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Abstract—Facilitating the creation of Internet of Things
(IoT) applications is a major concern to increase its de-
velopment. D-LITe, our previous work, is a framework for
that purpose. In D-LITe, Objects are considered as part of
a whole application. They offer a REST web service that
describes Object capabilities, receives the logic to be executed,
and interacts with other stakeholders. Then, the complete
application is seen as a choreography dynamically deployed
on various objects. But the main issue of choreographies is the
loss of coherence. Because of their unreliability, some networks
used in IoT may introduce de-synchronization between Objects,
leading to errors and failures. In this paper, we propose a
solution to re-introduce coherence in the application, in order
to keep the advantages of choreography while dealing with
this main issue. An overlay of logical check-points at the
application layer defines links between the coherent states
of a set of objects and triggers re-synchronization messages.
Correcting statements are thus spread through the network,
which enables fault recovery in Choreographies. This paper
ends with a comparison between the checking cost and the
reliability improvement.
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I. INTRODUCTION

The Internet of Things is a rising domain that gives

Internet widespread connectivity to real world objects. IoT

focuses research interest because it re-uses well-known

protocols. The success of IoT will come from the ability

to easily create applications. In our previous work, we

have presented D-LITe[3], a framework for IoT applications

creation and deployment, based on a services choreography.

The main advantage of services choreographies stands in

the distribution of the application logic across the network.

The absence of central point leads to a better dissemination

of the load and a more efficient use of energy, especially in

constrained networks[4].

However, services choreographies are subject to a major

issue. Unlike orchestrations which are under the control

of a unique central point, the spread of the logic may

lead to failures. For example, some stakeholders may miss

steps in their choreography and the whole application be-

comes incoherent. IoT uses wireless links to make Objects

communicate as it integrates WSAN (Wireless Sensors and

Actuators Network). These wireless links are characterized

by their unreliability. Tests on our testbed show that we still

experience application failures, in spite of controls made at

lower layers.

In this paper, we propose a new mechanism allowing the

IoT programmer to introduce coherence controls in order to

correct the logic of Objects involved in a global application.

This coherence checking is deployed along with the services

choreography. Some Objects will have to start a check to a

list of ‘to-be-checked" Objects. They will check their own

state, make correction if needed, then transmit in their turn

the coherence control orders to their own list of "to-be-

checked" Objects.

This paper is organized as follow: Section II presents

related work while Section III describes our IoT solution D-

LITe. The coherence checking architecture is described in

Section IV. Section V contains our experimental study and

our results. Finally, concluding remarks and future research

directions are given.

II. RELATED WORK

Our approach of Internet of Things applications[3] is part

of the Services Oriented Architecture(SOA) realm. SOA

offers a distributed composition of programs in a "loosely

coupled platform-independent model"[11]. G. Canfora and

M. Di Penta present the specificity of SOA as "radical

changing [in] the development perspective"[2]. Implication

of that change leads to "lack of observability of the service

code" and "lack of control" because of the infrastructure

independence and the absence of access to the running code.

The "cost of testing" for such a distributed software compo-

sition over heterogeneous hardware may lead to denial-of-

service if too many controls are performed.

Testing Web services collaboration can be done at design

time. H.Huang et al.[7] use language translations from

OWL-S (Ontology Web Language for Services) into a model

checkers compatible one, in order to test some services

composition. This translation is used to generate test cases

in an a priori check. To specifically test web services chore-

ographies, L.Zhou et al.[11] propose the use of assertions

that "express the intention of the program by designers".

A simulator processes each web services and builds the

complete interactions combinations. All path are checked

and assertions are verified. This tool can detect design errors.

However, we are more interested in adding global fault

checking to running choreographies.

These a priori model checking approaches are efficient

to detect design problems. Besides them, many other un-

predictable failures can corrupt the running composition,



especially if unreliable networks are involved. KleeNet[9] is

a tool to test the reliability of a distributed solution. It aims

at testing the behaviour of a choreography when unexpected

errors occurs. KleeNet triggers network error on a running

application, and has been able to detect design errors in

ContikiOs, the open-source OS for IoT devices[6].

In this paper, we are interested in errors that happen while

an application is in use. Our target is to offer a mechanism

able to correct the impacts of malfunctions. We assume that

the application is a priori bug free. We aim to keep the

running application in a correct state in spite of exogenous

hardware/network/application errors, while KleeNet is used

to re-design faulty applications. Our solution uses assertions

to express control points[11]. But it runs during the service

execution phase, and provides a mechanism to correct logical

de-synchronizations.

Trying to recover from the effects of exogenous errors

has already been explored[10], in which checking points and

consistent set of states are presented. This approach offers

fault-tolerance and recovery. It can be used for Web services

in a similar way used in this paper[1]. However, the authors

obtain robustness by replication of the web services. On

usual web, one can duplicate services, thanks to powerful

hardware. In our case, IoT objects that interacts with the

real world are often unique, and replication is not possible.

On IoT, each object has a specific role (mainly because of

its position and its unique point-of-view) and has often low

computing capabilities.

III. OUR PLATFORM: D-LITE

In previous works, we have presented our framework D-

LITe[3] for designing Choreographed applications for IoT.

By introducing hardware abstraction, D-LITe offers a easy

way to create Iot applications. the Objects discovery and the

application deployment add a real usability to our solution.

The logic (the part of the application an Object must exe-

cute) is expressed with Finite State Transducers (FST)[5].

Automata are a simple way to express logical sequence

of actions driven by events. FST are a good compromise

between the need of programming Objects, the reduced set

of their possible actions and the ease of understanding a

programming language.

Each Object receives its own FST to be executed and

a list of subscribers. The output of its Transducer becomes

the input of subscribed Transducers. D-LITe is event-centric,

an event being a received message or a change in the

environment (for Objects with sensing capabilities). The

event is treated, makes a Transition in the Transducer. Output

messages are generated, that can be external ones (for

subscribers) or intended to Object’s hardware (for Object

with actuating capabilities). D-LITe builds choreographies

of logic running on Objects.

IV. COHERENCE CHECKING OVERVIEW

A. Motivation

Rather than trying to fix all errors that may have occurred

at different levels and in different places, the idea of putting

all the Objects back into a compliant coherent state makes

sense. Our idea is to provide a mechanism to help a pro-

grammer to express assertions, as in programming language

(i.e. C language[8]). He uses these predicates to bring back

correctness in the global system. Errors causes can vary

widely and may not be reproducible. A IoT choreography

depends on the reliability of the weakest part of the whole

structure. Trying to work out which part induced an error,

and the reason why internal mechanism did not manage it,

seems to be out of reach.

To illustrate the need, we propose an emergency scenario

during a disaster in a public area. In a fully disorganized

environment, self-powered objects with wireless connectiv-

ity and computing capabilities can be re-used to help people

finding an emergency exit. Here, the flexibility of D-LITe

can be used to deploy "on the fly" a new application on

Objects, using their led to lead people to the emergency

exit. The first object flashes, then tells the next one to do

so, and so on, showing the path.

In that scenario, the de-synchronization of the process

leads to a non-understandable message. When an object

goes out of synchronization, it will blink at the wrong time,

and the whole message becomes incomprehensible. Errors

occurrence cannot be avoided, but must be corrected.

B. Check-points overlay

In D-LITe, each logical element is a FST. Improving the

coherence inside this application is based on the combination

of States of the set of FST. In some cases, a programmer

can assert that if a given Object is in a specific State, then

some others must be in another one. For example, in home

automation, one can say that when the house door is closed,

every light must be switched off. In our emergency scenario,

we can assert that all the lights must be switched off before

a new cascade of flashes begins.

Although very few combinations are valid compared to

all the possibilities, at least one exists: Initial State of each

Object. Depending on his application, a programmer can

detect some other valid states combinations for a subset of

Objects, identified by a Coherence Level (an id he gives).

The subset of Objects is not the same as its usual subscribers

Table I
A CHECK POINT OVERLAY

Coherence Level Object A Object B Object C Object D

1 — Up(1) Close (S) Dark (1)

2 In charge(3) Stop(S) Close(1) Light(2)

3 Wake up (S) — Open(2) Light(1)

4 Sleep(S) Stop OR Close(1) Light(2)



Figure 1. a D-LITe application is a choreography of FST. Each object
follows its own logic. To improve coherence, combinations of stable states
for the Objects are defined. Initial states are one of these groups, but there
are probably some others. Programmers build an overlay of coherent states
among all possible combinations. The root of each overlay starts a cascading
check to ensure the coherence of each element.

Figure 2. Checking points overlay is a tree that uses some of the Objects
involved in the application. Only one coherence level is represented here.
Object 1 (tree’s root) is in charge of starting the check (when it reaches
the indicated State). The check request follows the tree, each node checks
itself, and spreads the check to followers. A "OR" is organized between
node 3 and 4. If 3 is not valid, node 4 is checked. This coherence level

accepts two valid States for node 7.

list because the coherence checking range is different (i.e.

the house door and all the lights). The root Object throws

the check (S in Table I and Fig 1).

For each coherence level defined by the IoT programmer,

a root Object must be identified. It defines the tree of each

specific coherence level (Table I) in order to spread this

check in cascade. Each tree (S-1-2-3...) can be different from

the tree used by the application Fig 1. Each coherence level

has its own root and its specific dependences.

C. Coherence check spreading

Fig 2 shows a more complete coherence level overlay. It is

the programmer’s duty to organize his tree. A demonstration

of a logical "OR" is made in Fig 2. If 3 is in a valid State

when checked, the check is transmitted to following Objects

Algorithm 1 Reception of a Check message

Require: ckpRs Array of ckpRcv, currentState,

Require: RcvChkId,RcvChkNumber, LastChkNumber

Ensure: Verify state, change if needed, and propagate

if RcvChkNumber 6= LastChkNumber then

LastChkNumber ← RcvChkNumber

i← 1
while ckpRcv[RcvChkId].states[i] 6= null do

if ckpRcv[RcvChkId].states[i] = currentState

then

for all ip in ckpRcv[RcvChkId].targets[i] do

sendChkMsg(ip, RcvChkId, chkNumber)

end for

return true

else

i← i+ 1
end if

end while

{Coherence error: alternate list or pushing FST in any

right state}

if ckpRcv[RcvChkId].altTargets = null then

newState← 1 + (random() mod (i− 1))
changeFSTto(ckpRcv[RcvChkId].states[newState])
for all ip in ckpRcv[RcvChkId].targets[newState]
do

sendChkMsg(ip, RcvChkId, chkNumber)

end for

return true

else

for all ip in ckpRcv[RcvChkId].altTargets[] do

sendChkMsg(ip, RcvChkId, chkNumber)

end for

end if

end if

return false

(5 and 6). But if 3 is invalid, no change is done, and 4 is

checked. That indicates that we want Object 3 in a certain

State OR Object 4 in a given one. 4 is checked in the usual

way (corrected if needed, and then followers are checked).

The "OR" is implemented through an alternate Objects list

(Algorithm 1).

The coherence checking tree (Fig 2) is described by the

programmer. He organizes his checks in cascade to avoid

too many dependences on a single Object ("to-be-checked"

Objects list may not fit in the very small Object memory).

Each time a FST moves to a new State, it scans its checking

table (used only for tree’s root node) to see if a check is

required. In that case, the coherence mechanism throws a

check message to the "to-be-checked" Objects list with the

coherence level identifier and a random number (to avoid

loopbacks).

The check request is received and managed inside each



Figure 3. The FST running on an Object may describe what to do if a
resynchronization is needed. Here, for the lamp receiving "on" and "off ",
and changing for "Dark" to "Light", an added State (Check) has a transition
that switch off the light. If this added State is ever used, it is because we
need to correct Object’s State.

"to-be-checked" Object. The algorithm 1 shows the search of

this check in the Object’s table. When the coherence level

is found, the current FST state is compared to the list of

coherent States list. If it matches, the Object is safe, and the

algorithm goes on by sending the check to its own list of

"to-be-checked". If the State is not valid, two cases occurs:

• the alternate "to-be-checked" list is empty. The algo-

rithm randomly chooses one of the valid states, sets

the FST to it, and then spreads the check as usual, now

that the Object is correct.

• There is an alternate "to-be-checked" list. Alternate "to-

be-checked" list is useful to express an "OR" in the

checking logic. No correction is made here. The check

is simply send to all Objects of the Alternate list.

The cascading coherence system makes each Object able

to jump directly to a given state. Doing this, it also has to

make some physical changes if this Object is an actuator.

In home automation for example, checking coherence when

the door is closed eventually leads to a re-synchronization

of some Objects. In that case, we also need to really switch

off lights (jumping to the state "dark" remains the light on).

That’s why we introduce in Fig 3 a new transition that is

triggered when the coherence mechanism forces the FST to

be in a valid state. To respect automata formalism, it can be

seen as adding a new initial state to the FST (Fig 3) that

will be used by the coherence check mechanism.

V. EXPERIMENTAL STUDY

We first have to determine whether faults may occur or

not, because IoT applications are very varied. Application

checking or fault recovery strategies can be highly vari-

able. If an Object sends messages taken into account by

subscribers in a short-cycling logic, fault recovery can be

endogenous. For example, if it sends two messages (i.e.

"on" and "off "), and if subscribers react with two states

(i.e. "open" and "close"), losing one message has not a

serious impact. But some cases are more sensitive to de-

synchronization. There is no self-recovery when counting

informations (counting people entering or leaving a place,

or sequencing lights as in our emergency scenario). If the

event is lost, then the whole application is desynchronized

without possibility of self-recovery.

A. Experiments details

To validate our proposition, we have designed an ex-

periment based on counting received events. We study the

impact of de-synchronization, and the cost and gains of our

proposed mechanism.

1) Experiment scenario: We use a version of our frame-

work D-LITe improved by checks, running on ContikiOs[6].

ContikiOS comes with Cooja which emulates Objects, runs

the code and simulates the network. We both run exper-

iments on Cooja, and on a testbed using TelosB1. Our

experiment uses a first group of 4 Objects: 1 generator and 3

counters. The generator sends 12 events (1 per second), and

then waits 10 seconds, and so on. Counters are organized in

cascade. The first counter receives the events, counts them,

and sends them to the second one, which does exactly the

same, and sends them to the third one. Each counter must

receive the 12 events. The second group of 4 nodes is similar

to the first one. The first group uses checking system while

the second does not. In the first group, the generator sends

a check during the 10 second pause. The 3 counters are

resynchronized if needed. We collect the values given by

each counter of each group.

2) Metrics used: Because errors have very different

sources (network, hardware, framework implementations or

even user error), we added an error generator, randomly

erasing messages following a settable error rate. Our tests

are presented with 4 error rates: 0%, 5%, 10% and 15%. We

collect experiment’s data for at least 1000 initial events in

each configuration, in both environment (Cooja and testbed).

For each Object, we store how many events are received out

of the 12 send. This gives us the amount of useful corrections

made in the re-synchronized group.

B. Results analysis

Our tests show that there is a difference between Cooja

and the testbed. While we encounter nearly no error in Cooja

(99% of checks were valid), errors appear more often on

the real platform (more than 10% of checks are useful for

the first Object, causing more than 25% useful checks for

the second). This difference reflects effect of the wireless

channel un-reliability. Furthermore, the TelosB emulator in

Cooja executes instructions faster, thus avoiding bottlenecks

related to the real TelosB processor frequency and hardware

reactivity.

Fig 4 displays the counter results for different nodes and

error rates. It shows the difference between the number

of send and received messages, due to the network poor

reliability. With a 0% error rate, re-synchronization is useless

1A small smart-device designed for testing IoT http://www.memsic.com/



Figure 4. Depending on error rate and node’s position, messages are lost,
and counters results drift from the actual values.

Figure 5. Every 12 events, a check is thrown. The higher the error rate,
the more checks are needed to keep close to the correct value. When it is
too important, even check requests are lost, and unreliability increases.

in Cooja, while failures already appear in the testbed. Fig 4

shows the impact of failures on a non self-repairing IoT

applications.

Fig 5 gives a view of the rate of checks that actually led to

a synchronization. The original code running on Cooja gives

no error. For 100 checks, only 1% corrections are needed.

Running on a testbed, the same application needs more than

10% re-synchronizations for the first Object. Because the

2nd Object depends on the first one, more errors occur. With

the introduction of an error rate in our experiment, the num-

ber of de-synchronization increases. The graph shows how

our correction mechanism is increasingly efficient to keep

coherence. At a given error rate, the correction mechanism

fails because even check messages are lost. A 10% error rate

reaches that point for our experiment with the testbed. In that

case, the programmer should reconsider his application.

C. Application reliability versus check frequency

Fig 6 describes the trade-off between application reliabil-

ity and checks frequency. There is no global rule for tuning

the checks frequency as this one depends on the application

Figure 6. Depending on the check frequency and the error rate, the % of
valid states vary. For example, to obtain 70% of valid states when a 10%
error rate occurs, our application must be checked every 3 events. However,
with our coherence system, results are very close to the actual value during
the remaining 30%.

Figure 7. By resynchronizing the Object, our mechanism avoids an
increasing shift from the real count of events. When checks are done, the
gap remains very low.

ability to self-stabilize. Our experiment is designed to be

very sensitive to errors, because each Object counts events

received from its stakeholder, in a cascade of dependences.

Here, losing a single event causes an irrecoverable incon-

sistent in Object’s state when no checking mechanism is

used. The longer the application runs without checking,

the larger the error. The average reliability of the first and

second Objects of the experiment are displayed in Fig 6. The

more often a check is made when the error rate increases,

the better the valid states rate. When using our coherence

mechanism, the application keeps very close to the actual

value, avoiding an increasing shift.

In our experiment, an 5% error rate gives an average of

50% valid states when checks are made every 8 events. Here,

we say that the counter is false when it has missed one event.

In case of error, the Object is quickly resynchronized. But

the number of exchanged messages increases of 1/8. Fig 6

shows this cost compared to the gain in precision.



Figure 8. This distribution shows that the checking mechanism gives a
good rate of valid results. Drift remains under control.

Fig 7 measures the drift from the actual value (1000

events) of our experiment on the testbed with a 5% error

rate. When checking every 12 events, the drift is regularly

deleted. The global trend remains very close to the real

value. Deviations due to various errors stay under control.

Without checks, the value drifts more and more.

The checks frequency has an impact on the quality of

the retrieved data. Thus, according to the desired accuracy

and the amount of network errors, the programmer selects

the range of allowed variability. The more controls he adds,

the more overhead is induced. If he sets less check-points,

the drift is widening. Fig 8 shows its distribution when

checked every 12 events, with a 5% error rate. It never

exceeds 7, even after more than 1200 events. Depending on

the position of the Object, the precision varies. More than

60% of the counted values by Object 1 are valid. If you

accept a maximum drift of 1, Object 1 has more than 90%

correctness and Object 2 reaches 60%.

VI. CONCLUSION

In this paper, we presented one of the main issues en-

countered in IoT Choreographies: the lack of consistency

due to lost messages. This paper proposes a mechanism to

keep this de-synchronization under control.

We have extended our existing IoT framework D-LITe

to introduce coherence checking, by building an overlay

of coherence over the different stakeholders of the Chore-

ography. With this extension, the IoT programmer can

generate and distribute re-synchronization requests at given

moments of the application running life cycle, and avoids

the appearance of wide inconsistencies due to the multiple

hardware/software/network potential failures. Our checking

mechanism can keep the Choreography in a tolerable margin

of error for a slight message overhead. This margin is defined

by the programmer, and controlled by his checks request

frequency.

In future work, we will extend the coherence overlay

architecture and expressibility in order to deal with specific

checks that IoT applications may require, such as multiple,

logical or group checks in order to increase the expressive-

ness of the system.
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