linear decomposition

L(Sn) = V 0 ⊕
⊕

B∈P(JnK)

WB . (1)

Notice that this decomposition is an equality and not an isomorphism, because the WB ’s are
subspaces of L(Sn). Denoting by kerM the null space of any linear operator M , our construction
of the spaces WB then allows to localize the information of the marginal on any subset A ∈ P(JnK)
via

L(Sn) = kerMA ⊕



V 0 ⊕
⊕

B∈P(A)

WB



 ,

and more generally the information of the marginals on the subsets of any collection A via

L(Sn) = kerMA ⊕



V 0 ⊕
⊕

B∈
⋃

A∈A P(A)

WB



 .

This last decomposition gives the multiresolution decomposition of the space MA

MA =MA

(

V 0
)

⊕
⊕

B∈
⋃

A∈A P(A)

MA (WB) , (2)

where MA

(

V 0
)

is the component related to constant functions and for each B ∈ ⋃

A∈A P(A),
MA (WB) is the component that localizes the information specific to the marginal on B. Our result
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relies on recent advances in algebraic topology about the homological structure of the complex of
injective words established in [35]. We call the decomposition (1) a “multiresolution decomposition”
because the subspaces localize meaningful parts of the global information of incomplete rankings
at different “scales”. We nonetheless draw attention on the fact that this decomposition is not
orthogonal (as we shall see in section 4) and it is not a “multiresolution analysis” in the strict
sense. Indeed, the discrete nature of Sn does not allow to define any dilation operator. However,
as shall be seen later in the paper, translation and ”dezooming” operators can still be defined to
reinforce the analogy between our construction and standard multiresolution analysis, see subsection
3.4.

In order to use this decomposition to perform approximation in MA in practice, one needs an
explicit basis for each spaceMA (WB). The effective construction of such an explicit basis is far from
being obvious, because each space WB is defined by many linear constraints based on the complex
combinatorial structure of Sn. However, this problem can be related to that of constructing a basis
for the homology of certain types of simplicial complexes (namely boolean complexes of Coxeter
systems), for which a solution was recently established in [33]. Here we adapt the results from [33] to
exhibit an explicit basis ΨB for each spaceWB . The concatenated family Ψ = {ψ0}∪

⋃

B∈P(JnK) ΨB
is then a basis of L(Sn) adapted to the multiresolution decomposition (1), which shall be referred
to as a wavelet basis here. From the basis Ψ, one obtains, for any collection A of subsets of JnK,
the wavelet basis

{MA(ψ0)} ∪
⋃

B∈
⋃

A∈A P(A)

{MA(ψ)}ψ∈ΨB
,

adapted to the multiresolution decomposition (2) of the space MA. Again we draw attention on the
fact that Ψ is not a wavelet basis in the strict sense, obtained from the dilations and translations
of a “mother wavelet”, because of the nature of decomposition (1). It happens however that the
choice of the algorithm adapted from [33] to generate each ΨB for B ∈ P(JnK) leads to a global
structure for Ψ encoded in two general relations, strengthening the analogy with classic wavelet
bases, see subsection 4.4.

1.2 Related work

To the best of our knowledge, only three approaches are documented in the literature to analyze
incomplete rankings. The first method is based on the Luce-Plackett model (see [25], [32]), the sole
parametric statistical model on the group of permutations that can be straightforwardly extended
to incomplete rankings. It relies on a strong assumption, referred to as Luce’s choice axiom, which
reduces the complexity of the model, encapsulated by n parameters only (contrasting with the
cardinality of Sn). It has been used in a wide variety of applications and several algorithms have
been proposed to infer its parameters, see [17] or [1] for instance. Several numerical experiments on
real datasets have shown however that its capacity to fit real data is limited, the model being too
rigid to handle singularities observed in practice, refer to [29] and [39]. The two other approaches
are non-parametric kernel methods. The one proposed in [22] is a diffusion kernel in the Fourier
domain, and the one proposed in [39] is a triangular kernel with respect to the Kendall’s tau distance.
Though leading to efficient algorithms, both approaches deal with setsSn(π)’s and not directly with
incomplete rankings π’s. This tends to blend the estimated probabilities of the incomplete rankings
and thus induces a statistical bias. In contrast, our framework relies on the natural multiresolution
structure of incomplete rankings and is the first to allow the definition of approximation procedures
directly on this type of ranked data.
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We point out that an alternative construction of a multiresolution analysis on L(Sn) has already
been proposed in [23]. It is a first breakthrough to deal with singularities of probability distributions
on rankings, however it entirely relies on the algebraic structure of Sn. It may be thus viewed as
a refinement of harmonic analysis for full or bucket rankings, but does not apply efficiently to
the analysis of incomplete rankings. Several approaches have been proposed to generalize the
construction of multiresolution analysis and wavelet bases on discrete spaces, mostly on trees and
graphs, see for instance [4], [10], [11], [34] and [38]. None of them leads however to the construction
for incomplete rankings we promote in this paper, which crucially relies on the topological properties
of the complex of injective words.

The use of topological tools to analyze ranked data has been introduced in [20] and then pursued
in several contributions such as in [5] or [31]. Their approach consists in modeling a collection of
pairwise comparisons as an oriented flow on the graph with vertices JnK where two items are linked
if the pair appears at least once in the comparisons. They show that this flow admits a “Hodge
decomposition” in the sense that it can be decomposed as the sum of three components, a “gradient
flow” that corresponds to globally consistent rankings, a “curl flow” that corresponds to locally
inconsistent rankings, and a “harmonic flow”, that corresponds to globally inconsistent but locally
consistent rankings. Our construction also relies on results from topology but it decomposes the
information in a quite different manner, and is tailored to the situation where incomplete rankings
can be of any size.

1.3 Outline of the paper

The article is structured as follows. In section 2, the mathematical formalism that gives a rigorous
definition for the concept of information localization is introduced. It is explained how group-based
harmonic analysis fits in this framework and why it is not adapted to localize information related
to incomplete rankings, and the analysis of the latter is formulated in the setting of injective words.
Section 3 contains our major contribution: the spaces WA are constructed and the multiresolution
decomposition of L(Sn) in function of these spaces is exhibited. These results are interpreted in
terms of multiresolution analysis and the connection with group-based harmonic analysis is thor-
oughly discussed. In section 4, we construct an explicit wavelet basis adapted to the multiresolution
decomposition thus built. We establish its main properties and investigate its mathematical struc-
ture. Some concluding remarks are collected in section 5, where several lines of further research are
also sketched. Technical proofs are deferred to the Appendix section.

2 Information localization

It is the purpose of this section to define concepts which the subsequent analysis fully rests on,
while giving insights into the relevance of our construction.

2.1 Notations

Here an throughout the article, the inclusion between two sets is denoted by ⊂, the strict inclusion
by ( and the disjoint union by ⊔. Given a finite set E, denote by L(E) = {f : E → R} the
|E|-dimensional Euclidean space of real valued functions on E equipped with the canonical inner
product defined by 〈f, g〉 =

∑

x∈E f(x)g(x) for any (f, g) ∈ L(E)2. We denote by δx the Dirac
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function at any point x ∈ E and by 1S the indicator function of any S ⊂ E. A partition of E is a
collection of nonempty pairwise disjoint subsets {S1, . . . , Sr} such that

⊔r
i=1 Si = E.

2.2 Localizing information through marginals

Let X and Y be two finite sets with |Y| ≤ |X | and Π be a mapping Π : X → Y. The image of
a probability distribution p on X by Π is denoted by pΠ. It is the probability distribution on Y
defined by pΠ(y) =

∑

x∈Π−1({y}) p(x). If p is the probability distribution of a random variable X on

X , then pΠ is the probability distribution of the random variable Π(X) on Y, and for y ∈ Y, pΠ(y)
is the probability that Π(X) = y. It is straightforward to see that the two following conditions on
Π are equivalent:

1. Π is surjective on Y and the value of |Π−1({y})| is the same for all y ∈ Y.

2. The image by Π of the uniform distribution on X is the uniform distribution on Y, i.e. if
p(x) = 1/|X | for all x ∈ X then pΠ(y) = 1/|Y| for all y ∈ Y.

We assume that these conditions are satisfied in the sequel and call the mapping Π a “marginal
transformation”. For p a probability distribution on X , we call pΠ the “marginal of p associated to
Π”. More generally, for any function f ∈ L(X ), its marginal associated to Π, denoted by fΠ ∈ L(Y),
is defined by

fΠ(y) =
∑

x∈Π−1({y})

f(x).

If the function f represents a signal over the space X such as a probability distribution or a discrete
image for example, the idea is to interpret fΠ as the degraded version of f obtained when we observe
it through the transformation Π. It is ”degraded” in the sense that Π being not injective in general
(it can be injective only if |Y| = |X |, and in this case it is isomorphic to the identity transform), fΠ
is an averaged version of f and therefore “contains less information”. Without being specific about
any information measure, the uniform probability distribution can be naturally interpreted as that
containing no information, i.e. the “less localized”. The assumption made on Π implies that if the
original signal f on X contains no information, then its degraded version on Y still contains no
information.

With a marginal transformation Π is naturally associated the marginal operator

MΠ : L(X ) → L(Y)

f 7→ fΠ.

Notice that MΠ is not a projection because L(Y) is not a subspace of L(X ) (unless Y = X ).
If V is a supplementary subspace of kerMΠ in L(X ), and f = fkerMΠ + fV is the corresponding

decomposition of a function f ∈ L(X ), one has immediately fΠ = MΠ(f) = MΠ(fV ). We can
thus claim that fV provides the same amount of information as fΠ. This means that data analysis
on the space L(Y) can be done equivalently on any supplementary space of kerMΠ in L(X ). The
most natural choice is then surely the orthogonal supplementary (kerMΠ)

⊥, because the latter is
exactly the space of functions in L(X ) that are constant on each Π−1({y}) for y ∈ Y (the proof is
straightforward and left to the reader).

In practice however, the signal f is observed through a finite family of marginal transformations
(Πi)i∈I , and we would like to “localize” as much as possible the information related to a specific
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transformation Π and not to the others. For two marginal transformations Π1 and Π2, we say that
the subspace W1 of L(X ) “fully localizes” the information related to Π1 with respect to Π2 if it
satisfies the two conditions listed below:

• W1 ∩ kerMΠ1
= {0} (it localizes information related to Π1),

• W1 ⊂ kerMΠ2 (it localizes information that is not contained in Π2).

Notice that there is no reason that (kerMΠ1)
⊥ satisfies the latter condition for any marginal trans-

formation Π2.
In the general case, the definition of a space that localizes the information related to a marginal

transformation Π with respect to the others depends on the relations between all the transformations
of the considered family. One particularly important relation is the refinement. We say that the
transformation Π2 is a refinement of Π1 if kerMΠ2

⊂ kerMΠ1
. In that case, there exists a surjective

linear mapping from the image of Π2 to the image of Π1, and we can say that Π1 degrades the
information more than Π2 in the sense that the information related to Π1 can be recovered from
the marginal associated to Π2 (through this surjective linear mapping) whereas the opposite is not
true.

2.3 Group-based harmonic analysis on Sn

When the original signal space X is a finite group G, we can consider marginal transformations
defined through its actions (see the Appendix section for some background in group theory). Let
Y be a finite set on which G acts transitively, by (g, y) 7→ g · y. To each y0 ∈ Y, we associate the
marginal transformation

Πy0 : G→ Y
g 7→ g · y0.

It satisfies the two conditions of a marginal transformation. First, Πy0 is surjective on Y because
the action of G on Y is transitive. Second, for y ∈ Y, the set Π−1

y0 ({y}) = {g ∈ G | g · y0 = y}
is a left coset of the stabilizer of y0, {g ∈ G | g · y0 = y0}, and thus have same cardinality. The
interpretation behind this marginal transformation is as follows. If p is a probability distribution
on G, then p(g) is the probability of drawing the element g in G and pΠy0

(y) is the probability
of drawing an element g ∈ G such that g · y0 = y. For a function f ∈ L(G), the collection of all
its marginals associated to the transformations Πy0 for y0 ∈ Y can be gathered in the |Y|-squared
matrix TY(f) defined by

[TY(f)]y,y0 = fΠy0
(y),

each column representing a marginal. Now, by linearity, TY(f) =
∑

g∈G f(g)TY(δg) for all f ∈ L(G),
and it is easy to see that for g ∈ G, TY(δg) is actually the translation operator on L(Y), i.e. for all
F ∈ L(Y) and y ∈ Y,

(TY(δg)F ) (y) = F (g−1 · y).
In other words, g 7→ TY(δg) is the permutation representation of G on L(Y) associated to the
action (g, y) 7→ g · y. This means that the information contained in the collection of marginals
(Πy0)y0∈Y can be decomposed using group representation theory, which is the general principle of
harmonic analysis. Harmonic analysis on a finite group G is defined as the decomposition of L(G)
into irreducible representations of G, see [6]. These components are invariant under translation
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and each localize the information related to a specific “frequency”. The symmetric group has
an additional particularity: each of its irreducible representations is “associated to” one specific
meaningful permutation representation and thus allows to localize the information of the associated
marginals. Let us develop this interpretation.

The symmetric group Sn is the set of all the bijective mappings σ : JnK → JnK equipped with
the composition law (σ, τ) 7→ στ defined by στ(i) = σ(τ(i)) for i ∈ JnK. Irreducible representations
of Sn, are indexed by partitions of n, i.e. tuples λ = (λ1, . . . , λr) ∈ JnKr such that λ1 ≥ · · · ≥ λr
and λ1 + · · ·+ λr = n, with r ∈ {1, . . . n}. The irreducible representation indexed by λ is denoted
by Sλ, and its dimension by dλ. The harmonic decomposition of L(Sn) thus writes

L(Sn) ∼=
⊕

λ⊢n

dλS
λ,

where λ ⊢ n means that the sum is taken on all the partitions λ of n (see the Appendix section).
The spaces Sλ are called the Specht modules. For B = (B1, . . . , Br) an ordered partition of JnK
and σ ∈ Sn, we set

σ · B = (σ(B1), . . . , σ(Br)),

where σ(B) = {σ(b) | b ∈ B}, for B ⊂ JnK. This defines an action of Sn on the set of all
ordered partitions of JnK. The shape of an ordered partition of JnK B = (B1, . . . , Br) is the tuple
(|B1|, . . . , |Br|). It is easy to see that the orbits of Sn are the sets of ordered partitions of n of
a given shape. For λ ⊢ n, we denote by Partλ(JnK) be the set of ordered partitions of JnK of
shape λ, and define Mλ = L(Partλ(JnK)), called a Young module. In this context, the marginal
transformation associated to a B0 ∈ Partλ(JnK) is defined by

ΠB0
: Sn → Partλ(JnK)

σ 7→ σ · B0.

The marginal of a function f ∈ L(Sn) associated to this transformation is denoted by fB0 and is
called a λ-marginal. The |Partλ(JnK)|-square matrix Tλ(f) that gathers all the λ-marginals of f is
equal to the sum

∑

σ∈Sn
f(σ)Tλ(δσ), where Tλ(δσ) is the matrix of the permutation representation

of Sn on Mλ taken in σ. Now it happens that the Specht module Sλ can be defined as a subspace
of Mλ, see [6]. This means that the information localized by Sλ in the harmonic decomposition of
L(Sn) is contained in the λ-marginals. This information is also specific to λ-marginals in a certain
way.

The dominance order on partitions of n is the partial order defined, for λ = (λ1, . . . , λr) and

µ = (µ1, . . . , µs) by λ D µ if for all j ∈ {1, . . . , r}, ∑j
i=1 λi ≥

∑j
i=1 µi. When λ D µ and λ 6= µ we

write λ ⊲ µ. The decomposition of the Young module Mλ for λ ⊢ n is given by Young’s rule (see
[6]):

Mλ ∼=
⊕

µ⊢n

Kµ,λS
µ, where











Kµ,λ = 0 if µ⊳ λ

Kλ,λ = 1

Kµ,λ ≥ 1 if µ⊲ λ

,

i.e.
Mλ ∼= Sλ ⊕

⊕

µ⊲λ

Kµ,λS
µ.

This means that for a given λ ⊢ n, the Specht module Sλ localizes the information of Mλ that is
not contained in the Mµ’s for µ ⊲ λ. In this sense, Sλ contains the information that is specific to
λ-marginals and not the others.
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2.4 “Absolute” and “relative” rank information

The precedent subsection shows that harmonic analysis on Sn consists in localizing information
specific to collections of marginal transformations (ΠB)B∈Partλ(JnK), for λ ⊢ n. Let p be a probability
distribution on Sn and Σ a random permutation of law p. If S ⊂ JnK represents an event E on
the random variable X, we denote by P[E ] the probability of this event, i.e. P[E ] = ∑

σ∈S p(σ).
For λ = (λ1, . . . , λr) ⊢ n and B = (B1, . . . , Br) ∈ Partλ(JnK), we have for any B′ = (B′

1, . . . , B
′
r) ∈

Partλ(JnK),
pB(B′) = P [Σ(B1) = B′

1, . . . ,Σ(Br) = B′
r] .

To gain more insight into the interpretation of these marginals, let us consider first the simple case
λ = (n−1, 1). Ordered partitions of JnK of shape (n−1, 1) are necessarily of the form (JnK\{i}, {i}),
with i ∈ JnK. Then for (i, j) ∈ JnK2, we have the simplification

P [Σ(JnK \ {i}) = JnK \ {j}, Σ({i}) = {j}] = P [Σ(i) = j] .

The marginal of p associated to (JnK\{i}, {i}) is thus the probability distribution (P[Σ(i) = j])j∈JnK

on JnK. From a ranking point of view, this is the law of the rank of item i. The matrix T(n−1,1)(p)
that gathers all the (n− 1, 1)-marginals of p is given by

T(n−1,1)(p) =







P[Σ(1) = 1] · · · P[Σ(n) = 1]
...

. . .
...

P[Σ(1) = n] · · · P[Σ(n) = n]






,

where the marginal of p associated to (JnK \ {i}, {i}) is represented by column i. It is easy to
see that this matrix is bistochastic, and that the row i represents the probability distribution
(P[Σ−1(i) = j])j∈JnK on JnK. This is the probability distribution of the index of the element ranked

at the ith position. In both cases, the distribution captures the information about an “absolute
rank”, in the sense that it is the rank of an item inside a ranking implying all the n items. Either we
consider the distribution of the absolute ranks of a fixed item i, or else we consider the distribution
of the item having a fixed absolute rank i.

More generally for k ∈ {1, . . . , n− 1}, elements of Part(n−k,k)(JnK) are of the form (JnK \ A,A)
with A ∈

(

JnK
k

)

, and the marginal law of p associated to (JnK \ A,A) is the probability distribution

(P[Σ(A) = B])|B|=k on
(

JnK
k

)

. From a ranking point of view, P[Σ(A) = B] is the probability that
the items of A are ranked at the absolute positions of B, regardless of their order inside these
positions. In the general case, for λ = (λ1, . . . , λr) ⊢ n, B = (B1, . . . , Br) ∈ Partλ(JnK) and
B′ = (B′

1, . . . , B
′
r) ∈ Partλ(JnK), P[Σ · B = B′] is the probability that the items of Bi are ranked at

the absolute positions of B′
i, for i ∈ {1, . . . , r}.

Example 1. We give an illustration of this type of marginals on a real dataset with n = 4, studied
in [7]. It is composed of 2262 answers of German citizens who were asked to rank the desirability
of four political goals, that we consider as items 1, 2, 3 and 4. Each ranking of these four items
received a certain number of votes. Normalizing by 2262, the total number of votes,we obtain a
probability distribution p on S4. It is represented in figure 1, where the x-axis represents the 24
elements of S4, denoted by a1a2a3a4 instead of a1 ≺ a2 ≺ a3 ≺ a4 and ordered by the lexicographic
order, i.e. 1234, 1243, ..., 4321.

There are 5 partitions of 4: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). There is only one (4)-marginal,
it is the constant

∑

σ∈S4
p(σ) = 1, and there are 24 (1, 1, 1, 1)-marginals, the translations of p.

10



0

0,05

0,1

0,15

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Figure 1: Probability distribution p of the rankings of the four political goals

We consider the marginals of the three other types. Let Σ be a random permutation of law p.
The (3, 1) marginals are the laws of the random variables Σ(i), representing the rank of item i, for
i ∈ J4K. The (2, 2)-marginals are the laws of the random variables {Σ(i),Σ(j)} and the (2, 1, 1) are
the laws of the random variables (Σ(i),Σ(j)), for (i, j) ∈ JnK2 with i 6= j. All these marginals are
represented in figure 2 (with different scales).
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Figure 2: Absolute λ-marginals of p, for λ = (3, 1), (2, 2), (2, 1, 1)

In the analysis of incomplete rankings, we are not interested in absolute rank information,
but in “relative” rank information. When incomplete rankings are observed on a subset of items
A ∈ P(JnK), the information we have access to is about the ranks of the items of A relatively to A.
In the same way, the prediction of a ranking on A only involves the information about the ranks
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of the items of A relatively to A. This is the fundamental difference between the analysis of full
rankings or bucket orders (also called partial rankings) and the analysis of incomplete rankings. This
implies that the marginal transformations and the information localization involved are completely
different. Let Σ be a random permutation of law p on Sn. In the analysis of incomplete rankings,
we are interested in probabilities of the form

P[Σ(a1) < · · · < Σ(ak)],

for k ∈ {2, . . . , n} and {a1, . . . , ak} ⊂ JnK. So we are not interested in the values Σ(a1), . . . ,Σ(ak),
but only in their ordering, which induce a ranking of the items a1, . . . , ak. We are thus interested
in the marginals pA of p defined in the Introduction section, for A ∈ P(JnK).

Example 2. Considering the same example as before, we represent all the marginals of p involved in
the analysis of incomplete rankings. For each A ∈ P(J4K), the marginal pA is represented in figure
3 by a graph with the x-axis constituted of the elements of S′

A ordered by the lexicographic order.
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Figure 3: Relative marginals of p on subsets A ⊂ J4K with |A| = 2 or 3

It is obvious that each of the two families of marginal transformations leads to the analysis of
completely different objects: full rankings or bucket orders involving absolute rank information,
or incomplete rankings involving relative rank information. There is a way to handle incomplete
rankings with Sn-based harmonic analysis, as it is done in [22], but it is not really adapted and it
does not provide a powerful general framework. This can be achieved only by fully exploiting the
structure of incomplete rankings and considering the right marginal transformations.

In this case, the marginal transformations suited for the analysis of incomplete rankings map a
permutation σ to the ranking it induces on a subset of items A = {a1, . . . , ak} ∈ P(JnK), through
the order of the values σ(a1), . . . , σ(ak). This definition is however not easy to use and thus not
convenient to characterize the structure of incomplete rankings. It happens that they can be defined
from another point of view that fits with the mathematical structure of incomplete rankings. It
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comes from the observation that the ranking induced by a full ranking on a subset of items A is
obtained by keeping only the items of A, in the same order. More specifically, if σ corresponds to
the full ranking a1 ≺ · · · ≺ an on JnK, the ranking it induces on A is given by ai1 ≺ · · · ≺ ai|A|

where i1 < · · · < i|A| and A = {ai1 , . . . , ai|A|
}. This perspective is best expressed in the language

of injective words.

2.5 Analysis of incomplete rankings through injective words

An injective word over JnK is an expression ω = ω1 . . . ωk where 1 ≤ k ≤ n and ω1, . . . , ωk are
distinct elements of JnK. The content of the word ω = ω1 . . . ωk is c(ω) = {ω1, . . . , ωk}, and its
size is |ω| := |c(ω)|. The empty word 0 is by convention the unique word of size 0 and content ∅.
A subword of a word ω = ω1 . . . ωk ∈ Γn is an expression ωi1 . . . ωir with 1 ≤ i1 < · · · < ir ≤ k.
We denote by Γn the set of injective words over JnK and for A ⊂ JnK and k ∈ {0, . . . , n}, we set
Γ(A) = {ω ∈ Γn | c(ω) = A} and Γk = {ω ∈ Γn | |ω| = k}. We thus have

Γn =

n
⊔

k=0

Γk =

n
⊔

k=0

⊔

|A|=k

Γ(A). (3)

To each incomplete ranking π = a1 ≺ · · · ≺ ak, we associate the corresponding injective word
a1 . . . ak, and we still denote it by π. The sets S′

A and Γ(A) are thus identified for A ∈ P(JnK),
in particular Sn is identified to Γ(JnK), and both interpretations will be used indifferently in the
sequel.

The language of injective words has two major advantages for the analysis of incomplete rank-
ings. The first is that it is well suited to express the marginal transformations that we want to
consider and their properties. Let (A,B) ∈ P(JnK)2 with A ⊂ B and σ = a1 . . . a|B| ∈ S′

B repre-
senting the ranking a1 ≺ · · · ≺ a|B|. Then the ranking induced by σ on A is represented by the
unique subword of σ with content equal to A. The latter is obtained by deleting from a1 . . . a|B|

all the ai’s that do not belong to A. We denote by σ|A the ranking induced by σ on A as well
as the injective word representing it. The marginal transformations of interest in the analysis of
incomplete rankings are thus defined by

ΠA : Sn → S′
A

σ 7→ σ|A,

for A ∈ P(JnK). We denote respectively by fA andMA the marginal of a function f ∈ (Sn) and the
marginal operator associated to ΠA (these notations are the same as in the introduction). Recall
that for π ∈ S′

A viewed as a mapping A→ {1, . . . , |A|}, the set Sn(π) is defined as Sn(π) = {σ ∈
Sn | for all (a, b) ∈ A2 such that π(a) < π(b), σ(a) < σ(b)}. Viewing now π ∈ S′

A as an injective
word, it is clear that Sn(π) = {σ ∈ Sn | σ|A = π} = Π−1({π}). More generally we define, for
(A,B) ∈ P(JnK)2 with A ⊂ B and π ∈ S′

A, S
′
B(π) = {σ ∈ S′

B | σ|A = π}, with Sn(π) := S′
JnK(π).

The fact that ΠA is a marginal transformation is thus a direct consequence of the following lemma
(for B = JnK), its technical proof is postponed to the Appendix section.

Lemma 1. Let (A,B) ∈ P(JnK)2 with A ⊂ B. Then {S′
B(π)}π∈S′

A
is a partition of S′

B and for
all π ∈ S′

A, |S′
B(π)| = |B|!/|A|!.

The refinement relations inside the family of marginal transformations (ΠA)A∈P(JnK) rely on the
structure of injective words. For π ∈ Γn with |π| < n, b ∈ JnK \ c(π) and i ∈ {1, . . . , |π| + 1}, we
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denote by π ⊳i b the word obtained by inserting b in ith position in π. The following lemma, the
proof of which is straightforward, is the base of the refinement relations.

Lemma 2. Let A ( B ⊂ JnK and π ∈ S′
A. For all b ∈ B \ A, S′

B(π) =
⊔|A|+1
i=1 S′

B(π ⊳i b). In
particular, S′

A∪{b}(π) = {π ⊳1 b, . . . , π ⊳|A|+1 b}.

Proposition 1. For A,B ∈ P(JnK) with A ⊂ B, ΠB is a refinement of ΠA, i.e.

kerMB ⊂ kerMA.

Proof. Let A ∈ P(JnK) and b ∈ JnK \A. For f ∈ L(Sn), lemma 2 gives, for all π ∈ S′
A,

MAf(π) =
∑

σ∈Sn(π)

f(σ) =

|A|+1
∑

i=1

∑

σ∈Sn(π⊳ib)

f(σ) =

|A|+1
∑

i=1

MA∪{b}f(π ⊳i b).

This implies that kerMA∪{b} ⊂ kerMA and the proof is concluded by induction.

The second major advantage of the language of injective words is that it allows to define a global
framework for all incomplete rankings. To this purpose, we see the elements of L(Γn) as free linear
combinations of injective words, also called chains, i.e. expressions of the form x =

∑

ω∈Γn
x(ω)ω,

where ω refers at the same time to a word in Γn and to the Dirac function of this word in L(Γn).
Notice then that 0 denotes the Dirac function in the empty word, whereas 0 denotes the function
equal to 0 for all ω ∈ Γn, and that the indicator function of a set S ⊂ Γn is equal to the sum of the
Dirac functions in its elements

1S =
∑

σ∈S

σ.

By definition, the marginal operator MA applied to the Dirac function of σ ∈ Sn in L(Sn) is equal
to the Dirac function of σ|A in L(S′

A). Using the chain notation, this gives:

MAσ = σ|A. (4)

A function in L(Γ(A)) for A ⊂ JnK is thus directly seen as a chain in L(Γn), and by equation (3), we
have L(Γn) =

⊕n
k=0

⊕

|A|=k L(Γ(A)). This decomposition allows to embed L(Sn), all the spaces

of marginals L(S′
A) for A ∈ P(JnK) and the spaces L(Γ(A)) for |A| ≤ 1 into one general space, that

is L(Γn). For n = 4, L(Γ4) decomposes as follows.

L (S4)

L
(

S′
{1,2,3}

)

⊕ L
(

S′
{1,2,4}

)

⊕ L
(

S′
{1,3,4}

)

⊕ L
(

S′
{2,3,4}

)

L
(

S′
{1,2}

)

⊕ L
(

S′
{1,3}

)

⊕ L
(

S′
{1,4}

)

⊕ L
(

S′
{2,3}

)

⊕ L
(

S′
{2,4}

)

⊕ L
(

S′
{3,4}

)

L(Γ({1})) ⊕ L(Γ({2})) ⊕ L(Γ({3})) ⊕ L(Γ({4}))
L(Γ(0))

This embedding allows to model all possible observations of incomplete rankings. Indeed, let
A ⊂ P(JnK) be an observation design. Then for each A ∈ A, the variability of the observed
rankings on A is represented by a probability distribution PA ∈ L(S′

A). The total variability of the
observed rankings is thus represented by the collection (PA)A∈A ∈ ⊕

A∈A L(S
′
A) ⊂ L(Sn).
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Example 3. Let us assume that we observe incomplete rankings on J4K through the observation
design A = {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}. Then the collection of probability distributions
is an element of the sum of the spaces in bold, in the following representation.

L (S4)

L
(

S′
{1,2,3}

)

⊕ L
(

S′
{1,2,4}

)

⊕ L
(

S′
{1,3,4}

)

⊕ L
(

S′
{2,3,4}

)

L
(

S′
{1,2}

)

⊕ L
(

S′
{1,3}

)

⊕ L
(

S′
{1,4}

)

⊕ L
(

S′
{2,3}

)

⊕ L
(

S′
{2,4}

)

⊕ L
(

S′
{3,4}

)

L(Γ({1})) ⊕ L(Γ({2})) ⊕ L(Γ({3})) ⊕ L(Γ({4}))
L(Γ(0))

Notice however that we are not interested in performing data analysis in the space
⊕

A∈A L(S
′
A)

but in its subspace MA of the collections (fA)A∈A ∈ ⊕

A∈A L(S
′
A) that satisfy condition (∗),

MA =MA(L(Sn)). This embedding remains nonetheless very convenient to define global operators
that exploit the structure of injective words.

Definition 1 (Deletion operator). Let a ∈ JnK. For π ∈ Γn such that a ∈ c(π), we denote by
π \ {a} the word obtained by deleting the letter a in the word π. We extend this operation into the
operator ̺a : L(Γn) → L(Γn), defined on a Dirac function π by

̺aπ =

{

π \ {a} if a ∈ c(π)

π otherwise.

For a1, a2 ∈ JnK, it is obvious that ̺a1̺a2 = ̺a2̺a1 . This allows to define, for A = {a1, . . . , ak} ⊂
JnK, ̺A = ̺a1 . . . ̺ak . We set by convention ̺∅x = x for all x ∈ L(Γn).

Remark 1. Notice that for any π ∈ Γn, ̺c(π)π = 0. This implies that for A ⊂ JnK and x ∈ L(Γ(A)),

̺Ax =
[

∑

π∈Γ(A) x(π)
]

0.

The family of spaces (L(Γ(A)))A⊂JnK equipped with the family of operators (̺B\A)A⊂B⊂JnK is
a projective system, i.e. for all A ⊂ B ⊂ C ⊂ JnK,

• ̺B\A : L(Γ(B)) → L(Γ(A)),

• ̺A\Ax = x for all x ∈ L(Γ(A)),

• ̺B\A̺C\B = ̺C\A.

It is represented for n = 4 in figure 4.
With these notations, assumption (∗) for a family (fA)A∈P(JnK) becomes: for A ∈ P(JnK) with

|A| < n and b ∈ JnK \A,

fA(π) =

|A|+1
∑

i=1

fA∪{b}(π ⊳i b) = ̺bfA∪{b}(π),

for all π ∈ S′
A. The projective system properties then imply more generally that for any (A,B) ∈

P(JnK) with A ⊂ B,
̺B\AfB = fA.
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Figure 4: Projective system ((L(Γ(A)))A⊂JnK, (̺B\A)A⊂B⊂JnK) for n = 4

Example 4. We keep the same example as before: the number of items is n = 4 and the observa-
tion design is A = {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}. The relations imposed on an element
(fA)A∈A ∈ MA are represented in figure 5.

�

�{ଵ,ଶ,ଷ} �{ଵ,ଷ,ସ}

�{ଵ,ଷ} �{ଶ,ସ} �{ଷ,ସ}

�ସ�ଶ �ଵ

�ସ �ଶ�{ଵ,ଷ}

Figure 5: Projectivity conditions on MA for A = {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}
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Now, let (A,B) ∈ P(JnK)2 with A ⊂ B and σ ∈ S′
B . By definition, σ|A is the word obtained by

deleting in σ all the elements that are not in A, so σ|A = σ \ (B \ A) = ̺B\Aσ. In particular for
B = JnK, we have from equation (4)

MA = ̺JnK\A. (5)

All the marginals operators can thus be expressed in terms of deletion operators. For an element
(fA)A∈A of a observation design A ⊂ P(JnK), we express each fA as the marginal on A of a function
f . Our goal is to obtain a decomposition of f into components that have a localized effect on the
fA’s. More precisely, we want a decomposition of f of the form

f = f̃0 +
∑

B∈
⋃

A∈A P(A)

f̃B

such that for any A ∈ A,

fA =MA



f̃0 +
∑

B∈P(A)

f̃B



 . (6)

Example 5. Using the same example as before, we represent the principle of the decomposition in
figure 6.

� = � ଴ + � {ଵ,ଶ} + � {ଵ,ଷ} + � {ଵ,ସ} + � {ଶ,ଷ} + � {ଶ,ସ} + � {ଷ,ସ} + � {ଵ,ଶ,ଷ} + � {ଵ,ଷ,ସ} 

�{ଵ,ଶ,ଷ} � ଴ + � {ଵ,ଶ} + � {ଵ,ଷ} + � {ଶ,ଷ} + � {ଵ,ଶ,ଷ}  �{ଵ,ଷ,ସ} � ଴ + � {ଵ,ଷ} + � {ଵ,ସ} + � {ଷ,ସ} + � {ଵ,ଷ,ସ}  

�{ଵ,ଷ} � ଴ + � {ଵ,ଷ}  �{ଶ,ସ} � ଴ + � {ଶ,ସ}  �{ଷ,ସ} � ଴ + � {ଷ,ସ}  

�ସ �ଶ �ଵ 

�ସ �ଶ �{ଵ,ଷ} 

Figure 6: Decomposition of a function f ∈ L(Sn) adapted to the observation design A =
{{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}

3 The multiresolution decomposition

We now enter the details of the construction of our multiresolution decomposition of L(Sn) that
provides a multiresolution decomposition of MA for any observation design A ⊂ P(JnK).
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3.1 Requirements for WA

For A ∈ P(JnK), we want to construct a subspace WA of L(Sn) that “localizes the information that
is specific to the marginal on A and not to the others”. The precise definition of this statement
relies on the refinement relation on the ΠB ’s shown in proposition 1, namely for B ⊂ B′, ΠB′ is
a refinement of ΠB . This implies first that WA cannot contain the entire information related to
the marginal on A, otherwise it would contain also the entire information related to the marginal
on B for all B ⊂ A, which is not specific to A. So WA cannot be a supplementary space of
kerMA but we require that all the information it localizes be contained in the marginal on A, i.e.
that WA ∩ kerMA = {0}. Second, for B ⊃ A, the marginal on B contains all the information
related to the marginal on A and a fortiori the information localized by WA, so we have necessarily
WA ∩ kerMB = {0}. We can require however that WA ⊂ kerMB for all B ∈ P(JnK) such that
B 6⊃ A. We thus want WA to satisfy two conditions:

1. it localizes information related to the marginal on A, i.e.

WA ∩ kerMA = {0} (7)

2. it localizes information that is not contained in the marginals on B ∈ P(JnK) for B 6⊃ A, i.e.

WA ⊂
⋂

B∈P(JnK)
B 6⊃A

kerMB . (8)

Let us first consider the case A = JnK. The operator MJnK is equal to the identity mapping on
L(Sn), so kerMJnK = {0} and WJnK only needs to satisfy condition (8). Since we want WJnK to
localize all the information that is specific to MJnK, we define

WJnK =
⋂

B∈P(JnK)
B(JnK

kerMB .

Using proposition 1, one has WJnK =
⋂

|B|=n−1 kerMB . Now, if |B| = n− 1, JnK \ B is necessarily

of the form {a} with a ∈ JnK. Thus, using equation (5), we obtain

WJnK = {x ∈ L(Sn) | ̺a(x) = 0 for all a ∈ JnK}.
More generally for A ∈ P(JnK), let HA be the space

HA = {x ∈ L(Γ(A)) | ̺a(x) = 0 for all a ∈ A}. (9)

Seeing L(Γ(A)) as the space of marginals on A, the space HA contains, among the information
related to marginals on A, the information that is specific to A and not to subsets B ( A. This
is exactly the information that we want WA to localize. But the elements of HA are chains on
words with content A, not JnK, and HA is not a subspace of L(Sn). The space WA must then be
constructed as an embedding of HA into L(Sn). The choice of the embedding can nonetheless not
be arbitrary if we want WA to satisfy conditions (7) and (8). We are looking for a linear operator
φn : L(Γn) → L(Sn) such that for all A ∈ P(JnK),

φn(HA) ∩ kerMA = {0} and φn(HA) ⊂
⋂

B∈P(JnK)
B 6⊃A

kerMB .
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The rationale behind this is that we want φn to “pull up” all the information contained in HA in
L(Sn) in a way that it does not impact the marginals on the subsets B ∈ P(JnK) such that B 6⊃ A.
Mapping the Dirac function of a π ∈ S′

A in L(Γn) to an element of L(Sn) involves necessarily the
insertion of the missing items JnK \ A. But this can be done in many different ways. In the case
where A = JnK \ {b} with b ∈ JnK, the insertion of b in an element π ∈ S′

A can be done at any of
the n positions. More generally for |A| = k, the number of ways to insert the items of JnK \ A in
an element π ∈ S′

A is equal to n!/k!. Perhaps the most natural embedding is to insert the items in
all possible ways. The embedding operator would then be defined on the Dirac function of a word
π ∈ Γn−1 with JnK \ c(π) = {b} by

φ′nπ =
n
∑

i=1

π ⊳i b,

and more generally on the Dirac function of any π ∈ Γn by

φ′nπ = 1Sn(π) =
∑

σ∈Sn(π)

σ.

For A ∈ P(JnK) and π ∈ S′
A, we have

MAφ
′
nπ =MA1Sn(π) =

∑

σ∈Sn(π)

σ|A =
n!

|A|!π, thus φ(HA) ∩ kerMA = {0},

but for B ∈ P(JnK) such that B 6⊂ A and x ∈ HA \ {0}, MBφ
′
nx 6= 0. This can be shown in the

general case but it is not necessary here. We just consider a simple example to give some insights,
we take n = 3, A = {1, 2} and B = {1, 3}. By definition, H{1,2} is the space of chains of the form
α.12 + β.21 such that α+ β = 0. It is thus spanned by the chain 12− 21 and we have

M{1,3}φ
′
3(12− 21) = ̺2[(312 + 132 + 123)− (321 + 231 + 213)]

= 31 + 2.13− 2.31− 13

= 13− 31

6= 0.

This is due to the fact that when deleting 2 in 132 and 123 (or in 321 and 231), we obtain twice
the same result. More generally, it is easy to see that for A = JnK \ {a} and B = JnK \ {b} with
(a, b) ∈ JnK2, a 6= b, and π ∈ S′

A,

MBφ
′
nπ = φ′B̺bπ + πb→a,

where φ′B is the linear operator L(Γn) → L(Γ(B)) defined on the Dirac functions by π 7→ 1S′
B
(π) if

c(π) ⊂ B and 0 otherwise, and πb→a is the word obtained when replacing b by a in π. This implies
that for x ∈ HA,

MBφ
′
nx = φ′B̺bx+

∑

π∈S′
A

x(π)πb→a =
∑

π∈S′
A

x(π)πb→a,

because, since b ∈ A, ̺bx = 0 by definition of HA. Now, it is clear that the mapping defined on
the Dirac functions by π 7→ πb→a induces a bijection from L(Γ(A)) to L(Γ(B)). So if x 6= 0, then
MBφ

′
nx 6= 0. This extends to any couple of subsets (A,B) ∈ P(JnK)2 such that B 6⊂ A, and implies

that we cannot take φ′n as embedding operator.
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3.2 Construction of WA

The definition of our embedding operator φn requires a supplementary definition. A contiguous
subword of a word ω = ω1 . . . ωk ∈ Γn is an expression ωiωi+1 . . . ωi+j , with 1 ≤ i < i+ j ≤ k. For
(A,B) ∈ P(JnK)2 with A ⊂ B and π ∈ S′

A, we denote by S′
B [π] the set of all the words σ ∈ Γ(B)

that contain π as a contiguous subword. For B = JnK, we denote it by Sn[π] instead of S′
JnK[π]. A

contiguous subword being a fortiori a subword, S′
B [π] ⊂ S′

B(π).

Definition 2 (Embedding operator φn and space WA). Let φn be the linear operator L(Γn) →
L(Sn) defined on Dirac functions by

φn : π 7→ 1Sn[π] =
∑

σ∈Sn[π]

σ,

and for A ∈ P(JnK), let WA be the image of HA by φn, i.e.

WA = φn(HA).

Proposition 2 (Information localization). For A ∈ P(JnK), WA satisfies conditions (7) and (8):

WA ∩ kerMA = {0} and WA ⊂
⋂

B∈P(JnK)
B 6⊃A

kerMB .

Proposition 2 is the major result of this subsection. Not only does it show that spaces WA

satisfy the good information localization properties, but it is also one of the key results to prove
our multiresolution decomposition of L(Sn). Its proof relies on the combinatorial properties of
operator φn and requires some additional definitions.

Definition 3 (Concatenation product). The concatenation product of two injective words π =
a1 . . . ar and π′ = b1 . . . bs such that c(π) ∩ c(π′) = ∅ is the word ππ′ = a1 . . . arb1 . . . bs. It is
extended as the bilinear operator L(Γn)× L(Γn) → L(Γn) defined on Dirac functions by

(π, π′) 7→
{

ππ′ if c(π) ∩ c(π′) = ∅,
0 otherwise.

Starting from a word π ∈ Γn, the words of S′
B [π] for B ∈ P(JnK) with c(π) ⊂ B are obtained

by inserting the elements of B \ c(π) in all possible ways, either before or after π, but not inside.
Thus it is clear that

S′
B [π] = {ω1πω2 | (ω1, ω2) ∈ Γ(B)2, c(ω1) ⊔ c(ω2) = B \ c(π)}

and |S′
B [π]| = (|B| − |π|+ 1)!.

Example 6.
S5[143] = {25143, 52143, 21435, 51432, 14325, 14352}.

The concatenation product for chains allows us to give an even simpler formula for the indicator
function of the set S′

B [π]: 1S′
B
[π] = {ω1πω2 | (ω1, ω2) ∈ Γ(B)2}. For ω ∈ Γn, let iω and jω be the

two operators on L(Γn) defined on the Dirac functions by

iω : π 7→ ωπ and jω : π 7→ πω. (10)
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Operator iω is simply the insertion of the word ω at the beginning and jω at the end. It is clear
that they commute and that for all π ∈ Γn, 1S′

B
[π] =

∑

ω1,ω2∈Γ(B)2 iω1
jω2
π. This formulation shows

that the embedding operator φn is simply the sum of operators iω1
jω2

for all (ω1, ω2) ∈ (Γn)
2:

φn =
∑

ω1,ω2∈Γn

iω1
jω2
. (11)

Now, the proof of proposition 2 relies on this simple but crucial lemma. The technical proof can
be found in the Appendix section.

Lemma 3. For ω ∈ Γn and a ∈ JnK \ c(ω),

̺aiω = iω̺a and ̺ajω = jω̺a.

Proof of proposition 2. Let A ∈ P(JnK), f ∈WA and x ∈ HA such that f = φnx. We have

MAf =MAφnx =
∑

π∈S′
A

x(π)MA1Sn[π] = (n− |A|+ 1)!
∑

π∈S′
A

x(π)π = (n− |A|+ 1)! x,

because Sn[π] ⊂ Sn(π) and |Sn[π]| = (n−|A|+1)! for all π ∈ S′
A. Therefore if f ∈ kerMA, x = 0

and so f = 0. This proves that WA ∩ kerMA = {0}. To prove the second part, first observe that
if c(ω) ∩ A 6= ∅, iωπ = 0 for all π ∈ S′

A and thus iωx = 0 (equivalently, jωx = 0). Hence, using
equation (11), we have

φnx =
∑

ω1,ω2∈Γn

iω1
jω2
x =

∑

ω1,ω2∈Γ(JnK\A)

iω1
jω2
x.

Now, let B ∈ P(JnK) such that B 6⊃ A. We want to show that MBf = 0, i.e. that ̺JnK\Bφnx = 0.
Since B 6⊃ A, there exists a ∈ A such that a 6∈ B, and we can write̺JnK\B = ̺B′̺a. Then using
lemma 3,

̺JnK\Bφnx = ̺B′

∑

ω1,ω2∈Γ(JnK\A)

̺aiω1 jω2x = ̺B′

∑

ω1,ω2∈Γ(JnK\A)

iω1
jω2
̺ax = 0,

because ̺ax = 0 by definition of HA.

3.3 The decomposition of L(Sn)

Now that we have constructed the subspaces of L(Sn) that localize the information specific to each
marginal, we show that they constitute a decomposition of the space L(Sn). Recall that V

0 is the
subspace of L(Sn) of constant functions. So defining L0(Sn) = {f ∈ L(Sn) |

∑

σ∈Sn
f(σ) = 0},

we have
L(Sn) = V 0 ⊕ L0(Sn). (12)

Proposition 3. The spaces (WA)A∈P(JnK) are in direct sum in L0(Sn).

Proof. First, observe that for A ∈ P(JnK) and x ∈ HA,

∑

σ∈Sn

(φnx)(σ) =
∑

σ∈Sn

∑

π∈S′
A

x(π)1Sn[π](σ) = (n− |A|+ 1)!
∑

π∈S′
A

x(π) = 0,
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because as x ∈ HA, 0 = ̺Ax =
[

∑

π∈S′
A
x(π)

]

0. Hence, WA ⊂ L0(Sn). To prove that the spaces

WA are in direct sum, let (fA)A∈P(JnK) be a family of functions with fA ∈WA for each A ∈ P(JnK),
such that

∑

A∈P(JnK)

fA = 0. (13)

We need to show that fA = 0 for all A ∈ P(JnK). We proceed by induction on the cardinality

of A. Let A ∈
(

JnK
2

)

. For all B ∈ P(JnK) different from A, we have A 6⊃ B. Thus, using the
second part of proposition 2, MAfB = 0 for all B ∈ P(JnK) \ {A}. Applying MA in equation (13)
then gives MAfA = 0. This means that fA ∈ WA ∩ kerMA and so that fA = 0, using the first
part of proposition 2. Now assume that fA = 0 for all A ∈ P(JnK) such that |A| ≤ k − 1, with
k ∈ {3, . . . , n}. Equation (13) then becomes

∑

|A|≥k

fA = 0. (14)

Let A ∈
(

JnK
k

)

. For all B ⊂ JnK such that |B| ≥ k and different from A, we have A 6⊃ B. Thus,
using again proposition 2, MAfB = 0, and applying this to equation (14) givesMAfA. We conclude
using proposition 2 one more time.

The second step in the proof of our decomposition is a dimensional argument. Notice that for
A ∈

(

JnK
k

)

with k ∈ {2, . . . , n}, HA is isomorphic to the space

Hk = {x ∈ L(Γ({1, . . . , k})) | ̺ix = 0 for all i ∈ {1, . . . , k}}.

Now, it happens that this space is actually closely related to another well-studied space in the
algebraic topology literature, namely the top homology space of the complex of injective words (see
[8], [3], [36], [12]). The link is made in [35] (the space Hk is denoted by kerπJkK), and leads in
particular to the following result (see proposition 6.8 and corollary 6.15).

Theorem 1 (Dimension of Hk). For k ∈ {2, . . . , n},

dimHk = dk,

where dk is the number of fixed-point free permutations (also called derangements) on the set
{1, . . . , k}.

As simple as it may seem, this result is far from being trivial. Its proof relies on the topological
nature of the partial order of subword inclusion on the complex of injective words and the use of
the Hopf trace formula for virtual characters. It is a cornerstone in the proof of our multiresolution
decomposition.

Theorem 2 (Multiresolution decomposition). The following decomposition of L(Sn) holds:

L(Sn) = V 0 ⊕
⊕

A∈P2(JnK)

WA.

In addition, dimWA = d|A| and φn(HA) =WA for all A ∈ P(JnK).
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Proof. For A ∈ P(JnK) and x ∈ HA, φnx =
∑

π∈S′
A
x(π)1Sn[π] by definition. Since for (π, π′) ∈

(S′
A)

2 such that π 6= π′, the sets Sn[π] and Sn[π
′] are disjoint, it is clear that φnx = 0 ⇒ x(π) = 0

for all π ∈ S′
A, i.e. x = 0. This proves that the restriction of φn to HA is injective, and thus that

dimWA ≥ dimHA, i.e. dimWA ≥ d|A|, using theorem 1. Now, using proposition 3 and equation
(12), we obtain

dim



V 0 ⊕
⊕

A∈P2(JnK)

WA



 ≥ 1 +
n
∑

k=2

(

n

k

)

dk =

n
∑

k=0

(

n

k

)

dn−k = n!,

where the last equality results from the observation that the number of permutations with k fixed
points is equal to

(

n
k

)

dn−k. Since dimL(Sn) = n!, this concludes both the proof of the decomposi-
tion of L(Sn) and the dimension of WA, and the fact that φn(HA) =WA follows.

This decomposition appears implicitly in [35], in the combination of theorem 6.20 and formula
(22). It is however defined modulo isomorphism, and not easily usable for applications. Our explicit
construction permits a practical use of this decomposition. In particular, it allows to localize the
information related to any observation design A ⊂ P(JnK), as declared in the introduction.

Corollary 1. For any subset A ∈ P(JnK),

L(Sn) = kerMA ⊕



V 0 ⊕
⊕

B∈P(A)

WB



 ,

and for any observation design A ⊂ P(JnK),

L(Sn) = kerMA ⊕



V 0 ⊕
⊕

B∈
⋃

A∈A P(A)

WB



 .

Proof. Let A ∈ P(JnK). By theorem 2, we have

kerMA =
(

kerMA ∩ V 0
)

⊕
⊕

B∈P(JnK)

(kerMA ∩WB) .

It is clear that kerMA ∩ V 0 = {0} (MA maps constant functions on Sn to constant functions on
S′
A). Moreover, for B ∈ P(A), kerMA ∩WB ⊂ kerMB ∩WB = {0}, using proposition 1 and the

first part of proposition 2. At last, for all B ∈ P(JnK) \ P(A), A 6⊃ B, and thus WB ⊂ kerMA,
using the second part of proposition 2. This means that kerMA =

⊕

B∈P(JnK)\P(A)WB , and the
first part of corollary 1 follows. The second part results from the calculation

kerMA =
⋂

A∈A

kerMA =
⋂

A∈A

⊕

B∈P(JnK)\P(A)

WB =
⊕

B∈P(JnK)\
⋃

A∈A P(A)

WB .

Example 7. Let’s consider an example with n = 4. The multiresolution decomposition of L(S4) is
given by the following representation.
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W{1,2,3,4}

W{1,2,3} ⊕W{1,2,4} ⊕W{1,3,4} ⊕W{2,3,4}

W{1,2} ⊕W{1,3} ⊕W{1,4} ⊕W{2,3} ⊕W{2,4} ⊕W{3,4}

V 0

The spaces in bold contain the information related to the observation of marginals on {1, 2, 3} in
this representation,

W{1,2,3,4}

W{1,2,3} ⊕W{1,2,4} ⊕W{1,3,4} ⊕W{2,3,4}

W{1,2} ⊕W{1,3} ⊕W{1,4} ⊕W{2,3} ⊕W{2,4} ⊕W{3,4}

V0

to the observation of marginals on {1, 3, 4} in this one,

W{1,2,3,4}

W{1,2,3} ⊕W{1,2,4} ⊕W{1,3,4} ⊕W{2,3,4}

W{1,2} ⊕W{1,3} ⊕W{1,4} ⊕W{2,3} ⊕W{2,4} ⊕W{3,4}

V0

and to the observation of marginals of the observation design {{1, 2, 3}, {1, 3, 4}} in this final rep-
resentation.

W{1,2,3,4}

W{1,2,3} ⊕W{1,2,4} ⊕W{1,3,4} ⊕W{2,3,4}

W{1,2} ⊕W{1,3} ⊕W{1,4} ⊕W{2,3} ⊕W{2,4} ⊕W{3,4}

V0

From a practical point of view, if we observe (fA)A∈A ∈ MA then by corollary 1, there exists a
unique f ∈ V 0 ⊕⊕

B∈
⋃

A∈A P(A)WB such that MAf = (fA)A∈A. Furthermore, if

f = f̃0 +
∑

B∈
⋃

A∈A P(A)

f̃B

is the decomposition of f corresponding to
⊕

B∈
⋃

A∈A P(A)WB , we obtain the wanted relation (6):

for any A ∈ A,

fA =MA



f̃0 +
∑

B∈P(A)

f̃B



 .

3.4 Multiresolution analysis

Until now, we have only used the expression “multiresolution decomposition”, not “multiresolution
analysis”. The latter has indeed a specific mathematical definitions, first formalized in [30] and [27]
(it is called “multiresolution approximation” in the latter) for the space L2(R). A multiresolution
analysis of L2(R) is a sequence (Ṽ j)j∈Z of closed subspaces of L2(R) such that:
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1. Ṽ j ⊂ Ṽ j+1 for all j ∈ Z

2.
⋃

j∈Z Ṽ
j = L2(R) and

⋂

j∈Z Ṽ
j = {0}

3. f(x) ∈ Ṽ j ⇔ f(2x) ∈ Ṽ j+1 for all j ∈ Z

4. f(x) ∈ Ṽ j ⇔ f(x− 2−jk) ∈ Ṽ j for all k ∈ Z

5. There exists g ∈ Ṽ 0 such that (g(x− k))k∈Z is a Riesz basis of Ṽ 0.

In order to define an analogous definition for L(Sn), we get back to the general principles behind
it. The idea is that the index j represents a scale, and each space Ṽ j contains the information of
all scales lower than j, thus Ṽ j ⊂ Ṽ j+1. In finite dimension, the number of scales is necessarily
finite, and we request that the space of largest scale be equal to the full space (we can request
that the space of lower scale be {0} but it is useless). The principle of multiresolution analysis
is not only to have a nested sequence of subspaces corresponding to different scales, but also to
define the operators that leave a space Ṽ j invariant and the ones that send from a space Ṽ j to
Ṽ j+1 and vice versa. In the case of L2(R), these operators are respectively the scaled translation
f(x) 7→ f(x − 2−jk) and the dilation f(x) 7→ f(2x), defined in conditions 3. and 4. If we see a
function f as an image, the dilation corresponds to a zoom, and a scaled translation corresponds
to a displacement.

To define a multiresolution analysis in our case, we first need a notion of scale. In our construc-
tion, the natural notion of scale for the spacesWA’s appears clearly on the precedent representations
of the multiresolution decomposition of L(Sn): the cardinality of the indexing subsets. We say that
the marginal pA of a probability distribution p on Sn on a subset A ∈ P(JnK) is of scale k if |A| = k.
This means that pA is a probability distribution over rankings involving k items. The information
contained in pA can be decomposed in components of scales ≤ k, and the projection of p on WA

contains the information of scale k. For k ∈ {2, . . . , n}, we define the space W k that contains all
the information of scale k by

W k =
⊕

|A|=k

WA (15)

and the space V k that contains all the information of scales ≤ k by

V k = V 0 ⊕
k

⊕

j=2

⊕

|A|=j

WA. (16)

We thus have

V 0 ⊂ V 2 ⊂ V 3 ⊂ · · · ⊂ V n = L(Sn) and L(Sn) = V 0 ⊕
n

⊕

k=2

W k. (17)

The space W k represent the information gained at scale k, and for that we can call it a detail space
by analogy with multiresolution analysis on L2(R). In the present case however, the decomposition
of L(Sn) into detail spaces is not orthogonal, as we shall see in section 4.

The second step in the definition of a multiresolution analysis is the construction of operators
of “zoom” and “displacement”. Translations on R are given by the additive action of R on itself,
i.e. are of the form x 7→ x + a, with a ∈ R. The associated translations on L2(R) are then of the
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form f 7→ f(.−a), so that the indicator function of a singleton {x} is sent to the indicator function
of the singleton {x+ a}. In the case of injective words, we consider the canonical action of Sn on
Γn, defined by π 7→ σ0(π), where for σ0 ∈ Sn and π = π1 . . . πk ∈ Γn, σ0(π) is the injective word
σ0(π1) . . . σ0(πk). We then define the associated translations on L(Γn) as the linear operators Tσ0

defined on Dirac functions by
Tσ0π = σ0(π), (18)

for σ0 ∈ Sn. We could still denote the translation operator by σ0 but we choose the notation Tσ0

for clarity’s sake. It is easy to see that the orbits of the action are the Γk, for k ∈ {0, . . . , n}.
Translation operators thus stabilize each space L(Γk), and in particular L(Γn) = L(Sn). We still
denote by Tσ0 the induced operator. By construction, the operator (and its induced operators) Tσ0

is invertible with inverse T−1
σ0

= Tσ−1
0

, for any σ0 ∈ Sn.

Remark 2. If π = π1 . . . πn ∈ Γn is seen as a permutation, then πi = π−1(i) for i ∈ JnK and σ0(π)
is the injective word associated to the permutation πσ−1

0 . Translation Tσ0
on L(Γn) = L(Sn) can

thus also be defined by Tσ0
f(σ) = f(σσ0). The mapping σ0 7→ Tσ0

is called the right regular
representation in group representation theory.

Lemma 4. Let σ0 ∈ Sn, ω ∈ Γn and a ∈ JnK.

1. Tσ0
̺a = ̺σ0(a)Tσ0

.

2. Tσ0 iω = iσ0(ω)Tσ0 and Tσ0 jω = jσ0(ω)Tσ0 .

3. Tσ0φn = φnTσ0 , i.e. Tσ01Sn[π] = 1Sn[σ0(π)] for all π ∈ Γn.

Proof. Properties 1. and 2. are trivially verified. To prove 3., observe that ω 7→ σ0(ω) being a
group action, it is bijective, and thus using equation (11) and 2., we obtain

Tσ0φn =
∑

ω1,ω2∈Γn

Tσ0 iω1 jω2 =
∑

ω1,ω2∈Γn

iσ0(ω1)jσ0(ω2)Tσ0 =





∑

ω′
1,ω

′
2∈Γn

iω′
1
jω′

2



Tσ0 = φnTσ0 .

The following proposition shows that translation operators Tσ0
can be seen as “displacement”

operators adapted to our multiresolution decomposition.

Proposition 4 (Displacement operator). Let k ∈ {2, . . . , JnK}, (A,B) ∈
(

JnK
k

)2
and σ0 ∈ Sn such

that σ0(A) = B. Then
Tσ0

(WA) =WB .

Proof. Since Tσ0
is invertible and dimWA = dimWB = dk by theorem 2, we only need to prove

that Tσ0
(WA) ⊂ WB . Let x ∈ HA. Property 3. in lemma 4 gives Tσ0

φnx = φnTσ0
x. Thus we just

have to show that Tσ0x ∈ HB . Since σ0 is a permutation such that σ0(A) = B, it is clear that
{σ0(π) | π ∈ S′

A} = S′
B , and Tσ0

x ∈ L(S′
B). Now, using property 1. in lemma 4, we have for any

b ∈ B, ̺bTσ0
x = Tσ0

̺σ−1
0 (b)x = 0 because σ−1

0 (b) ∈ A.

Looking at definitions (15) and (16), proposition 4 immediately gives the following result.

Proposition 5 (Translation invariance). For k ∈ {2, . . . , n}, the spaces W k and V k are invariant
under all the translations Tσ0 , for σ0 ∈ Sn.
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Observe that the space V j is invariant under all translations Tσ0 whereas in the case of the
multiresolution analysis on L2(R), the space Ṽ j is only invariant under scaled translations f 7→
f(. − 2−jk). The latter property means that the size of translations is limited by the resolution
level. The same interpretation is actually also true in our context: though V j is invariant under
all translations Tσ0

, they only involve the action of Sn on the sets Γi for i ≤ j. The “size” of
translations on V j is thus inherently limited by the resolution level.

While the construction of our displacement operator is based on the same algebraic objects as for
L2(R), namely translations associated to a group action, it is not possible to base the construction
of a zooming operator on dilation. This is the bottleneck of any construction of a multiresolution
analysis on a discrete space such as Sn, as observed in [23]. Hence, there is no simple way to define
an operator that allows to change scales, such as f(x) 7→ f(2x). We can however construct a family
of “dezooming” operators Φk that each project onto the corresponding space V k. For k ∈ {2, . . . , n},
we denote by Mk the operator associated to all the marginals of scale k, i.e. Mk :=M(JnK

k ),

Mk : L(Sn) →
⊕

|A|=k

L(S′
A)

f 7→ (fA)|A|=k.

Using corollary 1 for A =
(

JnK
k

)

, we have

L(Sn) = kerMk ⊕



V 0 ⊕
⊕

B∈
⋃

|A|=k P(A)

WB



 = kerMk ⊕ V k.

Therefore, for any F ∈ Mk(L(Sn)), there exists a unique f ∈ V k such that Mkf = F . We denote
by M+

k the operator from Mk(L(Sn)) to V
k that sends F to f . This is a pseudoinverse of Mk, but

not the Moore-Penrose pseudoinverse because V k is not the orthogonal supplementary of kerMk.

Definition 4 (Dezooming operator). Let Φ0 : f 7→ (〈f,1Sn
〉 /n!)1Sn

be the orthogonal projection
on V 0 and for k ∈ {2, . . . , n},

Φk =M+
k Mk.

3.5 Decomposition of the space W
k into irreducible components

By proposition 5, the space W k with k ∈ {2, . . . , n} is invariant under all the translations Tσ0

for all σ0 ∈ Sn. In other words, it is a representation of the symmetric group Sn. It can thus
be decomposed as a sum of irreducible representations Sλ. The multiplicity of each irreducible
is nonetheless not obvious to compute. This is one of the major results established in [35]. Its
statement requires some definitions.

A Young diagram (or a Ferrer’s diagram) of size n is a collection of boxes of the form
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where if λi denotes the number of boxes in row i, then λ = (λ1, . . . , λr), called the shape of the
Young diagram, must be a partition of n. The total number of boxes of a Young diagram is therefore
equal to n, and each row contains at most as many boxes as the row above it. A Young tableau is a
Young diagram filled with all the integers 1, . . . , n, one in each boxes. The shape of a Young tableau
Q, denoted by shape(Q), is the shape of the associated Young Diagram, it is thus a partition of n.
There are clearly n! Young tableaux of a given shape λ ⊢ n. A Young tableau is said to be standard
if the numbers increase along the rows and down the columns.

Example 8. In the following figure, the first tableau is standard whereas the second is not.

ͳ ʹ ͵ Ͷ ͷ ͸ 

ͳ ͵ ͷ Ͷ ʹ ͸ 

Notice that a standard Young tableau always have 1 in its top-left box, and that the box that
contains n is necessarily at the end of a row and a column. We denote by SYTn the set of all standard
Young tableaux of size n and by SYTn(λ) = {Q ∈ SYTn | shape(Q) = λ} the set of standard Young
tableaux of shape λ, for λ ⊢ n. By construction, SYTn =

⊔

λ⊢n SYTn(λ). A classic result in the
representation theory of the symmetric group is that for all λ ⊢ n, the dimension dλ of Sλ, which
is also its multiplicity in the decomposition of L(Sn), is actually equal to the number of standard
Young tableaux of shape λ. Thus the decomposition of L(Sn) into irreducible representations is
given by:

L(Sn) =
⊕

Q∈SYTn

S shape(Q).

Figure 7 represents all the standard Young tableaux of size n = 4, gathered by shape.

ͳ ʹ ͵ Ͷ 

ͳ ͵ Ͷ 

ʹ ͳ ʹ Ͷ 

͵ ͳ ʹ ͵ 

Ͷ ͳ ͵ Ͷ 

ʹ ͳ ʹ Ͷ 

͵ 

ͳ ʹ ͵ Ͷ ͳ ʹ ͵ Ͷ 

ͳ ʹ Ͷ ͵ 

ͳ ͵ Ͷ ʹ 

ሺͶሻ ሺ͵,ͳሻ 

ሺʹ,ʹሻ ሺʹ,ͳ,ͳሻ ሺͳ,ͳ,ͳ,ͳሻ 

Figure 7: Standard Young tableaux of size n = 4

By construction, L(Sn) = V 0 ⊕ ⊕n
k=2W

k, where V 0 is isomorphic to the Specht module
S(n) = S shape(Q0), Q0 being the unique standard Young tableau of shape (n). So for each k ∈
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{2, . . . , n} the decomposition of the space W k must involve a certain subset Tk of SYTn, such that
SYTn = {Q0} ⊔

⊔n
k=2 Tk. The construction of these subsets is done in [35]. We reproduce it here.

Let Q be a standard Young tableau. Then it contains a unique maximal subtableau of the form

ͳ ʹ ݈ ݈ + ͳ 

݈ + ݉ 

with 1 ≤ l ≤ n and 0 ≤ m ≤ n− l. Define

eig(Q) =

{

l if m is even,

l − 1 if m is odd.
(19)

(This definition is given in [35], in the proof of Proposition 6.23).

Theorem 3 (Decomposition of W k into irreducible representations). For k ∈ {2, . . . , n}, the
following decomposition holds

W k ∼=
⊕

Q∈SYTn

eig(Q)=n−k

S shape(Q).

Proof. For k ∈ {2, . . . , n},

W k =
⊕

|A|=k

WA =
⊕

|A|=k

φn(HA) = φn





⊕

|A|=k

HA




∼=

⊕

|A|=k

HA,

where the two last linear spaces are isomorphic because φn is an isomorphism between HA and WA

for any A ∈ P(JnK) by theorem 2. Furthermore, point 3. of lemma 4 shows thatW k and
⊕

|A|=kHA

are isomorphic as representations of Sn. In the notations of [35], HA = kerπA, so by their theorem
6.20, W k ∼= Fn,n−k as representations of Sn. Theorem 3 is then just a reformulation in the present
setting of theorem 6.26 from [35].

For k ∈ {2, . . . , n}, the subset Tk of standard Young tableaux involved in the decomposition of
W k is thus defined by Tk = {Q ∈ SYTn | eig(Q) = n−k}. Figure 8 represents the different subsets
Tk with the associated decompositions for n = 4.

Remark 3. For λ = (λ1, . . . , λr) ⊢ n, the usual ranking interpretation of the Specht module Sλ

is that it localizes information at “scale” n − λ1, in the sense that it localizes the absolute rank
information of n−λ1 items. The Specht module S(n−1,1) localizes absolute rank information about
1 item, S(n−2,2) and S(n−2,1,1) both localize absolute rank information about 2 items, and so on.
It is interesting to notice that this interpretation does not hold when dealing with relative rank
information. The space W k can indeed be seen as localizing the relative rank information at scale
k i.e. the relative rank information related to incomplete rankings involving k items. However,
theorem 3 shows that the decomposition of W k can involve Specht modules Sλ with n − λ1 6= k.
Figure 8 shows for example that for n = 4, W 3 involves absolute rank information of scale 1 and 2.
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W 4 ∼= S(3,1) ⊕ S(2,2) ⊕ S(2,1,1) ⊕ S(1,1,1,1)

ͳ ʹ ͵ Ͷ 

ͳ ʹ Ͷ 

͵ ͳ ͵ Ͷ ʹ 

ͳ ʹ Ͷ 

͵ 

W 3 ∼= S(3,1) ⊕ S(2,2) ⊕ S(2,1,1)
ͳ ʹ ͵ 

Ͷ ͳ ͵ Ͷ 

ʹ ͳ ʹ Ͷ ͵ 

W 2 ∼= S(3,1) ⊕ S(2,1,1) ͳ ͵ Ͷ 

ʹ ͳ ʹ ͵ Ͷ 

V 0 ∼= S(4) ͳ ʹ ͵ Ͷ 

Figure 8: Spaces W k and their decompositions into irreducibles, for n = 4

4 The wavelet basis

We now construct an explicit basis Ψ adapted to the multiresolution decomposition of L(Sn), in
the sense that Ψ = {ψ0}∪

⋃

A∈P(JnK) ΨA where ΨA is a basis ofWA for all A ∈ P(JnK), and establish
its main properties.

4.1 Generative algorithm

The basis is defined by an algorithm adapted from [33], which requires some definitions about
cycles and permutations. A cycle on JnK is a permutation γ ∈ Sn for which there exist m distinct
elements a1, . . . , am ∈ JnK, with m ≥ 2, such that γ(ai) = ai+1 for i = 1, . . . ,m−1, γ(am) = a1, and
γ(a′) = a′ for all a′ ∈ JnK \ {a1, . . . , am}. The cycle γ is then denoted by (a1 . . . am), its support is
the set {a1, . . . , am} and its length is l(γ) = m. For A ∈ P(JnK), we denote by Cycle(A) the set of all
cycles with support A. It is well known that a permutation τ ∈ Sn admits a unique decomposition
as a product of cycles with distinct supports τ = γ1 . . . γr (fixed-points are not represented). This
decomposition can though be written in several ways, depending on the order of the cycles and the
first element of each cycle.

Definition 5 (Standard cycle form). A permutation is written in standard cycle form if it is written
as a product of disjoint cycles so that the minimum element of a cycle appears at the leftmost letter
in that cycle, and the cycles are arranged from left to right in increasing values of minimum letters.

Example 9. The permutation (134)(25) is written in standard cycle form, while the alternative
representations (413)(25) or (25)(134) are not.
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For a permutation τ ∈ Sn, we denote by cyc(τ) the number of its cycles, define its support by
supp(τ) = {i ∈ JnK | τ(i) 6= i} and its length by l(τ) = | supp(τ)|. These definitions extend the
definitions of the support and the length for a cycle, and if γ1 . . . γcyc(τ) is the cycle decomposition
of τ , l(τ) = l1 + · · ·+ lcyc(τ). For A ∈ P(JnK), we define

DA = {σ ∈ Sn | supp(σ) = A},

and we set by convention D∅ = {id}, where id ∈ Sn is the identity permutation on JnK. By
definition, a permutation σ ∈ DA induces a fixed-point free permutation, also called a derangement,
on A. The set DA is thus the natural embedding of the set of derangements on A in Sn. The
algorithm of [33] computes a basis for the top homology space of the complex of injective words
over the field F2 = Z/2Z of two elements. It uses the operation on F2-valued chains “x⋄y = xy+yx”.
In the present setting, we use the following definition.

Definition 6 (Diamond operator). For x, y ∈ L(Γn), we define

x ⋄ y = xy − yx.

The algorithm of [33] takes a derangement on {1, . . . , k} as input and outputs an element of the
top homology space of the complex of injective words. It happens that the same algorithm with the
diamond operator of definition 6 maps a derangement on {1, . . . , k} to an element of Hk. Moreover,
the algorithm is naturally extended to take a permutation τ ∈ DA as input and output an element
xτ of the space HA, for any A ∈ P(JnK).

Algorithm 1. Let A ∈ P(JnK). The input is a permutation τ ∈ DA written in standard cycle
form, and the output is a chain xτ ∈ HA.

Step 1. Between each consecutive pair of letters in each cycle of τ , insert
the symbol ⋆.

Step 2. If there are no ⋆ symbols in the string, then HALT. Otherwise,
determine which symbol ⋆ has the largest right-hand neighbor.

Step 2. Suppose that the symbol located in Step 2 is between quantities
Q and R; that is, it appears as Q ⋆ R. Then replace Q ⋆ R by
(Q ⋄R).

Step 4. GOTO Step 2.

Example 10. Let A = {1, 2, 3, 4, 5} and τ = (134)(25). Algorithm 1 gives the following sequence of
steps.

(1 ⋆ 3 ⋆ 4)(2 ⋆ 5)
(1 ⋆ 3 ⋆ 4)(2 ⋄ 5)
(1 ⋆ (3 ⋄ 4))(2 ⋄ 5)
(1 ⋄ (3 ⋄ 4))(2 ⋄ 5)

Expanding the concatenation and the ⋄ operations, we obtain:

x(134)(25) = (1 ⋄ (3 ⋄ 4))(2 ⋄ 5)
= (1 ⋄ (34− 43))(25− 52)

= (134− 143− 341 + 431)(25− 52)

= 13425− 13452− 14325 + 14352− 34125 + 34152 + 43125− 43152.
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4.2 The basis of L(Sn)

We now construct the wavelet basis of L(Sn). We first show that the outputs of algorithm 1 belong
to the claimed space.

Proposition 6. Let A ∈ P(JnK). For all τ ∈ DA, xτ ∈ HA.

As in [33], the proof relies on the simple following lemma, of which proof is straightforward and
is thus omitted.

Lemma 5. Let x, y ∈ L(Γn) with c(x) ∩ c(y) = ∅, and a ∈ c(x). Then

̺a(xy) = ̺a(x)y and ̺a(x ⋄ y) = ̺a(x) ⋄ y.

Proof of proposition 6. Let A ∈ P(JnK) and τ ∈ DA. We need to show that for all a ∈ A,
̺axτ = 0. Let a ∈ A and τ = γ1 . . . γr be the standard cycle form of τ . By definition of DA,
{supp(γ1), . . . , supp(γr)} is a partition of A. Let γi be the cycle which support contains a. By defi-
nition of the algorithm, xτ = xγ1 . . . xγr , and using lemma 5, we have ̺a(xτ ) = xγ1 . . . ̺a(xγi) . . . xγr .
Since γi is a cycle, its support contains at least two elements, and thus xγi contains a product a ⋄u
or u ⋄ a. Now, ̺a(a ⋄ u) = ̺a(au− ua) = u− u = 0. Using lemma 5, this implies that ̺a(xγi) = 0
and then that ̺axτ = 0, which concludes the proof.

Example 11. Using the precedent example, we can see that

̺4x(134)(25) = 1325− 1352− 1325 + 1352− 3125 + 3152 + 3125− 3152 = 0.

Remark 4. The proof of proposition 6 does not use the fact that the cycle decomposition is in
standard form. This condition is indeed only necessary to prove that the outputs of the algorithm
for all τ ∈ DA constitute a basis of HA.

We now get to the central result in the construction of our wavelet basis: (xτ )τ∈DA
is a basis

of HA for all A ∈ P(JnK). In [33], they prove that their algorithm generates a basis for the top
homology space of the complex of injective words. This result cannot be directly transposed in
our context because HA is not the top homology space of the complex of injective words on A.
It happens however that the proof is exactly the same as the proof of theorem 5.2 in [33] and
relies on concepts introduced specifically for that purpose (namely “graph derangements” and the
“collapsing map”). It is thus left to the reader.

Theorem 4. For all A ∈ P(JnK), (xτ )DA
is a basis of HA.

We are now able to construct the wavelet basis of L(Sn), using the embedding operator φn.
Notice that for all τ ∈ Sn \ {id}, supp(τ) ∈ P(JnK). We thus set ψid = ψ0 = 1Sn

and for
τ ∈ Sn \ {id}, we define

ψτ = φn(xτ ) =
∑

π∈supp(τ)

xτ (π)1Sn[π]. (20)

By theorem 2, φn is an isomorphism between HA and WA for all A ∈ P(JnK). Combined with
theorem 4 we immediately obtain the following theorem.

Theorem 5. For all A ∈ P(JnK), (ψτ )DA
is a basis of WA, and

(ψτ )τ∈Sn
is a basis of L(Sn).
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ψ(1234)

1234 − 1243 − 1342 + 1432 − 2341 + 2431 + 3421 − 4321

ψ(1243)

1243 − 1324 + 1342 + 1423 − 2431 + 3241 − 3421 + 4231

ψ(1324)

1324 − 1342 − 2413 + 2431 − 3124 + 3142 + 4213 − 4231

ψ(1342)

1342 − 1432 − 2134 + 2143 + 2341 − 2431 + 3412 − 4312

ψ(1423)

1423 − 1432 − 2314 + 2341 + 3214 − 3241 − 4123 + 4132

ψ(1432)

1432 − 2143 + 2314 − 2341 + 2413 − 3142 + 3412 − 4132

ψ(12)(34)

1234 − 1243 − 2134 + 2143

ψ(13)(24)

1324 − 1342 − 3124 + 3142

ψ(14)(23)

1423 − 1432 − 4123 + 4132

ψ(123) ψ(124) ψ(134) ψ(234)

[123] − [132] − [231] + [321] [124] − [142] − [241] + [421] [134] − [143] − [341] + [431] [234] − [243] − [342] + [432]

ψ(132) ψ(142) ψ(143) ψ(243)

[132] − [213] + [231] − [312] [142] − [214] + [241] − [412] [143] − [314] + [341] − [413] [243] − [324] + [342] − [423]

ψ(12) ψ(13) ψ(14) ψ(23) ψ(24) ψ(34)

[12] − [21] [13] − [31] [14] − [41] [23] − [32] [24] − [42] [34] − [43]

ψid

Figure 9: Wavelet basis of L(S4)

Example 12. For n = 4, figure 9 gives the full wavelet basis of L(S4) ([π] is a shortcut for 1S4[π]).

Remark 5. The wavelet basis and the multiresolution decomposition are not orthogonal, example
12 provides many couples τ, τ ′ ∈ S4 such that 〈ψτ , ψτ ′〉 6= 0.

4.3 General properties of the wavelet basis

For a chain x ∈ L(Γn) (in particular a function in L(Sn)), we define its support by supp(x) = {π ∈
Γn | x(π) 6= 0}. See the Appendix section for the proof of the following proposition.

Proposition 7. Let τ ∈ Sn \ {id}, k = |τ | and r = cyc(τ).

1. ψτ (σ) ∈ {−1, 0, 1} for all σ ∈ Sn.

2. | supp(ψτ )| = 2k−r(n− k + 1)!.
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This first proposition provides some general intuition about the wavelet basis. In particular,
property 1. is interesting because it means that all the properties of a wavelet function simply
depend on the sign of its values and on the combinatorial structure of its support. The following
proposition shows the interaction between wavelets and translations. It appears clearly in the rep-
resentation of the full wavelet basis of L(S4) in example 12 that at scale k, wavelet functions inWA

with A ∈
(

JnK
k

)

are the translated of wavelet functions in W{1,...,k}. And indeed, as (ψτ )τ∈D{1,...,k}

is a basis of W{1,...,k} (by theorem 5), (Tσ0ψτ )τ∈D{1,...,k}
is a basis of WA for any σ0 ∈ Sn such that

σ0({1, . . . , k}) = A, by proposition 4. The following proposition refines this result.

Proposition 8. Let τ ∈ Sn and σ0 ∈ Sn a permutation that preserves the order of the elements
of supp(τ), i.e. if supp(τ) = {a1, . . . , ak} with a1 < · · · < ak, then σ0(a1) < · · · < σ0(ak). Then we
have

Tσ0ψτ = ψσ0τσ
−1
0
.

Proof. If τ = id, ψid is invariant under translations and the equality is trivially verified. We assume
τ 6= id, thus ψτ = φn xτ . By lemma 4, Tσ0

φn xτ = φn Tσ0
xτ . Let γ1 . . . γr be the standard cycle

form of τ with γi = (ai,1 . . . ai,ki). Then it is easy to see that Tσ0
xτ is the output of algorithm 1

when taking as input the permutation with cycle form γ′1 . . . γ
′
r where γ′i = (σ0(ai,1) . . . σ0(ai,ki)).

The order-preserving condition on σ0 assures that this is a standard cycle form. The proof is
concluded by a classic result (or a simple verification) that says that this is the cycle form of the
permutation σ0τσ

−1
0 .

The third general property concerns the marginals of the wavelet functions. It actually only
relies on the embedding operator φn, and not on algorithm 1. For A ∈ P(JnK), we define the
embedding operator φA :

⊕

B⊂A L(Γ(B)) → L(S′
A) on the Dirac functions by

φA : π 7→ 1S′
A
[π] =

∑

σ∈S′
A
[π]

σ. (21)

Proposition 9. Let A ∈ P(JnK) and π ∈ Γn such that c(π) ⊂ A. Then

MAφnπ =
(n− |π|+ 1)!

(|A| − |π|+ 1)!
φAπ.

Proposition 9 is a direct consequence of the following lemma, of which proof is given in the
Appendix section.

Lemma 6. Let (π, π′) ∈ (Γn)
2, and π0 be the subword of π with content c(π) ∩ c(π′). Denoting by

|π| = k, |π′| = l and |c(π) ∩ c(π′)| = m, we have

|Sn[π] ∩Sn(π
′)| =







(n− k + 1)!

(l −m+ 1)!
if π0 is a contiguous subword of π′,

0 otherwise.

The combination of proposition 2 and 9 give an explicit formula for the marginals of any elements
of a space WB , in particular for the marginals of wavelet functions.
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Proposition 10 (Marginals of the wavelet functions). Let A ∈ P(JnK). MAψid is the constant
function on S′

A equal to n!/|A|!, and for τ ∈ Sn \ {id},

MAψτ =







(n− |τ |+ 1)!

(|A| − |τ |+ 1)!
φA(xτ ) if supp(τ) ⊂ A,

0 otherwise.

This last proposition provides the explicit wavelet basis for the space MA for any observation
design A ⊂ P(JnK).

Example 13. We come back to the same example as in subsection 2.5: n = 4 and A = {{1, 3}, {2, 4},
{3, 4}, {1, 2, 3}, {1, 3, 4}}. The space MA has dimension 11 and its basis is represented by figure 10
(only the marginals on subsets A ∈ A are represented, all with the same scale).

(1/2)ψid ψ(12) ψ(13)

{1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4}

ψ(14) ψ(23) ψ(24) ψ(34)

{1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4}

ψ(123) ψ(132) ψ(134) ψ(143)

{1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4} {1, 2, 3}

{3, 4}{1, 3} {2, 4}

{1, 3, 4}

Figure 10: Wavelet basis of MA, for A = {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}
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4.4 Structure of the wavelet basis

The properties of a multiresolution analysis (Ṽ j)j∈Z on L2(R) directly lead to the definition of

an adapted wavelet basis (ψ̃j,n)(j,n)∈Z2 : take ψ̃ ∈ Ṽ 0 and define ψ̃j,n(x) = 2j/2ψ̃(2jx − n). Then

(ψ̃j,n)(j,n)∈Z2 is a basis of L2(R) adapted to (Ṽ j)j∈Z (see [26]) and has a simple interpretation,

ψ̃ is the “mother” wavelet and all the wavelet functions are obtained from ψ̃ by dilation and
translation. More specifically, at scale j, the wavelet function ψ̃j,0 is obtained by dilation of ψ̃j−1,0,

ψ̃j,0(x) =
√
2ψ̃j−1,0(2x), and all the ψ̃j,n’s by translation of ψ̃j,0, ψ̃j,n(x) = ψ̃j,0(x − 2−jn). These

relations encode the structure of the basis and are at the core of many applications.
In the present setting, while the translation operators are adapted to the multiresolution de-

composition, the latter can only be equipped with a dezooming operator, as explained in subsection
3.4. Hence, there is no natural operation that, in conjunction with translations, would fully encode
the structure of any wavelet basis associated to it. Our wavelet basis possesses however a particular
structure that stems from its generative algorithm. It is encoded in two relations that show how to
obtain a wavelet chain xτ from the wavelet chains xτ ′ of lower scales. The first relation encode the
links between wavelet chains indexed by one cycle. It uses a recursive structure on cycles, given by
the following lemma, the proof of which is only technical and left in appendix.

Lemma 7. Let A = {a1, . . . , ak} ⊂ JnK with k ∈ {1, . . . , n− 1} and b 6∈ A. Then

1. (a1 . . . ak)(aj b) = (a1 . . . aj b aj+1 . . . ak) for j ∈ {1, . . . , k},

2. Cycle(A ∪ {b}) = {γ · (aj b) | j ∈ {1, . . . , k}, γ ∈ Cycle(A)}.

This lemma means that the set of cycles with support A∪ {b} can be obtained recursively from
the cycles with support A by inserting b in each cycle γ ∈ Cycle(A) to the right of an element aj
of this cycle. This can be represented by a tree.

Example 14. Cycles with support {1, 2, 3, 4} are obtained via the following tree.

ሺͳʹ͵Ͷሻ ሺͳʹͶ͵ሻ ሺͳͶʹ͵ሻ ሺͳ͵ʹͶሻ ሺͳ͵Ͷʹሻ ሺͳͶ͵ʹሻ 

ሺͳʹ͵ሻ ሺͳ͵ʹሻ 

ሺͳʹሻ 

For a, b ∈ JnK, we define the elementary chain εb,a ∈ L(Γn) by

εb,a(π) =











1 if a, b ∈ c(π) and π(b)− π(a) = 1,

−1 if a, b ∈ c(π) and π(b)− π(a) = −1,

0 otherwise.

Theorem 6. Let γ = (a1 . . . ak), A = supp(γ), b > maxA and j ∈ {1, . . . , k}. Then for all
π ∈ S′

A∪{b},

xγ·(aj b) = εb,aj (π)xγ(π \ {b}).
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Proof. By lemma 7, γ · (aj b) = (a1 ... aj b aj+1 ... ak). Since b > maxA, applying algorithm 1 to
γ · (aj b) gives

xγ·(aj b) = x(a1 ... aj b aj+1 ... ak)

= ... ⋄ ...(aj ⋄ b)... ⋄ ...
= ... ⋄ ...(ajb− baj)... ⋄ ...
= ... ⋄ ...(ajb)... ⋄ ...− ... ⋄ ...(baj)... ⋄ ...

Thus for π ∈ S′
A∪{b},

xγ·(aj b)(π) =











xγ(π \ {b}) if π(b)− π(aj) = 1

−xγ(π \ {b}) if π(b)− π(aj) = −1

0 otherwise

= εb,aj (π)xγ(π \ {b}).

Example 15. For A = {1, 2, 3, 4}, for all π ∈ S′
A,

x(1342)(π) = ε4,3(π)x(132)(π \ {4}).

Theorem 6 leads to an explicit formula for xγ(π) by a simple induction. It just requires some
more notations. For A ∈ P(JnK), we define a sequence of subsets by A(0) = A and

A(j) = A(j−1) \ {maxA(j−1)} for j ∈ {1, . . . , |A| − 1}.

If A = {a1, . . . , ak} with a1 < · · · < ak, then A
(j) = {a1, . . . , ak−j}. It is easy to see that for any

γ ∈ Cycle(A), there exists a unique (u1, . . . , uk−1) ∈ A(k−1)×· · ·×A(1), denoted by u(γ), such that

γ = (u1 a2)(u2 a3) . . . (uk−1 ak)

(It is given by uk−1 = γ−1(ak), and ui = [γ (uk−1 ak) . . . (ui+1 ai+2)]
−1

(ai+1), for i ∈ {1, . . . , k−2}).

Corollary 2. Let A = {a1, . . . , ak} ⊂ JnK with a1 < · · · < ak, and γ ∈ Cycle(A). We set
u(γ) = (u1, . . . , uk−1). Then for all π ∈ S′

A,

xγ(π) =
k−2
∏

j=0

εak−j ,uk−j−1
(π|A(j)).

Example 16. For A = {1, 2, 3, 4}, for all π ∈ S′
A,

x(1342)(π) = ε4,3(π)ε3,1(π|{1,2,3})ε2,1(π|{1,2}).

The second relation that encodes the structure of the wavelet chains gives the link between a
wavelet chain indexed by a product of cycles and the wavelet chains indexed by these cycles. It
stems directly from the definition of algorithm 1.
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Theorem 7. Let τ = γ1 . . . γr ∈ Sn written in standard cycle form. Then xγ1...γr is the concate-
nation of xγ1 , . . . , xγr :

xγ1...γr = xγ1 . . . xγr .

For τ = γ1 . . . γr ∈ Sn written in standard cycle form, we define the decomposition of a word
π ∈ S′

supp(τ) associated to the cycle structure of τ by the tuple of contiguous subwords (π1, . . . , πr)

such that π = π1... πr and |πi| = l(γi) for all i ∈ {1, . . . , r}. The explicit version of theorem 7 is
given by the following corollary.

Corollary 3. Let τ = γ1 . . . γr ∈ Sn written in standard cycle form, and π ∈ S′
supp(τ). Let

(

π1, . . . , πr
)

be the decomposition of π associated to the cycle structure of τ . Then

xγ1...γr (π) =











r
∏

i=1

xγi
(

πi
)

if c(πi) = supp(γi) for all i ∈ {1, . . . , r},

0 otherwise.

Example 17. Let τ = (134)(25) = γ1γ2. We have supp(γ1) = {1, 3, 4} and supp(γ2) = {2, 5}.
The decomposition of a word π = π1... π5 ∈ S5 associated to the cycle structure of τ is given by
π1 = π1π2π3 and π2 = π4π5.

• For π = 24351, (c(π1), c(π2)) = ({2, 3, 4}, {1, 5}) 6= (supp(γ1), supp(γ2)), so

x(134)(25)(24351) = 0.

• For π = 41352, (c(π1), c(π2)) = ({1, 3, 4}, {2, 5}) = (supp(γ1), supp(γ2)), so

x(134)(25)(41352) = x(134)(413)x(25)(52).

The two relations given by theorems 6 and 7 encode the full structure of the wavelet basis, and
allow to compute recursively any wavelet chain, from the wavelet chains of scale 2. We do not have
an analogous concept of the “mother” wavelet in our case because the operations involved in the
computation of a wavelet chain vary at each stage, but these relations remain the base for many
applications, such as the design of fast decomposition algorithms in the wavelet basis.

5 Conclusion and perspectives

Exploiting the powerful formalism of injective words, we developed the first general framework to
perform data analysis on incomplete rankings in the present paper. Its cornerstone is the multires-
olution decomposition of L(Sn) in function of the spaces WA, that provides a decomposition of the
spaceMA for any observation design A. The explicit wavelet basis Ψ adapted to this multiresolution
decomposition is the key to use this framework in practice, allowing to perform linear or nonlinear
approximation in any space MA. It paves the way for many statistical applications, such as esti-
mation of a ranking distribution or prediction of a ranking on a new subset of items, aggregation
of many incomplete rankings into one full ranking or clustering of incomplete rankings. All these
applications require the design of fast decomposition algorithms as well as the theoretical study of
the properties of the wavelet basis regarding (nonlinear) approximation. This will be the subject
of forthcoming articles. At last, another line of further research consists in trying to generalize the
present framework to incomplete rankings which also allow ties.
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6 Appendix

6.1 Background on group theory

A group is a set G equipped with an associative operation G2 → G, (g, h) 7→ gh and an element
e ∈ G such that for all g ∈ G, ge = eg = g and there exists g−1 ∈ G such that gg−1 = g−1g = e.
The element e is called the identity element, and g−1, necessarily unique, is called the inverse of
g ∈ G. The operation is not necessarily commutative. A subgroup of G is a subset H ⊂ G such
that e ∈ H and for all (h, h′) ∈ H2, hh′ ∈ H. A left coset of a subgroup H of G is a subset
(usually not a subgroup) of G of the form {gh | h ∈ H} with g ∈ G. A simple result states that
for any subgroup H of a finite group G, all the left cosets of H have same cardinality |H| and they
constitute a partition of G.

An action of a group G over a set E is an operation G×E → E, (g, x) 7→ g · x such that for all
(g, g′) ∈ G2 and x ∈ E, e ·x = x and g′ · (g ·x) = (g′g) ·x. For x ∈ E, its orbit under the action of G
is the set Ox = {g · x | g ∈ G}, and its stabilizer is the subgroup of G {g ∈ G | g · x = x}. A subset
of E is an orbit of G if it is equal to a Ox. The collection of all the orbits of G is a partition of E.
The action of G on E is called transitive if it has only one orbit (E), i.e. if for all x ∈ E, Ox = E.

A representation of a group G is couple (V, ρ) where V is a linear space and ρ a mapping
ρ : G → GL(V ), where GL(V ) is the group of invertible linear maps from V to V , such that
for all (g, g′) ∈ G2, ρ(gg′) = ρ(g)ρ(g′). We speak indifferently of the representation (V, ρ), the
representation ρ or the representation V . When G acts transitively on a finite set E, there is
a canonical representation of G on L(E), called the permutation representation, defined on the
Dirac functions by ρ(g)δx = δg·x, for x ∈ E. From an analytical point of view, the operators ρ(g)
are exactly the translations operators on L(E) associated to the action of G, and besides, for all
f ∈ L(E), g ∈ G and x ∈ E, (ρ(g)f)(x) = f(g−1 · x). When E = G, this representation is called
the regular representation.

A representation (V, ρ) of G is called irreducible if V 6= {0} and there is no subspace W ⊂ V
such that ρ(g)(W ) ⊂ W for all g ∈ G other than {0} and V . Two representations (V1, ρ1) and
(V2, ρ2) of a group G are isomorphic if there exists an isomorphism φ between V1 and V2 such
that φ(ρ1(g)v) = ρ2(g)φ(v) for all g ∈ G and v ∈ V . Irreducible representations of a group are
assimilated to their equivalence class of isomorphic representations.
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A major result in the representation theory of finite groups is that the number of irreducible
representations of a finite group G is finite (actually equal to the number of conjugacy classes of G)
and that any finite-dimensional representation V of G admits a decomposition as a direct sum of
irreducible representations. The number of copies of one irreducible representation in this decom-
position is called its multiplicity. The decomposition of the regular representation L(G) involves
all the irreducible representations of G, each appearing with multiplicity equal to its dimension. If
Irr(G) denotes the set of irreducible representations of G, then

L(G) ∼=
⊕

W∈Irr(G)

dWW,

where forW ∈ Irr(G), dW = dimW . See [6] for more developments on group representation theory.

6.2 Technical proofs

Proof of lemma 1. Let (A,B) ∈ P(JnK)2 with A ⊂ B. The permutation group SA acts on S′
A and

S′
B . The mapping rB,A : S′

B → S′
A, σ 7→ σ|A, is equivariant for this action, i.e., for any τ ∈ SA

and σ ∈ S′
B , rB,A(τ · σ) = τ · rB,A(σ). The action being transitive on S′

A, rB,A is surjective.
Moreover, for π ∈ S′

A, S
′
B(τ · π) = r−1

B,A({τ · π}) = τ · r−1
B,A({π}) = τ · S′

B(π). Consequently

|S′
B(π)| = |S′

B(σ · π)|, which, combined with S′
B = ⊔π∈S′

A
r−1
B,A(π), gives the sought result.

Proof of lemma 3. Let ω ∈ Γn, a ∈ JnK\c(ω) and π ∈ Γn. If c(π)∩c(ω) 6= ∅, then also c(̺aπ)∩c(ω) 6=
∅, and both iωπ and iω̺aπ are equal to 0 by definition. If c(π) ∩ c(ω) = ∅, then iωπ = ωπ. Since
a 6∈ c(ω), it can only be deleted in the word ωπ if it is deleted from π. This means that ̺aωπ = ω̺aπ,
whether a ∈ c(π) or not. We prove identically that ̺ajω = jω̺a.

Proof of proposition 7. The proof of this proposition is a simple analysis of algorithm 1. For a
cycle γ = (a1 . . . ak), the associated xγ is equal to an expression of the form a1 ⋄ · · · ⋄ ak with a
particular way to put parentheses. When expanded, this expression gives 2k−1 terms with sign +
or − between them. It could happen that some of the terms are the same and thus add or balance.
But actually, for x ∈ L(Γ(A)) with A ⊂ JnK, 1 ≤ |A| ≤ n−1 and b ∈ JnK\A, supp(x⋄b) = {πb | π ∈
supp(x)} ⊔ {bπ | π ∈ supp(x)}. By recursion, we obtain that | supp(xγ)| = 2k−1, meaning also that
all the terms in the expanded version of a1 ⋄· · ·⋄ak are different. Furthermore, for x ∈ L(Γ(A)) and
y ∈ L(Γ(B)) with A,B ⊂ JnK, A,B 6= ∅ and A ∩B = ∅, we have | supp(xy)| = | supp(x)|| supp(y)|.
Now, let τ = γ1 . . . γr be a permutation written in standard cycle form, with γi = (ai,1 . . . ai,ki).
Then xτ = (a1,1⋄· · ·⋄a1,k1) . . . (ar,1⋄· · ·⋄ar,kr ), and this expression expands in 2k1−1 . . . 2kr−1 = 2k−r

different terms. This shows both that | supp(xτ )| = 2k−r and that xτ takes its values in {−1, 0, 1}.
Applying φn concludes the proof.

Proof of lemma 6. Let (π, π′) ∈ (Γn)
2, and π0 be the subword of π with content c(π) ∩ c(π′). We

denote by |π| = k, |π′| = l and |c(π) ∩ c(π′)| = m. By definition, Sn[π] ∩ Sn(π
′) = {σ ∈ Sn | σ

admits π as a contiguous subword and π′ as a subword}. If π0 is not a contiguous subword of
π′, then there exist a subword π∗ of π0 which is a contiguous subword of π, a ∈ c(π′) \ c(π0) and
i ∈ {2, . . . ,m} such that π∗ ⊳i a is a subword of π′. So if σ ∈ Sn[π]∩Sn(π

′), σ admits a fortiori π∗

as a contiguous subword and π∗⊳ia as a subword, which is not possible. Hence, |Sn[π]∩Sn(π
′)| = 0

in this case. We now assume that π0 is a contiguous subword of π′. Let i ∈ {1, . . . , l} such that
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π′
i . . . π

′
i+m−1 = π0. Then each element of Sn[π]∩Sn(π

′) can be seen as a way of filling the blanks
denoted by with all the elements of JnK \ (c(π) ∪ c(π′)), in the following figure.

π′
1 . . . π′

i−1 π π′
i+m . . . π′

l .

If we do not take the order of the elements into account, the number of such fillings is equal to the
number of ways of putting n−(k+ l−m) indistinguishable balls (the elements of JnK\(c(π)∪c(π′)))
into l −m+ 2 boxes (the blanks). From a classic result in combinatorics, this number is equal to

(

(n− (k + l −m)) + (l −m+ 2)− 1

(l −m+ 2)− 1

)

=

(

n− k + 1

l −m+ 1

)

.

Now, to take the order into account, we have to multiply by the number of possible reorderings of
the filling elements, equal to (n− (k + l −m))!. The final result is thus

(

n− k + 1

l −m+ 1

)

(n− (k + l −m))! =
(n− k + 1)!

(l −m+ 1)!
.

Proof of lemma 7. Let A = {a1, . . . , ak} ⊂ JnK with k ∈ {1, . . . , n−1} and b 6∈ A. For j ∈ {1, . . . , k},
γ = (a1 . . . ak) and τ = (a1 . . . ak)(aj b), we have

τ(ai) = γ(ai) = ai+1 for i ∈ {1, . . . , k} \ {j} with ak+1 = a1 by convention,

τ(aj) = γ(b) = b,

τ(b) = γ(aj) = aj+1,

τ(a′) = γ(a′) = a′ for all a′ 6∈ A ∪ {b}.

Hence τ = (a1 . . . aj b aj+1 . . . ak). This proves 1. and at the same time that {γ · (aj b) | j ∈
{1, . . . , k}, γ ∈ Cycle(A)} ⊂ Cycle(A ∪ {b}). Now, let γ ∈ Cycle(A ∪ {b}), a∗ = γ−1(b) and
γ′ ∈ Cycle(A) be the cycle obtained when deleting b in γ. Then by 1., γ = γ′ · (a∗ b). This
concludes the proof.
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