
HAL Id: hal-00957020
https://hal.science/hal-00957020

Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-fluid compressible simulations on GPU cluster
Philippe Helluy, Jonathan Jung

To cite this version:
Philippe Helluy, Jonathan Jung. Two-fluid compressible simulations on GPU cluster. ESAIM: Pro-
ceedings and Surveys, 2014, pp.349 - 358. �10.1051/proc/201445036�. �hal-00957020�

https://hal.science/hal-00957020
https://hal.archives-ouvertes.fr

Two-fluid compressible simulations on GPU

cluster

Philippe Helluy∗ and Jonathan Jung†

Abstract

In this work we propose an efficient finite volume approximation of two-
fluid flows. Our scheme is based on three ingredients. We first construct
a conservative scheme that removes the pressure oscillations phenomenon
at the interface. The construction relies on a random sampling at the
interface [6, 5]. Secondly, we replace the exact Riemann solver by a faster
relaxation Riemann solver with good stability properties [4]. Finally, we
apply Strang directional splitting and optimized memory transpositions
in order to achieve high performance on Graphics Processing Unit (GPU)
or GPU cluster computations.

1 Introduction

We are studying the numerical resolution of a two-fluid compressible fluid flow.
The model is the Euler equations with an additional transport equation of a
color function ϕ. The function ϕ is equal to 1 in the gas and 0 in the liquid. It
allows locating the two-fluid interface. We consider the system

∂tW + ∂xF (W) + ∂yG(W) = 0, (1)

where

W = (ρ, ρu, ρv, ρE, ρϕ)T ,

F (W) = (ρu, ρu2 + p, ρuv, (ρE + p)u, ρuϕ)T ,

G(W) = (ρu, ρuv, ρv2 + p, (ρE + p)v, ρvϕ)T .

The pressure law p is a stiffened gas pressure law

p(ρ, e, ϕ) = (γ (ϕ)− 1) ρe− γ (ϕ) p∞ (ϕ) , (2)

where e = E − u2+v2

2 , and

(γ, p∞)(ϕ) =

{

(γgas, p∞,gas), if ϕ = 1,

(γliq, p∞,liq), if ϕ = 0.

∗IRMA, Université de Strasbourg & TONUS, INRIA Nancy - Grand Est
†LJLL, Université Pierre et Marie Curie (UPMC), Paris VI

1

Recall that the system (1) coupled with the pressure law (2) is hyperbolic on
the domain

Ω : =

{

W = (ρ, ρu, ρv, ρE, ρϕ) ∈ R
5, ρ > 0,

ϕ ∈ [0; 1], p

(

ρ,E −
u2 + v2

2
, ϕ

)

+ p∞(ϕ) > 0

}

.

The main point is that the hyperbolic set Ω is generally not convex if p∞,1 6=
p∞,2 (see [12]).

Classic conservative finite volume schemes generally produce an artificial
diffusion of the mass fraction ϕ. In the numerical approximation we may observe
a mixture zone 1 > ϕ > 0. This artificial mixing zone implies a loss of velocity
and pressure equilibrium at the interface. It is possible to recover a better
equilibrium by relaxing the conservation property of the scheme as in [17].

Independently of the pressure oscillations, problem of stability appears for
classic schemes. This comes from the non-convexity of the hyperbolic set Ω [12].
In this paper, we use a random sampling projection at the two-fluid interface.
It allows preserving the non convex hyperbolic domain. The method was first
proposed in [6] for a particular traffic flow model. It does not introduce a
mixture zone and extends the one-dimensional method described in [2]. More
precisely, we construct a numerical scheme that preserves the hyperbolic domain
without diffusion H,

H := Ω0 ∪ Ω1, (3)

where for all ϕ0 ∈ [0; 1], the convex set Ωϕ0
is

Ωϕ0
: =

{

W = (ρ, ρu, ρv, ρE, ρϕ) ∈ R
5, ρ > 0,

ϕ = ϕ0, p

(

ρ,E −
u2 + v2

2
, ϕ

)

+ p∞(ϕ) > 0

}

.

2 An ALE-projection scheme with a random nu-

merical method

2.1 Introduction

In order to compute the two-dimensional numerical solution, we use dimensional
splitting. It means that each time step is split into two stages. In the first stage
we solve ∂tW+∂xF (W) = 0 and in the second stage we solve ∂tW+∂yG(W) = 0.
In addition, in our application, thanks to the rotational invariance of the Euler
equations, the two resolutions are equivalent if we simply exchange the space
variables x and y and the velocity components u and v. It is thus enough to
construct a scheme for solving the one dimensional system

∂tW + ∂xF (W) = 0. (4)

2

ALE step:

Remapping step:

Figure 1: Structure of the ALE-projection scheme.

We generalize the Lagrange-projection scheme. We replace the Lagrange step
by an Arbitrary Lagrangian Eulerian step (ALE step). It allows us to switch
between a Lagrangian approach at the liquid-gas interface and a Eulerian ap-
proach in the pure phases.

We want solve (4) on [a; b] × R
+. We consider a sequence of times tn,

n ∈ N such that the time step ∆tn := tn+1 − tn > 0. We consider also a space
step h = b−a

N
, where N is a positive integer. We define the cell centers by

xi = a +
(

i+ 1
2

)

h, i = 0 · · ·N + 1. The cell Ci is the interval
]

xi− 1
2
;xi+ 1

2

[

,

where xi+ 1
2
= xi+

h
2 . We now focus on an approximation Wn

i ≈ W (xi; tn). The

boundary cell x
i+ 1

2

moves at speed ξn
i+ 1

2

between time tn and t−n+1

x
n+1,−

i+ 1
2

= xi+ 1
2
+∆tnξ

n
i+ 1

2

.

A time iteration of the ALE-projection scheme includes two steps (see Figure
1):

• the ALE step: with Wn
i on Ci, we obtain W

n+1,−
i on the cell Cn+1,−

i =
]

x
n+1,−

i− 1
2

;xn+1,−

i+ 1
2

[

,

• a projection step to obtain the Euler variables at time tn+1 on the original
cell Ci.

We use the notation ·n+1,− to characterize the value of · at time t−n+1, just before
the projection step.

3

2.2 ALE step

2.2.1 Finite volume scheme

Integrating the conservation law (4) on the space-time trapezoid
{

(x, t), x
i− 1

2

+ (t− tn)ξ
n
i− 1

2

< x < x
i+ 1

2

+ (t− tn)ξ
n
i+ 1

2

, tn < t < t−n+1

}

,

we obtain the finite volume scheme

h
n+1,−
i W

n+1,−
i = hWn

i −∆tn

(

F (Wn
i ,W

n
i+1, ξ

n
i+ 1

2

)− F (Wn
i−1,W

n
i , ξ

n
i− 1

2

)
)

,

(5)
where h

n+1,−
i = x

n+1,−

i+ 1
2

− x
n+1,−

i− 1
2

= h +∆tn(ξ
n
i+ 1

2

− ξn
i− 1

2

) and F (WL,WR, ξ) is

the conservative ALE numerical flux.

2.2.2 Choice for the velocity ξi+ 1
2

of the boundary xi+ 1
2

The choice consists to move the boundary at the speed of the fluid only at the
liquid-gas interface (see Figure 1). It means that

ξn
i+ 1

2

=

{

un
i+ 1

2

if
(

ϕn
i − 1

2

) (

ϕn
i+1 −

1
2

)

< 0,

0 otherwise,

where un
i+ 1

2

is the velocity of the contact discontinuity obtained in the resolution
of the Riemann problem

∂tW + ∂xF (W) = 0,

W (x, 0) =

{

Wn
i , if x < 0,

Wn
i+1, otherwise.

2.2.3 Numerical flux

In order to compute the numerical fluxes we could use an exact Riemann solver,
but it is not adapted to GPU computations. Indeed, the exact solver algorithm
relies on many branch tests, which are not treated efficiently on GPU compute
units. We prefer to use a two-fluid Lagrangian relaxation Riemann solver devel-
oped in [10, 12]. It is an adaptation of the entropic one-fluid Eulerian relaxation
solver proposed in [4]. The numerical flux F (WL,WR, ξ) can be written as

F (WL,WR, ξ) =























F (WL)− ξWL, if ξ < uL − aL

ρL

,

F1 − ξW1, if uL − aL

ρL

≤ ξ < u1 = u2,

F2 − ξW2, if u1 = u2 ≤ ξ < uR + aR

ρR

,

F (WR)− ξWR, if uR + aR

ρR

≤ ξ,

,

where



















W1 = (ρ1, ρ1u1, ρ1v1, ρ1E1, ρ1ϕ1)
T ,

W2 = (ρ2, ρ2u2, ρ2v2, ρ2E2, ρ2ϕ2)
T ,

F1 = u1W1 + (0, π1, 0, π1u1, 0)
T ,

F2 = u2W2 + (0, π2, 0, π2u2, 0)
T ,

4

with

1
ρ1

= 1
ρL

+ aR(uR−uL)+πL−πR

aL(aL+aR) , 1
ρ2

= 1
ρR

+ aL(uR−uL)+πR−πL

aR(aL+aR) ,

u1 = u2 = πL−πR+aLuL+aRuR

aR+aL

, π1 = π2 = aLπR+aRπL+aLaR(uL−uR)
aL+aR

,

v1 = vL, v2 = vR,

e1 = eL −
π2
L
−π2

1

2a2
L

, e2 = eR −
π2
R
−π2

2

2a2
R

,

E1 = e1 +
u2
1+v2

1

2 , E2 = e2 +
u2
2+v2

2

2 ,

ϕ1 = ϕL, ϕ2 = ϕR,

where aL and aR are defined by

if pR − pL ≥ 0,







aL

ρL

= cL + αmax
(

pR−pL

ρRcR
+ uL − uR, 0

)

,

aR

ρR

= cR + αmax
(

pL−pR

aL

+ uL − uR, 0
)

,
(6)

if pR − pL ≤ 0,







aR

ρR

= cR + αmax
(

pL−pR

ρLcL
+ uL − uR, 0

)

,

aL

ρL

= cL + αmax
(

pR−pL

aR

+ uL − uR, 0
)

,
(7)

with α = 1
2 max

(

γ(ϕL)+1, γ(ϕR)+1
)

and where pL, pR, cL et cR are given by

pL = p(ρL, eL, ϕL), cL = c (ρL, eL, ϕL) =
√

γ(ϕL)
pL+p∞(ϕL)

ρL

,

pR = p(ρR, eR, ϕR), cR = c (ρR, eR, ϕR) =
√

γ(ϕR)
pR+p∞(ϕR)

ρR

.

Remark 2.1. Generally, π1 6= p(ρ1, e1, ϕ1) and π2 6= p(ρ2, e2, ϕ2) and it is not
possible to write F (WL,WR, ξ) = F (W∗)− ξW∗ for some W∗ ∈ R

5.

2.3 Projection step

The second part of the time step is needed for returning to the initial mesh. We
have to average on the cells Ci the solution W

n+1,−
i , which is naturally defined

on the moved cell Cn+1,−
i =

]

x
n+1,−

i− 1
2

;xn+1,−

i+ 1
2

[

.

We consider a pseudo random sequence ωn ∈]0; 1[and we perform a pseudo-
random averaging

Wn+1
i =



















W
n+1,−
i−1 , si ωn <

ξn
i−

1
2

∆tn

h
,

W
n+1,−
i , si

ξn
i−

1
2

∆tn

h
≤ ωn ≤ 1 +

ξn
i+1

2

∆tn

h
,

W
n+1,−
i+1 , si ωn > 1 +

ξn
i+1

2

∆tn

h
.

(8)

A good choice for the pseudo-random sequence ωn is the (5; 3) van der Corput
sequence [7]. Note that the averaging step has simpler expression if the cell
does not touch the liquid gas interface. More precisely, if the cell is not at the
interface, i.e. if
(

ϕ
n+1,−
i −

1

2

)(

ϕ
n+1,−
i+1 −

1

2

)

> 0 and
(

ϕ
n+1,−
i−1 −

1

2

)(

ϕ
n+1,−
i −

1

2

)

> 0,

5

as the velocities ξn
i− 1

2

and ξn
i+ 1

2

of the boundaries xi− 1
2

and xi+ 1
2

are zero,

C
n+1,−
i = Ci and we obtain

Wn+1
i = W

n+1,−
i .

2.4 Properties

Proposition 2.2. Assume that ω follows a uniform law on]0; 1[and that the
time step ∆tn satisfies the CFL condition

∆tn max
i

(

max

(∣

∣

∣

∣

un
i −

ai+ 1
2
,L

ρni

∣

∣

∣

∣

,

∣

∣

∣

∣

un
i+1 +

ai+ 1
2
,R

ρni+1

∣

∣

∣

∣

))

≤
1

2
h,

where ai+ 1
2
,L and ai+ 1

2
,R are given by (6)-(7) with WL = Wn

i and WR = Wn
i+1.

The ALE-projection scheme described above has the following properties:

• it is conservative on Ω0 and Ω1,

• it is statistically conservative on H,

• it is Ω0-stable and satisfies a discrete entropy inequality on Ω0,

• it is Ω1-stable and satisfies a discrete entropy inequality on Ω1,

• it is H-stable and satisfies a statistically discrete entropy inequality on H,

• it preserves constant u and p states at the two-fluid interface.

For precisions or a proof, we refer to [12]. Remark that generally we have
ai− 1

2
,R 6= ai+ 1

2
,L. An extension to second order is proposed in [12].

3 GPU and MPI implementations

3.1 OpenCL and GPU implementation

For performance reasons, we decided to implement the 2D scheme on recent
multicore processor architectures, such as a Graphic Processing Unit (GPU).
A modern GPU is made of a global memory (≈ 1 GB) and compute units
(≈ 27). Each compute unit (or work-group in the OpenCL terminology) is
made of processing elements (≈ 8, also called work-items) and a local cache
memory (≈16 kB). The same program (a kernel) can be executed on all the
processing elements at the same time. There are some rules to respect. All the
processing elements have access to the global memory but have only access to
the local memory of their compute unit. The access to the global memory is
slow while the access to the local memory is fast. The access to global memory
is much faster if two neighboring processing elements read (or write) into two
neighboring memory locations, in this case we speak about "coalescent memory
access".

Our OpenCL implementation is described in [12, 10]. We recall only the
most important steps of a time iteration.

6

• Computation of the CFL time step ∆tn. We compute a local time step
(∆tn)i,j on each cell and we use a reduction algorithm (see [3]) in order
to compute ∆tn = min

i,j
(∆tn)i,j .

• We perform the ALE-projection update in x-direction. We compute the
fluxes balance in the x-direction for each cell of each row of the grid: a row
or a part of a row is associated to one compute unit and one cell to one
processor. As of October 2012, the OpenCL implementations generally
impose a limit (typically 1024) for the number of work-items inside a work-
group [8]. This forces us to split the rows for some large computations.
The values in the cells are then loaded into the local cache memory of the
compute unit. It is then possible to perform the ALE-projection algorithm
with all the data into the cache memory in order to achieve the highest
performance. The memory access is coalescent for reading and writing.

• We transpose the data matrix (exchange x and y) with an optimized
memory transfer algorithm [16]. The optimized algorithm includes four
steps:

– the data matrix is split into smaller tiles of size 32× 32. Each tile is
associated to a compute unit,

– each tile is copied line by line from the global memory to the local
memory of the compute unit. Memory access is coalescent because
two successive processors read in two neighboring memory locations,

– we transpose each 32× 32 tile in the local memory,

– each tile is copied line by line from the local memory to the global
memory. The memory access is coalescent for writing.

• We perform the ALE-projection update in y-direction. The memory access
is coalescent because of the previous transposition,

• We transpose again the data matrix for the next time step.

The repartition of the computational time on each kernel is the following: the
ALE-projection steps represents 80%, the transposition 11% and the time step
computation 9% of the global time computation.

We observe high efficiency (see Table 1) of the GPU implementation. The
efficiency is explained by two important points.

• We used an optimized transposition algorithm to have coalescent access
in x and y directions. Without this transposition, the computation would
be 10 times slower.

• We use a relaxation solver. With this solver, fluxes have a simpler expres-
sion than the exact Godunov’s flux. Indeed, with the relaxation solver
fluxes are directly given from the left and right states (see Section 2.2.3).
The exact solver would require solving a non linear equation. This com-
putation involves many tests and then is not efficient on GPU. We also

7

Hardware Time (s) Speedup

AMD A8 3850 (one core) 527 1
AMD A8 3850 (4 cores) 205 2.6
NVIDIA GeForce 320M 56 9.4
AMD Radeon HD 5850 3 175
AMD Radeon HD 7970 2 263

Table 1: Simulations times on different hardware with single precisions. We
observe interesting speedups for the GPU simulations compared to the one-core
simulation. We also observe that OpenCL is still efficient on standard multicore
CPU. The test case corresponds to the computation of 300 time steps of the
algorithm on a 1024 × 512 grid. One numerical flux evaluation corresponds
approximately to 500 floating point operations (flop). Four flux evaluations are
needed per cell and per time step. The amount of computations for this test is
thus of the order of 300 Gflop.

experiment our scheme with the exact solver on GPU. The computation
with the exact solver is 50 times slower than with the relaxation solver.

3.2 MPI

The memory of a GPU is limited, typically to 1 gigabyte (GB), which limits
us to a number of cells of the order of 25, 000, 000. We will couple the par-
allelization on GPU (using OpenCL) with a subdomain parallelization, which
uses the Message Passing Interface (MPI) standard. This allows a computation
on several GPUs simultaneously. It will allow us to consider finer meshes and
also reduce the computation time [13, 11, 1].

We use a standard subdomain decomposition, a GPU is associated to each
subdomain. Thanks to MPI messages, we exchange the values at the subdo-
mains boundaries. As we want a compatible decomposition with the matrix
transpose algorithm, we split the initial domain only along the x-direction (see
Figure 2). The exchanges between two GPUs will occur at each iteration. The
GPU number l will exchange information with GPUs l − 1 and l + 1.

Assume that we have a cluster of L GPUs and consider a two-dimensional
computation on the domain [a; b]× [c; d]. We split the interval [a; b] as

a = a0 < a1 < a2 < · · · < aL = b,

with al = a+ l b−a
L

, for l = 0, · · · , L.

• the computational domain [al; al+1]× [c; d] is associated to the GPU num-
ber l + 1,

• each subdomain [al; al+1]× [c; d] is split into (Nx − gap)×Ny cells, where
gap ∈ {2; 5} corresponds to the number of cells in the overlap between
subdomains.

8

d-c

GPU 1 GPU 2 GPU 3 GPU 4

Hôte

GPU l-1

GPU l

GPU l+1

Figure 2: On the left: the computational domain is split into 4 subdomains.
GPU l performs the computations for the domain [al−1; al] × [c; d]. On the
right: MPI transfers. Between each iteration, GPU l has to exchange the values
on the left and right boundaries with GPUs l − 1 and l + 1. On the picture we
consider an overlap of 2 cells but for a second order implementation we need 5
cells.

9

– For a one-order computation, we use gap = 2 cells in the overlap:
one cell for the fluxes computations and another one for the Glimm
projection (8).

– For a second order computation, we use gap = 5 cells. Indeed, in
the ALE step, we couple a MUSCL method to a Heun’s time in-
tegrator, then we need a two-cell overlap (one for the slopes of the
MUSCL method and one for the flux) for each of the two steps of the
Heun’s time integration. We need an additional one-cell overlap for
the Glimm projection (8).

• We add gap ∈ {2; 5} columns on the left and right boundaries of each
domain (see Figure 2). The GPU number l performs computations on
Nx ×Ny cells.

• we compute the stability condition. We compute the time step ∆tln on
each subdomain l and we take

∆tn = min
1≤l≤L

∆tln.

• on each subdomain l = 1, · · · , L

– we associate a processor to each cell,

– we perform the time update under x-direction using the ALE- pro-
jection scheme,

– we transpose the data table,

– we perform the y-direction update.

For more details, see [12].

• We perform transfers between subdomains: each domain l sends the gap

columns inside the left edge of the subdomain to the GPU number l − 1
and the gap columns inside the right edge of the subdomain to the GPU
number l+1 (see Figure 2). The GPU number l receives the gap columns
from GPU number l−1 and the gap columns from GPU number l+1 (see
Figure 2).

• On each subdomain l = 1, · · · , L, we transpose the data table so that the
data are aligned in memory according to the x-direction for the next time
step.

Remark 3.1. For MPI communications, we need firstly to copy data from each
GPU to its host (CPU). Secondly we send MPI communications between hosts
(CPUs). Finally, we copy data from CPU to GPU. As we perform the MPI com-
munications before the data matrix transposition, memory access is coalescent
for reading and writing.

10

Grid 1 GPU 4 GPUs Speedup

2048 × 2048 14 s 14 s 1
4096 × 2048 22 s 16 s 1.4
4096 × 4096 77 s 60 s 1.3
8192 × 4096 150 s ? 61 s 2.5
16384 × 4096 600 s ? 230 s 2.6

Table 2: Simulations times for the MPI implementation on a cluster of 4 GPUs
AMD Radeon HD7970. The computational domain is [0; 2] × [0; 1]. If the
GPU is not fully occupied (meshes smaller than 4096× 4096), the computation
times on one and on four GPUs are comparable. However if the GPU is fully
occupied, for example for a grid of 16384× 4096, the MPI implementation goes
2.6 times faster. This computation can not be done on only one GPU, thus
some computation times are only estimated from a simple complexity analysis
and marked by "?".

The MPI implementation allows considering L times finer mesh but is it
faster? We test the method on a cluster of four AMD Radeon HD 7970 GPUs.
The MPI communications represents globally 5% of the total time computation.
The speedups are presented in the Table 2. The MPI implementation is faster
with a factor 2.6.

4 Numerical result

We now present a two-dimensional test that consists in simulating the impact of
a Mach 1.22 shock traveling through air onto a (cylindrical) bubble of R22 gas.
The shock speed is σ = 415m.s−1. This test aims at simulating the experiment of
[9] and has been considered by several authors [15, 18, 14]. The initial conditions
are depicted in Figure 3: a bubble of R22 is surrounded by air within a Lx×Ly

rectangular domain. At t = 0, the bubble is at rest and its center is located
at (X1, Y1). We denote by r the initial radius of the bubble. The planar shock
is initially located at x = Ls and moves from right to left towards the bubble.
The parameters for this test are

Lx = 445mm, Ly = 89mm, Ls = 275mm, X1 = 225mm, Y1 = 44.5mm, r = 25mm.

Both R22 and air are modeled by two perfect gases whose coefficients γ and
initial states are given in the table of Figure 3.

The domain is discretized with a 20 000 × 5 000 regular mesh. Top and
bottom boundary conditions are set to solid walls while we use constant state
boundary conditions for the left and right boundaries. In Figure 4, we plot the
density ρ at the final time t1 = 600µs on the domain [0; 0.445]× [0; 0.089]. The
computation needs 3 hours on the four AMD Radeon HD 7970 GPUs cluster.
The shocks are well resolved in the air and in the bubble. We can localize

11

Shock

Post-

shock

Pre-

shock

R22 gas

r

y

x

Quantities Air (post-shock) Air (pre-shock) R22

ρ (kg.m−3) 1.686 1.225 3.863

u (m.s−1) −113.5 0 0

v (m.s−1) 0 0 0

p (Pa) 1.59 × 105 1.01325 × 105 1.01325 × 105

ϕ 0 0 1
γ 1.4 1.4 1.249
p∞ 0 0 0

Figure 3: Air-R22 shock/cylinder interaction test. Description of the initial
conditions on the left and initial data on the right.

the position of the shock wave that impinges the bubble on the left side of the
domain. On the second figure we zoom on the bubble. On the third one we
zoom on the Rayleigh-Taylor instabilities that appears at the bubble interface.
With a coarser mesh, we could not see these instabilities. For other pictures or
for applications to liquid-gas flows, we refer to [12, 10].

5 Conclusion

We have proposed a method for computing two-dimensional compressible flows
with interface. Our approach is based on a robust relaxation Riemann solver,
coupled with a very simple random choice sampling projection at the interface.
The resulting scheme has properties that are not observed in other conserva-
tive schemes of the literature: it preserves velocity and pressure equilibrium at
the two-fluid interface, it is conservative in mean, it does not diffuse the mass
fraction ϕ, it preserves the non convex hyperbolic domain H.

In addition, the algorithm is easy to parallelize on recent multicore archi-
tectures. We have implemented the scheme in the OpenCL environment. Com-
pared to a standard CPU implementation, we observed that the GPU compu-
tations are more than hundred times faster. This factor is essentially due to
the optimized transposition that we perform between x and y update and to
the relaxation solver that gives a robust but simple expression of the numerical
fluxes. As the computation is very fast, the limiting factor becomes the memory
size of a GPU. The MPI version permits to treat very fine meshes. We test the
code on R22/Air shock bubble interaction, thanks to a very fine mesh we can
observe Rayleigh-Taylor instabilities at the bubble interface.

References

[1] D. Aubert and R. Teyssier. Reionization simulations powered by graphics
processing units. i. on the structure of the ultraviolet radiation field. The
Astrophysical Journal, 724:244–266, 2010.

12

Figure 4: Density at final time t1 = 600µs. On the first picture we represent all
the domain, on the second one we do a zoom on the bubble and on the third we
zoom on the Rayleigh-Taylor instability. On this picture, we can observe the
precision of the computation.

13

[2] M. Bachmann, P. Helluy, J. Jung, H. Mathis, and S. MÃŒller. Random
sampling remap for compressible two-phase flows. Computers and Fluids,
86:275–283, 2013.

[3] G.E. Blelloch. Scans as primitive parallel operations. IEEE Transactions
on Computers, 38(11):1526–1538, 1989.

[4] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic
Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in
Mathematics series, Birkhauser, 2004.

[5] C. Chalons and F. Coquel. Computing material fronts with a lagrange-
projection approach. HYP2010 Proc., http://hal.archives-ouvertes.
fr/docs/00/54/89/38/PDF/chalons_coquel_hyp2010.pdf, 2010.

[6] C. Chalons and P. Goatin. Godunov scheme and sampling technique for
computing phase transitions in traffic flow modeling. Interfaces and Free
Boundaries, 10(2):197–221, 2008.

[7] P. Colella. Glimm’s method for gas dynamics. SIAM, J. Sci. Stat. Comput.,
3(1), 1982.

[8] Khronos Group. Opencl online documentation. http://www.khronos.

org/opencl/.

[9] J. F. Haas and B Sturtevant. Interaction of weak shock waves with cylin-
drical ans spherical gas inhomogeneities. J. Fluid Mechanics, 181:41–71,
1987.

[10] P. Helluy and J. Jung. Opencl simulations of two-fluid compressible flows
with a random choice method. IJFV International Journal On Finite Vol-
umes, 10:1–38, 2013.

[11] D. A. Jacobsen, J.-C. Thibault, and I Senocak. An mpi-cuda implementa-
tion for massively parallel incompressible flow computations on multi-gpu
clusters. 48th AIAA Aerospace Sciences Meeting and Exhibit, 2010.

[12] J. Jung. Schémas numériques adaptés aux accélérateurs multicoeurs pour
les écoulements bifluides. PhD thesis, University of Strasbourg, 2013.

[13] V. V. Kindratenko, J. Enos, M. T. Showerman, G. W. Arnold, J. E. Stone,
J. C. Phillips, and W.-M. Hwu. Gpu clusters for high- performance com-
puting. Proc. Workshop on Parallel Programming on Accelerator Clusters,
IEEE Cluster 2009, pages 1–8, 2009.

[14] S. Kokh and F. LagoutiÃšre. An anti-diffusive numerical scheme for the
simulation of interfaces between compressible fluids by means of the five-
equation model. J. Computational Physics, 229:2773–2809, 2010.

[15] J. J. Quirk and S. Karni. On the dynamics of a shock-bubble interaction.
J. Fluid Mechanics, 318:129–163, 1996.

14

[16] G. Ruetsch and P. Micikevicius. Optimizing matrix transpose in cuda.
NVIDIA GPU Computing SDK, pages 1–24, 2009.

[17] R. Saurel and R. Abgrall. A simple method for compressible multifluid
flows. SIAM J. Sci. Comput., 21(3):1115–1145, 1999.

[18] K. M. Shyue. A wave-propagation based volume tracking method for com-
pressible multicomponent flow in two space dimensions. J. Comput. Phy.,
215:219–244, 2006.

15

