N

N
N

HAL

open science

Reduced Vlasov-Maxwell simulations

Philippe Helluy, Laurent Navoret, Nhung Pham, Anais Crestetto

» To cite this version:

Philippe Helluy, Laurent Navoret, Nhung Pham, Anais Crestetto. Reduced Vlasov-Maxwell simula-
tions. Comptes rendus de I’Académie des sciences. Série IIb, Mécanique, 2014, 342 (10-11), pp.619-635.

10.1016/j.crme.2014.06.008 . hal-00957045

HAL Id: hal-00957045
https://hal.science/hal-00957045v1
Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00957045v1
https://hal.archives-ouvertes.fr

Reduced Vlasov-Maxwell simulations

Philippe Helluy, Laurent Navoret, Nhung Pham

IRMA, Université de Strasbourg & Inria TONUS

Analis Crestetto

LMJL, Université de Nantes

Abstract

In this paper we review two different numerical methods for Vlasov-Maxwell
simulations. The first method is based on a coupling between a Discontinuous
Galerkin (DG) Maxwell solver and a Particle-In-Cell (PIC) Vlasov solver. The
second method only uses a DG approach for the Vlasov and Maxwell equations.
The Vlasov equation is first reduced to a space-only hyperbolic system thanks
to a method presented in Helluy, Pham, and Crestetto [11], Helluy, Pham, and
Navoret [10]. The two numerical methods are implemented using OpenCL in
order to achieve high performance on recent Graphic Processing Units (GPU).

Introduction

The Maxwell-Vlasov system is a fundamental model in physics. It can be
applied to plasma simulations, charged particles beam, astrophysics, etc. The
unknowns are the electromagnetic field, solution of the Maxwell equations and
the distribution function, solution of the Vlasov equation. The two systems of
equations are coupled because the motion of particles generates an electric cur-
rent at the right hand side of the Maxwell equations, while the electromagnetic
field accelerates the particles in the Vlasov equation. The Maxwell equations
are a system of linear hyperbolic equations. Today, they are routinely solved
in industrial applications with commercial software. Several numerical meth-
ods exist: finite difference, finite elements. In this paper, we will use a more
and more popular method for solving the Maxwell equations: the Discontinu-
ous Galerkin (DG) finite element approach. This method is presented in many
works. We refer for instance to Helluy [8], Bourdel et al. [3], Cohen et al.
[4], Klockner et al. [14], Crestetto [5].

Email addresses: philippe.helluy@unistra.fr; laurent.navoret@math.unistra.fr;
pham@math.unistra.fr (Philippe Helluy, Laurent Navoret, Nhung Pham),
anais.crestettoQuniv-nantes.fr (Anais Crestetto)

Preprint submitted to FElsevier March 10, 201/

The Vlasov equation is a rather simple transport equation, but set in a six-
dimensional (z,v) space-velocity phase space. This leads to very heavy com-
putations. The most popular method for solving the Vlasov equation is thus
the Particle-In-Cell (PIC) method of Birdsall and Langdon [2], because this is
one of the less expansive. It consists in distributing random particles with ran-
dom velocities in the computational domain. The particles are then pushed by
the electromagnetic field. They are also deposited on the Maxwell finite ele-
ment mesh in order to generate a current in the right hand side of the Maxwell
equations.

The PIC method is very easy to implement. However it is subject to numer-
ical noise. It leads also to other issues: smoothing, charge conservation errors,
energy conservation errors. We will also see in this paper that the PIC method
is rather difficult to parallelize.

Therefore, while they are certainly more memory consuming, Eulerian ap-
proaches, which solve the Vlasov equation directly on a phase-space grid, are
more and more investigated.

In this paper, we first review some aspects of the DG and PIC methods,
which are very important for obtaining a robust and precise approximation. We
then describe a parallelization of the full Vlasov-Maxwell coupling on recent
Graphic Processing Units (GPU) with the OpenCL framework.

We will see that the DG method is very well adapted to parallelization.
The PIC method is more difficult to efficiently parallelize. Therefore, we will
present a recent approach, the reduction method, which allows approximating
the Vlasov equation also by a DG solver.

1. Vlasov-Maxwell equations

1.1. Maxwell equations

In this paper, we consider the two-dimensional Maxwell equations in Trans-
verse Electric (TM) mode. The unknowns depend on the space variable z =
(21,72) € R? and the time ¢ > 0. They are the electric field

E = (Ey, E»,0)7,

and the magnetic field
H = (0,0, H3)T.

The current
j = (Jl) j27 0)
is supposed to be given.
We then write the unknowns and the source term in a vector form

W:(E17E27H3)Ta S:(jlanaO)T~
In this way, the Maxwell equations read as a linear first order hyperbolic system

where we use the Einstein convention (sum on repeated indices)
Ay =AMy + A0y,

and the notation

0
Z_alL'i.

In the first order differential system (1) the matrices A’ are given by

000 0 0 -1
A= 00 1], A= 0 0 o0
0 1 0 -1 0 0

(the equations are written under a dimensionless form where the speed of light
c=1). Let now n = (n1,n2)T € R% We can also define the flux of the Maxwell
equations

f(W,n) = A'n;W.

If we define
n' = (1,007, n%=(0,1)7,

the Maxwell equations can also be written under the more general conservative
form

W + 0, f(W,n') = S. (2)

1.2. Vlasov equation

We consider now the motion of N particles of mass m and charge ¢ in the
electromagnetic field. The particles are labeled by an index k, 1 < k < N. The
position of particle k at time ¢ is 2*(¢) and its velocity is

it (t) = %xk(t).

For z = (z1,72) € R? and v = (v1,v2) € R?, the distribution function of
particles is defined by

f(zyv,t) = Zwké(x - xk(t))é(v - ;ick(t)),
k

where J denotes the Dirac measure on R? and wy, is the weight of particle k.
The electric current generated by the particles motion is given by

at) = [fv,t) = 3 bl - ot @) 0 3)
v k

The particle acceleration is given by the relativistic equation of motion

i =, i:,u%(E—Hx/\H), (4)

with
E= (E17E27O)Ta H = (0a07H3)Ta

j=p(v) = (1—v-0)¥2, (5)
We can also write the acceleration with the notation

&= p(@)a(z,z,t), alz,v,t)= %(El(a:,t) + voHs(z,t), Ea(x,t) — v1 Hs(x,t)).

It is then possible to prove that, in the weak sense, the distribution function
satisfies the relativistic Vlasov equation written under a conservative form

8tf+vw(fv)+vv(ufa):0 (6)

When the particle velocity is small compared to the speed of light ¢ = 1, we can
use the Galilean approximation

p(v) ~ 1. (7)
In addition, we introduce the admissible velocity disk
D:{vGRz,v~v<1}.
Let us also observe that on the boundary of the velocity disk, we have
v e ID = pu(v) =0.

This is a nice property. Indeed, the Vlasov equation (6) is a transport equation
written in the (x,v) velocity phase space. The phase space transport velocity is

V = (v,pa) € R*

The component of V' in the velocity direction v is the acceleration pa, which
vanishes on dD. Thus we will have no boundary condition to apply on 9D,
or more precisely, if at the initial time f = 0 on 0D, then this property is
maintained at all times.

1.8. Divergence cleaning
The charge p(x,t) is defined by

plat) = [(w060

Integrating the Vlasov equation with respect to v, we obtain the charge conser-
vation

op+V,-j=0. (8)
If at the initial time ¢ = 0 the Gauss law is satisfied

Ve E(x,t =0)=p(x,t =0),

then, using the charge conservation (8) and the Maxwell equations (1) we deduce
the Gauss law at all times
Ve E=p. 9)

The Gauss law is thus a consequence of the Vlasov-Maxwell equations. How-
ever, depending on the numerical scheme, it might not be well satisfied by the
numerical approximation. A practical tool for improving the numerical accuracy
is to use a divergence cleaning technique of Munz et al. [17]. The divergence
cleaning consists in considering an additional artificial unknown ¢(z,t) in the
Maxwell equations, which satisfies

O+ xVy - E = xp.

The constant parameter x > 0 represents the speed at which the divergence
errors are propagated to the boundaries of the computational domain. In addi-
tion, the time derivative of the electric field 0; F is replaced by 0:F + xV,¢ in
the Maxwell equation. We thus obtain a new vector of unknowns

W - (E17E2a H37 ¢)T

The divergence cleaning model still reads as an hyperbolic system (1) but the
matrices are now

0 0 0 x 0 0 -1 0
o RN B B AR A
x 0 0 0 0 x 0 0
and the source term becomes
S = (j1,42,0,xp) " (10)

An important feature of this extended Maxwell system is that we recover exactly
the Maxwell equations when ¢ is constant. Thus, with adequate boundary
conditions we introduce only a numerical stabilization of the divergence errors
without additional numerical errors, even for small values of y. For more details
on the divergence cleaning system, we refer to Munz et al. [17], Crestetto and
Helluy [6], Crestetto [5], Fornet et al. [7].

1.4. Boundary conditions

The Vlasov-Maxwell equations (2), (6) need to be supplemented by condi-
tions at the boundary of the computational domain 2 x D.

1.4.1. Maxwell boundary conditions

Stable boundary conditions for the classic Maxwell equations have been ex-
tensively studied. These conditions are properly generalized to the divergence
cleaning model in a few papers: Fornet et al. [7], Crestetto and Helluy [6]. We
recall here briefly the general theory.

We consider local boundary conditions in the form
M(n)(W — W) =0, (11)

where n = (ny,n,0) is the normal outward vector on 9Q and W€ a given
incident boundary electromagnetic field (which can be zero). The boundary
condition has to be chosen in such way that the Maxwell operator in space x
is maximal positive. Stability conditions are given by the Lax-Philips theory
(Lax and Phillips [15], Petkov and Stoyanov [18], Bourdel et al. [3], Helluy
[8], Crestetto and Helluy [6], Fornet et al. [7]) which requires

e 1A'n; + M(n) > 0.
e dim kerAin; = dim kerM (n).

It is possible to prove that the following boundary conditions (and associated
M matrices) satisfy the Lax-Philips stability conditions

e Generalized “metal”:

nxE=0 ¢=AE-n, A>0 (12)

e Generalized “Silver-Miiller”, M = —A'n; :

H3 — ’/llEQ + TLQEl = H:i)’nc — TLlEiQnC + ﬂgEilnC,
E-n—¢ = E™.n (13)

The generalized metal condition is compatible with the original Maxwell system
only when A = 0 (because we need to have ¢ = 0). However, a small A > 0
can be interesting for numerical reasons, because it introduces a slight energy
damping.

We would like to emphasize that the respect of the Lax-Philips stability
condition is absolutely crucial for obtaining stable and precise numerical results,
especially when the DG solver is coupled to a PIC solver.

1.4.2. Vlasov boundary conditions

As seen in Section 1.2, no boundary condition is required on the boundary
Q x 0D of the velocity domain. We thus consider the case z € 90 and v € D.
The outward normal vector on 99 is still noted n(x).

Inflow condition. It is natural to impose the value of the distribution function
f only at inflow (Johnson and Pitkéranta [12]). Introducing the notations

a’ = max(a,0), o =min(a,0),
the inflow condition can be written

(U : n("E))_f(xvvvt) = (U : ”)_fo(xa U,t),

in such a way that when v -n > 0, no condition is imposed on f.

Child-Langmuir condition. A more subtle boundary condition is the Child-
Langmuir current condition. This condition is useful at a particles emitting
boundary because it allows creating just the quantity of charges that cancels
the normal component of the electric field. For the moment we do not know
how to express in a rigorous mathematical way the Child-Langmuir condition.
We just describe the practical computation.

The electrons are emitted at the cathode if the normal electric field is strong
enough, until it cancels (Child-Langmuir law).

More precisely, we use the following algorithm for a discretization cell L that
touches the cathode boundary I'c:

o if F-n < 0on dLNT¢ then compute

5L=,oL—/ E-n
AL\

where pr, =)« wi (charge in the cell L).

e if §;, < 0, create n, random particles in the cell L with weights dr, /n..

2. Discontinuous Galerkin method

2.1. Weak upwind DG formulation

The Discontinuous Galerkin (in short DG) approximation is a more and
more popular method for approximating hyperbolic systems of conservation
laws (see, among many others, Bourdel et al. [3], Crestetto [5], Crestetto and
Helluy [6], Cohen et al. [4], Klockner et al. [14], Lesaint and Raviart [16]).

We consider a mesh of the domain . In each cell L the fields W (z,) are ap-
proximated by second order polynomial in z. We denote by P»(R?) a linear space
of second order polym.Mesh(c12,c13,c0,c15, ¢16,c17,c4,c18, ¢19,c¢20,¢9,c8); no-
mial in x = (21, 72). In practice, we use P»(R?) = span{1, z1, 22, v1-22, 23, 13, 13-
79,7123} because with this choice, we have dim P»(R?) = 8 which is well suited
to GPU optimizations. Then

Wiz, t) =Y wr;(t)dr (x), {1} basis of P(R?)%.
J

The DG upwind weak formulation (Lesaint and Raviart [16], Johnson and
Pitkdranta [12], Helluy [8]) consists in finding the basis components wry, ;(¢) in
each cell L such that for all test function 1 € Py(R?)?

/ WL - r, — / W - Aidy + / (AW, + Aty W) - oy
L L OLN

+ / (M + A'n)Wy -y, = / S+ MWy (14)
OLNO L OLNQ

where we denote by n the normal vector on 0L oriented from the cell L to the
neighboring cells R and

7 = max(0,7), z~ = min(0,z).
The DG formulation is a generalization of the finite volume method. It relies
on the standard upwind numerical flux for linear hyperbolic systems

f(WL, Wk, Tl) = AZTL:'_WL + Aln;WR

Finally, (14) is equivalent to a system of ordinary differential equations for the
wr,; (t)

We do not give all the details of the implementations, but for our application,
the main lines are:

e The cells L are quadratic curved “quadrilaterals”.

e The components of the basis functions 17, ; are orthonormal polynomials
on the cell L when the cell is a parallelogram: we use a modal basis
defined directly in the physical space. We do not rely on a reference
element. Thanks to this choice we will not have to invert a geometric
transformation for computing the fields at the particles.

e We use a high order numerical integration (16 Gauss-Legendre quadrature
points in the cells and 4 points on each edge).

For more details we refer to Crestetto and Helluy [6].

2.2. GPU parallelization

The DG method can be parallelized efficiently on Graphic Processing Unit
(GPU) (Klockner et al. [14]). GPUs are recent computing devices that have
proven to be very efficient for performing computations on data that can be
regularly organized into the GPU memory.

GPUs are not as easy to program as classic processors. CUDA is a well
known environment for programming NVIDIA GPUs. OpenCL is another
framework for programming various multicore devices, including GPUs or CPUs
of several vendors. OpenCL means “Open Computing Language”. It includes a
library of C functions, called from the host, in order to drive the GPU and a
C-like language for writing the programs that will be executed on the proces-
sors of the multicore accelerator. The specification is managed by the Khronos
Group Khronos Group Inc. [13].

OpenCL proposes a rather general abstraction that works well for various
multicore SIMD hardware. Very schematically, an OpenCL device possesses a
few gigabytes of global memory and is made of a few tens of Computing Units
(CU). Each CU contains a few processors called Processing Elements (PE), and
a small cache memory of a few kilobytes. The same program, called a kernel,
can be executed on all the Processing Elements at the same time. The PEs
have a very fast access to the cache memory of their CU. The PEs have also

an efficient access to the GPU global memory if they read or write to adjoining
memory locations. For non-regular computations, a classic strategy is thus first
to fetch a tile of data into the CU cache, then perform the computations with
fast access to the cache. When the computations are finished, they are copied
back, in a regular way to the global memory. A special behavior of OpenCL
devices makes the GPU programming rather complicated: if two processors try
to write at the same memory location at the same time, only one will succeed...
This has to be kept in mind, for instance in the flux collecting algorithm or
when computing the current created by the particles in the same cell L.

We have written an OpenCL implementation of the previous DG formula-
tion. Our programming strategy is described in details in Crestetto and Helluy
[6]. We just recall here the principal points:

e Initialization: we compute and invert the local mass matrices on the CPU.
We send (all) the data to the GPU.

e First pass of each time step: we associate to each Gauss point of each edge
one processor. We compute the flux at the Gauss points and store it into
global memory.

e Second pass: we associate to each basis function of each element a pro-
cessor. We compute the time derivative of the wy, ; using the DG weak
formulation, the previously computed fluxes and the stored inverted mass
matrices. The separation into two passes with parallelism redistribution
allows avoiding concurrent writing operations.

e Time integration: we use a simple second order Runge-Kutta scheme.

According to some benchmark that we have performed, we observed a spectacu-
lar efficiency of the GPU implementation. Compared to a single core implemen-
tation on a traditional CPU we have observed that the GPU implementation is
50-100 times faster (Crestetto and Helluy [6]).

3. PIC method

3.1. Generalities on the PIC method

The Particle-In-Cell method is a very natural method (Birdsall and Langdon
[2]) for approximating the Maxwell-Vlasov system (1), (6) because it starts
directly from the particle interpretation of the Vlasov equation (4). The idea
is simply to move the particles with a standard ordinary differential equation
solver. This requires the computation of the electromagnetic field at the particle
positions. We have thus to know at each time step to which element belongs
each particle. Reversely, the motion of the particles produces an electric current
measure given by (3).

The action of the fields over the particles is rather easy to parallelize.

The action of the particles on the current at the right hand side of the
Maxwell equations is less obvious to program. Indeed, a naive parallelization

would lead to concurrent memory writing. Recent GPU OpenCL drivers allow
memory locking and atomic operations, but it is not recommended to use these
features because they generally lead to dramatic drop of performance. There-
fore, we prefer to adopt a more sophisticated sorting technique (presented for
instance in Aubert et al. [1]) in order to achieve faster computations.

Let us mention that we have employed a very simple PIC method. Many
authors have observed much better precision of the PIC algorithm when the
particles are smoothed. Smoothing is considered to be very important for sta-
bility, precision and charge conservation, especially when the electromagnetic
field is computed by a discontinuous approximation. Unfortunately, smoothing
also requires atomic operations and thus an even more complicated GPU imple-
mentation. Therefore we have decided to test the rough PIC method anyway.
Surprisingly, we have been able to obtain rather precise results. The condition
for obtaining these results is to use a high divergence cleaning parameter x ~ 10.
We will discuss the consequences of this choice in Section 4.

3.2. GPU implementation

We give some details on the GPU implementation for one time step. More
informations are given in Crestetto and Helluy [6].

3.2.1. Particles motion
e Emission: we use the algorithm described in the last paragraph of Section
1.4.2. The random positions are given by independent van der Corput
sequences.

e Particle acceleration: at each time step we associate one processor to
each particle. We move the particle and find its new cell location. Our
algorithm works on an unstructured grid, but for efficiency, we assume
that during one time step the particle cannot cross more than one cell
layer. This condition imposes a CFL condition that is not constraining
compared to the DG solver CFL condition.

3.2.2. Current

This is the most subtle part of the GPU algorithm because we have to
avoid concurrent memory write operations. This difficulty has been already
addressed by several authors (see, for instance Aubert et al. [1]). The most
efficient solutions generally rely on a particles sorting pass at each time iteration.

e We thus first sort the list of particles according to their cell numbers. For
this sorting, we use a GPU-optimized radix sort algorithm of Helluy [9].
Then, it is easy to know how many particles are in each cell.

e We can also sort the cells list according to the number of particles inside
the cells (optional).

10

e We associate to each cell a processor. Then for each cell it is possible to
loop on its particles in order to compute their contributions to the current

S - /(/)L = Z wk(_ijlc(t)? _x.g(t)707X)T : wL(xk(t))‘

e Thanks to the second optional sorting, neighboring processors treat ap-
proximately the same number of particles and in this way they do not
wait too much for each other. In some computations, this can increase the
efficiency.

4. GPU numerical experiments

GPU programming is complex and time consuming. We thus expect at least
high speedups of the implementation. For measuring the efficiency, we have
compared in Crestetto and Helluy [6] a sequential and a GPU implementation
of the DG Maxwell solver. In this case, without particles, we have observed
speedups of the order of 50 — 100. When we couple the Vlasov and the PIC
solver we have still good speedups of the order 5 — 10, but we clearly loose one
order of magnitude in the computational time. This can be explained by several
reasons:

e Particle sorting is time consuming and require non-coalescing memory
accesses.

e The particles are sorted with an indirection array. The current computa-
tion thus also requires random memory accesses.

e Particles sorting and current evaluation take approximately the same time.
While the particle solver is called only every ten iterations of the DG
solver, the DG solver represents only 15% of the computation time. Recall
that we do not use particles smoothing and that we need high values of
x for performing a good divergence cleaning (typically, we take x ~ 10).
Finally, this is not so expensive, because the DG solver is much cheaper
than the PIC solver.

We now present rapidly several numerical experiments.

4.1. Child-Langmuir current

In our first example we try to compute numerically a stationary solution that
can be expressed analytically. We will see that a high value of y is necessary.
If x is too small, the scheme does not correct the divergence errors efficiently.
Maybe that a smoothing of the particles would permit to diminish x.

We consider a planar diode Q = [0, L,] x [0, L,] with a cathode C = {z =
0} x [0, Ly] and an exit boundary A = {z = L,} x [0, L,]. We consider a metal
boundary condition (19) at the anode x = 0 and we apply the exact solution

11

with an inhomogeneous Silver-Miiller condition at * = L,. At this point, the
“incident” field is defined by

(Er, Eo, Hy,9)™ = (~1,0,0,0)" . (15)

We apply periodic conditions at y = 0 and y = L.

We represent E, on Figure 1 at times ¢ = 1 and ¢t = 5. x is taken equal to
5 and we move the particles every 25 time steps in order to let the divergence
correction act. Smaller values of x give inaccurate results (Crestetto [5]). We see
the emission (there is no particle at ¢ = 0) and the motion of electrons from the
cathode to the anode. We can also remark that on the cathode £, = E-n = 0,
which is the searched Child-Langmuir condition.

0.00682

-0.0865

0.0664

-0.0449
-0.156

-0.268

-0.18

-0.273

-0.366

-0.379 D40

-0.553

001 -0.646

-0713
-0.74
-0.824
-0.633
-0.935
-0.926

Ex

Ex

Figure 1: Planar diode case: E, at times ¢ = 1 with 8918 particles (left), and ¢t = 5 with
44133 particles (right), 1024 elements.

For such a planar diode in Cartesian geometry, the Child-Langmuir current
Jor on the anode for a given potential drop Vy between the cathode and the
anode verifies

3
Jer (L) = o HHVE (16)
where
Jor = / j -n (17)
A
and
Lo La
Vo= V(= Loo)=V (e =00 = [0.V (@) da = —/O E, (z,40) dz,

(18)
Yo € [0,L,] and V denoting the scalar potential such that £ = —V,V. The
computed potential drop is given as a function of time on Figure 2 (left). It
tends to the value denoted by Vy. The corresponding theoretical current Joy, is
also given on Figure 2 (right) and compared to the computed one.

12

Potential drop) Anode Current
Value 0.358740 —— Value 0.501472 ——

urrent (kA)

Potential drop (MV)
°
Anode C

d
&
M;ﬁﬁ’ﬁ;
IEg
3

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (ns) Time (ns)

Figure 2: Child-Langmuir law: potential drop (left) and Child-Langmuir current (right),
computed values (blue) compared to theoretical ones (red).

Anode

Iy

Entry
of the

wave

Cathode

My=reury,

Rotation axis

Figure 3: Diode geometry

4.2. X-Ray generator

With our code, we have also been able to simulate an electrons emitting
diode. This device is used for producing x-rays, when the electrons hit the anode.
The axisymmetric geometry of the diode and the mesh of the computational
domain are represented on Figure 3. At time ¢ = 0, an electromagnetic wave
is entering at the left of the computational domain. At this boundary T’y we
apply an inhomogeneous Silver-Miiller boundary condition. At the cathode and
the anode, we apply metal boundary conditions. The electrons are emitted at
the cathode. The rotational symmetry implies additional geometric terms in
the Maxwell equations and in the particles weights (see Crestetto and Helluy
[6]). In addition there is no boundary condition to apply on the rotation axis,
because the numerical flux in the Galerkin Discontinuous method simply cancels
(it is multiplied by the distance to the axis).

We represent the radial component of the electric field and the particles at

13

Figure 4: Electron emission at dimensionless time ¢ = 0.22. The length of the computational
domain L = 0.4 and the dimensionless speed of light ¢ = 1.

time ¢ = 0.22 on Figure 4.
This numerical simulation has been awarded a prize at the AMD OpenCL
competition in 2011. See
http://developer.amd.com/events/amd-opencl-coding-competition-2/

5. Reduced modeling

The conclusion of our Vlasov-Maxwell PIC-DG experience is that it is finally
possible to achieve interesting accelerations on GPU. However, the implemen-
tation is complex. While the PIC sequential implementation is straightforward,
its parallelization requires particles sorting, random memory accesses, etc. And
in the end most of the GPU time is spent in the PIC algorithm while the DG
solver is very efficient.

We would thus like to present another approach where we use a unified
Eulerian DG solver for the Maxwell and the Vlasov equations. When coding
our DG solver, we have tried to be as generic as possible. For instance the
physical model is explicit only in a few parts of the code: in the numerical
flux, the source terms and the boundary terms. But generally, the whole DG
algorithm is not aware of the underlying physical model. We will show how to
rewrite the Vlasov equation in order to obtain an augmented hyperbolic system,
written only in (z,t) that can thus be solved by the generic DG solver. The
resulting model is called the reduced Vlasov-Maxwell model.

5.1. Velocity expansion

The Vlasov equation is a transport equation written in the (z, v) space. The
objective of reduced modeling is to rewrite the Vlasov equation in order to
obtain a hyperbolic system of conservation laws, but set only in the x space.
In this way it is possible to reuse a generic DG solver. For this purpose, we
consider a finite number of continuous basis functions depending on the velocity

veD— g(v), i=1---P.
We suppose that
v € ID = p;(v) =0. (19)

14

We expand the distribution function in this basis

P

v) =3 Fe,p,(0) = ;.

j=1

We insert this representation into the Vlasov equation (6), multiply by ¢; and
integrate on the velocity domain D. We also integrate by parts the acceleration
term, and using (19), we obtain (Helluy et al. [11])

/%@jatfjJr/%@jvk@kfj */MCL'VUSOi%‘fj = 0.
We can then define the following P x P matrices
M;,; :/%‘%‘7 A?,j :/@i@jvkv B;; = —/Ma'vv%%‘, (20)

and the Vlasov equation can be rewritten in the reduced form

Mdyw + A*dw + Bw =0, (21)

or also
dw + M~ A*dpw + M~ 'Bw = 0, (22)

where
w:(fla"'va)T' (23)

The form (22) is called the reduced Vlasov equation. It is a first order hyperbolic
system of conservation laws (Helluy et al. [11]) that can be solved by a standard
DG solver. However, for practical reasons it is important to provide an efficient
choice of basis functions ¢;. A good choice ensures a small number of basis
functions P and that the matrices M, A* and B are sparse. We detail now such
a basis and also an adequate choice of numerical quadrature that will lead to
diagonal matrices M and A*.

5.2. Finite element basis with nodal integration

We consider a nodal finite element interpolation in the velocity space with
curved “quadrilaterals”. In addition, the nodal points will coincide with Gauss-
Lobatto quadrature points. In this way we obtain several interesting properties
of the basis functions. Let us give now more details.

We choose first a degree d > 1 of polynomial approximation. We can as-
sociate to this degree d + 1 Gauss-Lobatto points on the interval [0,1], & =
0 <& <--- <&gy1 = 1. We consider also integration weights w; ---wg. The
Gauss-Lobatto integration rule

d+1

/0 Q= >~ wiQ(E),

15

0.5

0.5

Figure 5: A mesh of the velocity disk D with degree d = 3, K = 80 elements (in black),
Pp = 745 Gauss-Lobatto nodes (red points) and P = 697 interior nodes. The distribution
function cancels on the boundary and is thus computed only at the interior velocity points.
Such a mesh leads to very heavy computations because we have to solve in space and time a
hyperbolic system with P = 697 (Vlasov) +3 (Maxwell) = 700 components.

is then exact if @ is a polynomial of degree < 2d — 1. We also consider the
Lagrange polynomials L; associated to the Gauss-Lobatto subdivision. The
polynomial L;, i =1---d+ 1 is of degree d and satisfies

Li(&5) = dij,

where §;; is the Kronecker delta.

We construct now a mesh of the velocity disk D. The mesh is made of
nodes Vi, k =1--- Pp, Pp > P. Each node Vj for kK = 1--- P is associated to
a basis function ¢,. We also suppose that the nodes Vpiy---Vp, are on the
boundary 9D in such a way that they are not associated to basis functions .
The nodes are associated to elements Ay, k = 1--- K. Each element is a curved
“quadrilateral” and owns (d+1)? nodes. An example of such a mesh with degree
d =3, K = 80 elements, Pp = 745 nodes and P = 697 interior nodes is given
on Figure 5 .

As it is traditional in the finite element method, we consider a local and a
global numbering of the nodes of element Aj. The local node I, [= 1---(d+1)?
of element Ay, is also noted

Vit = Vi)

where r(k, 1) is the K x (d + 1)? connectivity array of the finite element mesh.
Each element Ay is obtained from a geometrical transformation 75 that maps
the square A =]0,1[x]0, 1] on element Aj. The geometrical transformation is

16

defined as follows. First, we consider (d + 1)? reference nodes
Vi=(&,6), withl=(@G—1)(d+1)+j, 1<i,j<d+1.

The reference nodes are the two-dimensional Gauss-Lobatto points of the refer-
ence element. Reference node V; is also associated to an integration weight

@y =ww; with 1= (i —1)(d+1)+j, 1<ij<d+1. (24)

To each reference node, we associate a reference basis function, which is a tensor
product of Lagrange polynomials

@i(&,n) = Li(€)Lj(n), withl=(—-1(d+1)+j, 1<i,j<d+L

We can check that

@l(vm) = 5lm~

Then, the geometric transformation is defined by

(d+1)?

Tk(fﬂ?): Z @l(fﬂ?)Vk,l,

=1

in such a way that
(V1) = Vi1

We also suppose that the node V; are defined in such a way that 7 is invertible
and also a direct transformation

det 7']; > 0.

We have now all the pieces to construct the basis functions. Let ¢ = 1--- P
and v € D, then necessarily, v € Ay, for some k = 1---K'. We then have two
possibilities:

1. Node V; is not a node of element A, then

pilv) = 0. (25)

2. Node V; is a node of element Ag. It means that i = x(k,l) for some
I=1---(d+1)2 Then

wi(v) = @ (), with v = 74(D). (26)
In this case, we can also compute the gradient of the basis function

Vopi(v) = ((0)7) " Vopu(0), v = 7i(d). (27)

1We assume that the elements Ay are disjoint open sets and that UA, = D. Of course,
this cannot be exactly true because 7 is a polynomial transformation. We neglect in our
presentation the error made in the approximation of D.

17

From the previous definitions, we obtain basis functions that are continuous on
D. In addition, they satisfy the interpolation property

wi(V;) =0i5, 1<4,5<P.

This interpolation property ensures that the components of w in (23) are simply
approximations of the distribution function at the Gauss-Lobatto points V;

fil@,t) = f(x, Vi,).
We can thus also use the convention that on the boundary nodes
fiz,t)=0if P+1<i< Pp.

For computing the matrices in (20) we use the Gauss-Lobatto integration
rule. For a given function h defined on D the integral is first split into elementary

integrals
K
h(v)dv = h(v)dv,
and then (using definition (24))

/ W)y = /hm@,n))dewa,n)
A A

(d+1)2 R R
> @vdet 7, (Vi) h(r (Vi)
=1

1

(d+1)?

= Z Wi, th(Vie1)- (28)

=1

Using the quadrature rule (28) and formula (27) for computing the gradient of
the basis function we can practically compute the matrices in (20). Our choice of
integration points does not ensure exact integration forM, A¥ and B. However,
in the sequel, we use the same notation for the exact and approximate matrices.
With our choice of quadrature points we obtain that M and A* are diagonal
matrices. More precisely, we have

M;; = Z W1, (29)

i=r(k,l)

and
Afi = Miiv;kv Vi= (Vila VzQ)

These computations show that the components of the vector w satisfy a set of
coupled transport equations

Ofi+ Vi Vaofi+ 2 (w)=0, i=1---P. (30)

18

In the vector form, the coupling source term is given by

Y(w) = M~ Bw.
More precisely, after expanding the computations, the coupling source term
becomes

d+1)2

(d+1)
. 1
Y(w) = e AZ:V lz; Wit [0 (Vi) aC, Vi) - Vi (Vi) (31)
OV &

where we recall that the gradient of the basis function ; is given by (27).
Remark: In practice, we can compute M;; and X? efficiently by a classic finite

element assembly procedure: we loop on the elements, compute the elementary

contributions and distribute them into the global (M;;) or (X%) vectors.

5.8. Unified expression of the reduced Viasov-Mazwell model

We are now in a position to write in a unified way the Maxwell and reduced
Vlasov system. We extend the original vector W of (1) in the following way

W:(E1,E27H37¢7f1"'fP)T'

We then obtain a hyperbolic system in the form (1) where the new matrices A*
are block diagonal. The blocks are constructed with the matrices A* of Section
1.3 and Section 5.2. The source term of the new system is also assembled from
the source terms (10) and (5) of Section 1.3 and Section 5.2

S(W) = (41,52, 0, xp, 21) . (32)

For computing the current and the charge here, we again use the Gauss-Lobatto
quadrature (28) in the velocity space

p="Y wiaf NG = wp OV (33)

k,l k,l

In this formalism, it is very easy to adapt a generic Discontinuous Galerkin
solver for handling the reduced Vlasov-Maxwell model. We just have to modify
the numerical flux and source functions. We have seen in (30) that the reduced
Vlasov equation is a set of coupled transport equations with velocities V;. We
use a standard upwind numerical flux for the transport equations. The source
term (31) is computed with the assembly procedure and superimposed with the
Maxwell source term from (33) and (10).

5.4. Preliminary numerical results

In this section, we present preliminary Vlasov-Maxwell numerical results
obtained with the reduced approach. We have not yet implemented the Child-
Langmuir boundary condition. Therefore we only present a very simple and
academic test case. We consider a cloud of charged particles in the center of a

19

Figure 6: The function q.

square domain 2. Because the particles repel each other, the cloud will expand
with time. We plot the evolution of the total charge in the domain at different
times. We also represent the distribution function in the velocity space at a
given point (x1,z2) = (0.37,0.5). The initial distribution function is

f(x1, w2, v1,v2,0) = —q(x1)q(22)q(v1)q(v2),

where the function ¢, represented on Figure 6, has its support in [—1/2,1/2]
and satisfies [~ q(r)dr = 1.

We suppose that the initial electromagnetic field vanishes. This initial condi-
tion is not physical, because the Gauss law is not satisfied: V-FE # p. Therefore,
we take a divergence correction parameter y = 4. On the boundary of 2, we
apply homogeneous Silver-Miiller conditions. Finally, we take u = 1: our com-
putation is non-relativistic. The simulation time is short enough so that the
exact distribution function vanishes on the boundary of the velocity disk, even
at the final time 7' = 1.

We use a mesh of) with 8 x 8 = 64 cells. The velocity mesh is of order
d = 2. Tt contains 305 Gauss-Lobatto nodes.

We plot the charge evolution on Figure 7.

We also plot the distribution function at point (z1,x2) = (0.37,0.5) at dif-
ferent times on Figure 8.

Finally, we plot the x7—component of the electric field at time ¢ = 1 on
Figure 9.

Conclusion

In this work, we have presented two numerical schemes for approximating
the Vlasov-Maxwell system. The first scheme is a coupling between an upwind

20

-4.88 -242 0.0353

0.0122

-1.03 -0.511 0.00378

Figure 7: evolution of the charge in the computational domain, ¢t = 0 (top), ¢t = 0.5 (middle),

-0.00659 0.953 191

FV
-0.00757 0.126 0.259

Figure 8: Evolution of the distribution function f(0.37,0.5,v1,v2,t) in the computational
domain, t = 0 (top), ¢ = 0.5 (bottom). . The apparent polygonal shape of the mesh boundary

is due to a post-processor bug in the first picture.

22

-0.252 0 0.252

Figure 9: 1 component of the electric field at time ¢t = 1.0.

DG solver for the Maxwell equations with a PIC solver for the Vlasov equation.
We have reviewed some practical aspects of a robust and precise implementation
of the whole procedure: high order polynomials, upwind flux, stable boundary
conditions, divergence cleaning. We have also implemented the algorithm on
GPU, which requires a sorting of the particles list at each time step. We ob-
tained interesting speedups, but we also observe that the PIC method is the
most expensive part of the computation. Therefore we propose another fully
Eulerian approach. Thanks to a decomposition of the distribution function on
velocity basis functions, we obtain a reduced Vlasov model, which appears to
be a hyperbolic system of conservation laws written only in the (z,t) space. We
can thus adapt very easily our DG solver to the reduced model. We presented
preliminary numerical results. Our next step will be to implement more phys-
ical boundary conditions and test the reduced approach on emitting diode test
cases.

[1] D. Aubert, M. Amini, and R. David. A Particle-Mesh Integrator for Galac-
tic Dynamics Powered by GPGPUs. Lecture Notes in Computer Science,
5544:874-883, 2009.

[2] C.K.Birdsall and A.B. Langdon. Plasma Physics via Computer Simulation.
Institute of Physics (IOP), Series in Plasma Physics, 1991.

[3] F. Bourdel, P. A. Mazet, and P. Helluy. Resolution of the non-stationary
or harmonic Maxwell equations by a discontinuous finite element method.
Application to an E.M.I. (electromagnetic impulse) case. Proceedings of the

23

[4]

[5]

6]

7]

8]

9]

[10]

[11]

[12]

[13]

10th international conference on computing methods in applied sciences and
engineering, pages 405—422, 1992.

G. Cohen, X. Ferrieres, and S. Pernet. A spatial high-order hexahedral dis-
continuous Galerkin method to solve Maxwell’s equations in time domain.
Journal of Computational Physics, 217(2):340-363, 2006.

Anais Crestetto. Optimisation de méthodes numériques pour la physique
des plasmas. Application auz faisceaux de particules chargées. PhD thesis,
Université de Strasbourg, 2012.

Anais Crestetto and Philippe Helluy. Resolution of the Vlasov-Maxwell
system by PIC discontinuous Galerkin method on GPU with OpenCL. In
CEMRACS’11: Multiscale coupling of complex models in scientific com-
puting, volume 38 of ESAIM Proc., pages 257-274. EDP Sci., Les Ulis,
2012.

Bruno Fornet, Vincent Mouysset, and Angel Rodriguez-Ar6s. Mathemati-
cal study of a hyperbolic regularization to ensure Gauss’s law conservation
in Maxwell-Vlasov applications. Math. Models Methods Appl. Sci., 22(4):
1150020, 28, 2012. ISSN 0218-2025. doi: 10.1142/S0218202511500205.
URL http://dx.doi.org/10.1142/50218202511500205.

Philippe Helluy. Résolution numérique des équations de Mazwell har-
moniques par une méthode d’éléments finis discontinus. PhD, Sup’aéro,
1994. PhD thesis, Sup’aéro, 1994.

Philippe Helluy. A portable implementation of the radix sort algo-
rithm in OpenCL. 2011. URL http://hal.archives-ouvertes.fr/
hal-00596730.

Philippe Helluy, Nhung Pham, and Laurent Navoret. Hyperbolic ap-
proximation of the Fourier transformed Vlasov equation. URL http:
//hal.archives-ouvertes.fr/hal-00872972.

Philippe Helluy, Nhung Pham, and Anais Crestetto. Space-only hy-
perbolic approximation of the Vlasov equation. FESAIM: Proceedings,
43:17-36, 2013. doi: 10.1051/proc/201343002. URL http://hal.
archives-ouvertes.fr/hal-00797974.

C. Johnson and J. Pitkdranta. An analysis of the discontinuous Galerkin
method for a scalar hyperbolic equation. Math. Comp., 46(173):1-26, 1986.
ISSN 0025-5718. doi: 10.2307/2008211. URL http://dx.doi.org/10.
2307/2008211.

The Khronos Group Inc., 2013. OpenCL documentation. http://www.
khronos.org/.

24

[14]

[15]

[16]

[17]

18]

A. Klockner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal dis-
continuous Galerkin methods on graphics processors. J. Comput. Phys.,
228(21):7863-7882, 2009. ISSN 0021-9991. doi: 10.1016/j.jcp.2009.06.041.
URL http://dx.doi.org/10.1016/j.jcp.2009.06.041.

P. D. Lax and R. S. Phillips. Local boundary conditions for dissipative sym-
metric linear differential operators. Communications on Pure and Applied
Mathematics, 13(3):427-455, 1960.

P. Lesaint and P.-A. Raviart. On a finite element method for solving the
neutron transport equation. In Mathematical aspects of finite elements
in partial differential equations (Proc. Sympos., Math. Res. Center, Univ.
Wisconsin, Madison, Wis., 1974), pages 89-123. Publication No. 33. Math.
Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974.

C.-D. Munz, P. Omnes, R. Schneider, E. Sonnendriicker, and U. Vof. Di-
vergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic
Model. Journal of Computational Physics, 161(2):484-511, 2000.

Vesselin M. Petkov and Luchezar N. Stoyanov. Geometry of reflecting rays
and inverse spectral problems. Pure and Applied Mathematics (New York).
John Wiley & Sons Ltd., Chichester, 1992. ISBN 0-471-93174-8.

25

