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CAUCHY’S THEOREM ON MANIFOLDS

R. SEGEV AND G. RODNAY

ABSTRACT. A generalization of the Cauchy theory of forces and stresses to the
geometry of differentiable manifolds is presented using the language of differ-
ential forms. Body forces and surface forces are defined it terms of the power
densities they produce when acting on generalized velocity fields. The normal
to the boundary is replaced by the tangent space equipped with the outer orien-
tation induced by outward pointing vectors. Assuming that the dimension of the
material manifold is m, stresses are modeled as m — 1 covector valued forms.
Cauchy’s formula is replaced by the restriction of the stress form to the tangent
space of the boundary while the outer orientation of the tangent space is taken
into account. The special cases of volume manifolds and Riemannian manifolds
are discussed.

Keywords. Contimmum mechanics, forces, stresses, manifolds, differential forms,
balance laws, Cauchy’s theorem.

1. INTRODUCTION

Cauchy’s postulates and theorem, the fundamental notions of stress theory in
continuum mechanics, are formulated traditionally using the affine and metric
properties of space. Using the affine structure one is able to integrate vector fields
when formulating the balance of forces. The unit normal is used in the construction
of Cauchy’s theorem on the existence of stress and in Cauchy’s formula to which
it leads. As a result, the Cauchy stress is determined by both the force system and
a particular placement of the body in space. In order to separate the information
regarding the force system contained in the Cauchy stress tensor from the kinemat-
ics, the Piola Kirchhoff stresses have been introduced. However, the existence of
the Piola Kirchhoff stresses depends on the existence theory for stresses in space,
and their representations as tensors depend on the reference configuration chosen.
It is noted that Noll in his works [11], [12], and [13] defines bodies as manifolds
that do not have a particular reference configuration.

Therefore, the construction of a generalized Cauchy theory of stresses on gen-
eral differentiable manifolds, where the affine and metric structures are not avail-
able, is of theoretical significance. Apart from the fact that less geometrical struc-
ture will be used in the formulation, the resulting mathematical object describing
the stress will unify the Cauchy and Piola Kirchhoff stresses. In fact, these stress
tensors will be just representatives of the stress object for some particular affine
and metric structures. The situation will be analogous to a single linear mapping



represented by various matrices for a number of bases for the corresponding vector
spaces.

Additional reason to avoid the use of affine and metric structures in the formu-
lation of stress theory originates from the various applications of the continuum
mechanics methods to generalized continua. For such continua (e.g. [10], [2], [3],
the state of the body is described by internal state variables, or order parameters,
for which we might not have affine or metric properties.

Over the years, research work contributed to the subject by weakening the pos-
tulates needed to prove Cauchy’s theorem, by making the proof more rigorous
and establishing the existence of stresses using alternative methods and approaches
(e.g., [7, 8], [9], [5], [15, 17]). This paper presents the generalization of Cauchy’s
theory of forces and stresses, to general differentiable manifolds. The terminol-
ogy of differential forms is used to formulate Cauchy’s postulates and Cauchy’s
theorem.

In a previous paper, [16], the corresponding theory was introduced for balance
laws of real valued properties (such as mass). Here, the theory is extended to forces
valued in the dual of a vector bundfé over anm-dimensional material manifold
. Thus, forces are presented as entities that produce power densities when acting
on generalized velocity fields—sectionsWf The usual assumption that forces
consist of body forces and surface forces is retained. Thus, following [4], a body
force B, on a bodyZ is a section ot (W, A™(T#)) and a surface force,, is a
section ofL (W, A™}(T9%)). Using integration of differential forms, the power
densities of the body force and surface force are combined to generate the force
functionalF,, as

E%)(W):/B,@(W)+/p%(w).
Z 0%

These and other preliminary topics are considered in Section 2.

As a unit normal is not available in the case of general manifolds, the local
dependence of the surface force on the normal is replaced by dependence on the
tangent space to the boundary—an element of the Grassmann manifold of hyper-
planes in the tangent space . In addition, the outwards direction of the normal
is replaced by the outwardsclination or outer orientationof the tangent space to
the boundary.

In the setting presented here, stresses(are 1)-forms, valued inW", de-
fined on the material manifold. The analog of the operaBb(m) that appears
in Cauchy’s theorem, is thimclined restrictionof forms. Instead of “taking the
normal component” of the stress tensor, the stress form is restricted to the tangent
space of the boundary. However, while a simple restriction is not sensitive to the
outwards inclination (outer orientation) of the tangent space at the point on the
boundary under consideration, the inclined restriction is an odd function of the in-
clination. This is done using a sign rule that is induced by an orientation of the
material manifold. While the orientation is assumed to be given, odd forms can be
used to render the presentation independent of the arbitrary choice of orientation



(see [18]). Since the orientation is needed only locally, there is no need to require
of orientability of the material manifold.

One additional aspect of the theory that needs attention is the continuous depen-
dence of the surface force on both the point on the boundary and the hyperplane.
Since, in the case of manifolds, it is not possible to compare hyperplanes at dis-
tinct points, the mapping that assigns the surface force to the inclined tangent space
is presented as a continuous section—@aeichy section-of a fiber bundle, the
bundle of interaction densitiesver the bundle of inclined hyperplanes. Following
[18], inclined hyperplanes, Cauchy sections and inclined restrictions are consid-
ered in Section 3.

Section 4 presents the generalized Cauchy postulates and theorem. The only
aspect of the theory not mentioned above is the balance equation. The balance
equation is formulated in terms of the total expanded power in the form

w|=| [Bw+ [ ym)| < [cw)
4 4 K

whereg is somem-form that we assume to exist and that satisfies this inequality
for any body#. This form of the balance equation emphasizes the fact that we
regard the balance law as a regularity assumption on the force fields for the various
bodies, or alternatively, as a boundedness assumption on the collection of force
functionals for the various bodies (c.f. [17]).

Section 5 considers the situation where a volume element is given on the ma-
terial manifold. (e.g., a mass density). In such a case the stress form can be
represented by a tensor—a vector bundle morphism T.&. It also considers a
somewhat generalized version of the normal projection of the stress. Finally, Sec-
tion 6 assumes that a Riemannian metric is givenomand the classical Cauchy
formulais recovered. As afinal remark it is noted that in the current framework, the
Cauchy stress and the first Piola-Kirchhoff stresses are simply two representations
of the stress form under two different Riemannian metrics.

2. PRELIMINARY DEFINITIONS AND ASSUMPTIONS

2.1. Kinematics. It is assumed that there isnaaterial manifold¥ of dimension
m containing all bodies as subsetsbAdyis anm-dimensional compact submani-
fold with corners of¥.

Thephysical spacés modeled as a manifold without boundav, and acon-
figuration of a body# in space is a smooth mapping # — .#. One usually
requires that the configuration is an embedding although this will not have any
affect on the following discussion.

A generalizedvelocityfield at a given configuratior is a mappingv: % —
T.# such thatr , ow = k. HereT./Z is the tangent bundle of the space manifold
andt ,: T.Z — /// is the tangent bundle projection.

For a given configuratior, consider the pull-back

K(t ) & (TAH)— Z,



of T.# by k. A velocity field at the configuratior can be regarded also as the sec-
tionw: Z — x*(T.#), wherew (x) is identified with the element(x) € TK(X)///.

Since the configuratior will be fixed during the following discussion, the second
point of view is preferable as we can regard the velocity field as a section of a fixed
vector bundle. Thus, in the sequel, we will consider a fixed vector biWdle .

over the material manifold. We can restrict this vector bundle naturally to any body
Z C . and we will abuse the notation by writivg — & for the restricted bundle.
Thus, a velocity field over a bod¥ will be a sectiorw: #Z — W.

2.2. Forces. For a general manifold geometry, forces may be defined invariantly
as covectors or linear functionals. For example, a concentrated faacéng on

the material poink € . at the configuratior is an element of the cotangent space
T - Such a force may be evaluated for a velowitx) and the valud (w(x)) is
interpreted as the power that the forcexpends while the material poirtravels

at the velocityw(x). Clearly, using the pullback df.# by x the velocity becomes

a member otV and the force will be a member @f*.

Force densities operate on the velocity fields to produce power densities that may
be integrated. It is assumed henceforth that force densities (and the resulting power
densities) are continuous. Thusfasice densityon ann-dimensional submanifold
P of .7 is a continuous section &f(W, A"(TP)). Here \"(TP) is the bundle of
n-forms onP, and for two vector bundled andV over.”, L(U,V) is the vector
bundle whose fiber atis the vector space of linear mappings— Vx. The power
the force density produces for the generalized velocityis

[ rw) = [ 700 (wix).
P P

In the sequel we will often abuse notation by using the same symbol for both a
differential form and its value at a point.

Itis usually assumed in continuum mechanics that the force on a body consists of
a body force distributed over the volume of the body and a surface force distributed
over the boundary. Hence, the forEeon a bodyZ is represented by two force
densities, théody forcef, a section ot (W, A™(T S)), and aboundaryor surface

force 7, a section ot (W, /\mfl(T&%’)). Thus, forx € #Z

m
B(x): Wy — A\ T
is a linear mapping, and so is

m-1
t(y): W, — A\ Ty0Z.

for somey € 0%.
We conclude that the power expended by a combination of a body force and a

surface force is of the form
[ B+ [ =w.
Vi 0%



It is note that the last expression may be conceived as the evaluation of a linear
functionalF on the space of velocity fields on a particular figldo produce the
global power.

Thus, we will refer to such a linear functioni&las aforce acting on the body
Z represented by, 7}, the body force and the surface force. The power that the
forceF produces for the generalized velocity fislds represented in the form

= [Bw+ [ xw
% O%

So far we were concerned with one particular body When the family of all
bodies within the material manifold and the force operating on each is considered,
we use the notatiof,, to denote the force acting on the bod§ Similarly, 8,
andt,, will denote the corresponding body force and boundary force. Thus, we

have
— [ Batw)+ [ 7w
i 0%

We will refer to the collection{(B,,,7,)} for the various bodies, as farce
systenon.”. A force system may be regarded as a set function assigning to each
body# the corresponding two force fieldg,,, 7,,). Usually, itis assumed that the
value of the body force at a point does not depend on the particular body containing
that point. Thus, in fact, only the surface force field depends oz. It is the
stress that allows one to specify the fields for the various bodies with a single
field on.7.

2.3. Vector Valued Forms. Mathematically, the body forc@ and the surface
forcet are similar—at eack € # they are linear mappings frow into a space of
alternating multi-linear mappings. We will identify such objects with (co-)vector
valued forms as follows.

Let % € L(V\&, /\k(TXP)), be a linear mapping, whekReis an arbitrary submani-
fold of . andk < dim(P). For a fixed collection ok vectorsv,,....v,,

K(U)(Vq,... ) €R
is linear inu. Hence, there is an elemewte W, such that
y(U) = %(U)(Vq, .- V).
Sincey depends on the collection, ... v, multi-linearly and in alternating way,
there is an alternating mappingV\a* -valued form
Bt (TRP)" — W,

such that

Ve, V) (U) = K(U) (V- -5 )-

It is noted that the same relation can be used to define a unique element of

L(V\&,/\k(TXP)) once a\, vector valueck-form is given. (The isomorphism is of

course a particular case of isomorphisms of the ty{#, L(E, F)) — L*(E,F) for
two vector spacek andF.)



Clearly, this can be globalized and in the sequel we will use
k

ATPW)

for the bundle oV -valuedk-forms. Because of the isomorphisms

m

L(W, R(T%)) — A\(T2W)

we will often view body forces as sections of either bundle and the meaning will
be clear from the context. A similar convention will apply to surface forces as a
result of the isomorphism

m-1

L(W, n}T(T&@)) — N\ (Toz,W").

3. HYPERPLANES ORIENTATION AND INCLINATION

One expects that a theory of stresses will enable the formulation and proof of an
analogue of Newton’s third law of action and reaction. In order to do that, a notion
of a “sense” for a tangent hyperplane should be defined so we can distinguish
between the interactions on two bodies that are tangent at a point but are situated
at opposite sides of the common tangent hyperplane.

In the following, ahyperplane Hat a pointx means an(m— 1)-dimensional
subspace ofy.#. The collection of hyperplanes ata Grassmann manifold, will
be denoted byG,, ,(Tx.¥"). Clearly, a hyperplanél is uniquely defined by an
arbitrary forme in the one-dimensional subspade C T,*.&” of annihilators oH.

The union

Gmfl(T‘y) = U Gm71<TX=5ﬂ)
xXe.”
is the Grassmann bundle of hyperplanes.

3.1. Inclinations of Hyperplanes. Let H be a hyperplane at For two vectors
vy, V, € T that are transversal td, one says that; andv, areon the same side
of H if for some¢ € H*, ¢(v;) and¢9(v,) in R have the same sign. Otherwise,
one says that the two vectors areapposite sides of HWe note that i% (v, ) and
¢(v,) have the same sign, thegr,(v,) and¢’(v,) will have the same sign for any
other¢’ € H*. Clearly,—vandv are on opposite sides. In addition, the relatiop
andv, are on the same side bf" is an equivalence relation. The quotient space
of Tx.¥ — H by this equivalence relation contains two elements—thedigesof

H. An inclined hyperplanas a hyperplandd together with a side—thpositive
inclinationof H.

In [14] the termouter orientationis used for what is referred to here as “incli-
nation”. We chose to use the latter for the sake of brevity.

For an inclined hyperplani there exists an inclined hyperpland of the op-
posite inclination. A vector € Ty.¥ is positively inclinedif it belongs to the
equivalence class corresponding to to the positive inclination. The collection of
inclined hyperplanes atc . will be denoted byG,, ;(Tx.%).



Given an inclined hyperplane, there is a sult$etof H* containing the forms
¢ such that(v) > 0 for any positively inclined vector. Consider the equivalence
relation by whichg, ~ ¢, if ¢, = a¢, for somea > 0. Clearly, any two elements of
H- are so related. Thubi is an element of the quotient spaGe¥’ /~. Since any
covectorg € T,/.7 determines a unique inclined hyperplane that it annihilates, we
can identifyG.._, (Tx.#) with this quotient space. Clearly, the operattors —h,
is a natural involution oG, (Ty.%).

In addition, we have a natural mapping

Px: G#—l(TXy) — G 1(Te)

that ignores the inclination of the hyperplanes. For a given inclined hyperpjane
we will often useH to denote its non-inclined counterpgatth).

Using a metric to identifyH- with a unit normal vector td, G#W_l(TXY) can
be given the differentiable structure of ttra— 1)-sphere. Thus, the construction
can be globalized to the entir# manifold to generate the fiber bundle

Gnlq—l(Ty) = U GL—l(Txy) —
xXes
of inclined hyperplanes, and a fiber bundle morphism

p: G (TZ) — G, (TS).

It is noted that itk € .~ is on an(m— 1)-dimensional face on the boundary of an
m-dimensional submanifold with corne# of .7, then, outward pointing vectors
are defined invariantly as tangents to curve/rthroughx that lie outsideZ for
0<t < ¢, and some > 0. This allows one to assign a specific inclinatiol{6.%.

3.2. Interaction Densities and Cauchy SectionsThe basic Cauchy postulate for
force systems, states that the surface force at p@nt# depends on the outwards
pointing normal to the boundary at that point. In the current framework, the de-
pendence on the normal is replaced by dependence on the inclined hypérplane
TxdZ with the outwards inclination.

For an inclined hyperplank associated witily(d%) , 7,(X) belongs to the
vector spacé\™ *(H,W, ), where H = p(h). Consider the vector bundle

m-1

N G a(TS)W') = G 4 (T.)
whose fiber aH € G, ,(T.¥), with H C T, is A™}(H,W ). One can pull
back this vector bundle using: G4, ,(T.¥) — G,,,_;(T-¥) to obtain
m-1

D=p (A (Cra(TF)W)) = Gy (T.),

to which we will refer as thénteraction density bundle
Thus, mathematically, the analog of Cauchy’s postulate is the assumption that
there is a section, th@auchy section

7: Gh 4(T.) — D,



such that
7,(X) = 7(h),

whereh is the outwards inclined tangent spacet@ at x.

3.3. Inclined Restrictions of Forms. In order to formulate the generalized ver-
sion of Cauchy’s formula= ST (n) we will need the notion of inclined restriction.

Consider an oriented hyperplaheat x whose inclination is specified by the
transversal vectov. We will use.#: H = p(h) — Tx.¥ to denote the inclusion
mapping so

k k
I N W) — A(HW),
given by
TV, V) =Y(F(Vy), ..., 2 (),
is the restriction of forms.

For the definition, it is assumed that an orientations6fis given in a neigh-
borhood ofx. (See [18] for the required generalization in case an orientation is
not specified.) For aim— 1), W' -valued formo € /\m‘l(ijﬂ,Wx*), theinclined
restriction (o) € A™ *(p(h)) is defined by the requirement that

1 (0) (Vi Vi q) = I () (Ve Vi q)

if (\,vy,...,v,_,) are positively oriented and

o¥m—1
h(0) (Vg Vi 1) = = (0) (Vg -+ Vi 1)

if (v,vy,...,V,,_1) are negatively oriented relative to the given orientation. It fol-

lows from the definition that
17(0) = —1"4(0).
Leto be aW*-vaIued,(m— 1)-form. Then, the mapping
m-1 N
hi— (o) e A (ph),wW")

is clearly a Cauchy section. We will refer to the foomas astress form Indeed,
Cauchy’s postulates guarantee that the surface forces are generated by a unigue
stress form.

4. THE GENERALIZED CAUCHY’S POSTULATES AND THEOREM

The following are the generalized Cauchy postulates for a force sys@gmr,,); Z C
S
(i) Foreveryx € . and every bodyZ, B,(x) = B(X), that is, the value of the
body force at a point is independent of the body containing it. Accordingly,
we will omit the subscrip.



(if) There is a Cauchy section
7: Gp_4(T.%) — D,
such that for any body?,
7, (%) = 7(h),

whereh is the tangent hyperplane #8 at x with the outwards pointing incli-
nation.

(iii) The Cauchy sectiom is continuous.

(iv) Thereis aV” -valuedm-form ¢ on.¥” such that

[Bw+ [z, < [cw
K 0R

74

Fa(w)| =

for every bodyZ.

Remarkd.1 It is noted that the last Cauchy postulate implies fRatis a linear
functional on the space of vector fields o¥gmwhich is continuous with respect to
theCO-topology. In fact, it is a statement of absolute continuity relative.to

Remark4.2 If we consider the balance of a real valued property, or any other situ-
ation where the vector bundi¥ is trivial, one can consider the power for constant
velocity fields. In the case of a balance of a real valued property, it is natural to de-
fine the total (resultant) forde, = F,(1). In this case, the fourth postulate implies

that
/ﬁ+/r% S/G'
% Z

%
This is the relevant Cauchy postulate in the case of balance laws for real valued
properties considered in [16].

Fo

Remarkd.3. Let{F, = (B,.7,)} be aforce system that satisfies Cauchy’s postu-
lates and letv be a vector field o”. Then,

{Fp(w) = (B@(W)v T%(W>) 1,

is a force system for a balance of a real valued property‘cior which the corre-
sponding Cauchy postulates are satisfied.

Proposition 4.4(The generalized Cauchy theorenssume that an orientation is
givenon” and let{F,, = (B,,, 7,,)} be a force system that satisfies the generalized
Cauchy postulates. Then, there exists a unique differential stressfoarsection

of AT X(T.,W"), such that for any body? andx € 9.2,

7, (X) =15 (0(x)),

where, h is the tangent space ®% at x equipped with the outwards pointing
inclination.



Proof. The sketch of proof described below is based on the corresponding detailed
proof for the real valued case in [16]. Another simple method for the construction
of the proof is implied by the discussion pertaining to Riemannian manifolds (see
Remark 6.2).

Since the expression in the assertion of the proposition is invariant and local, it
is enough to prove that it holds in a vector bundle chaf\brAs any vector field
w can be written locally as a linear combinatian=w'e, of theu = dim\W\ base
vector fieldse corresponding to the chart, we may consider only the scalar valued
surface forces,; = 7,(g). However, by Cauchy’s theorem for scalar valued
balance laws (see [16]), for eack=1,...,mthere is a uniqu¢m— 1)-form o;,
such that

T (%) = 15 (0i(¥)).
Clearly, the formsp; transform as components of an elemeni\bi—the required

(m—1), W -valued formo.
Ul

Remark4.5. In the case where an orientation is not given.@h the Proposition

still holds if one replaces the forra by an odd form (see [18] for the details

of the required generalization). Orientation is assumed here merely to make the
presentation clearer.

5. THE CASE OFVOLUME MANIFOLDS

5.1. The Stress Tensor.In this Section we restrict ourselves to the situation where
a volume elemené is given on the material manifol”. Evidently, such a vol-
ume element induces an orientation.gfi We will first make a straightforward
extension of the contraction of a form by a vector.

Definition 5.1. Let ¢ € A¥(T,.”) be a form and leS e L(W, Tx.¥) be a linear
mapping. Theontraction S ¢ € L(W, /\k‘lTXY) of the form¢ with the mapping
Sis defined by

(S19)(w) = S(w)-9,

for everyw € W.
If we regardS. ¢ as a vector valued form in“—(T,.”,\ W), then
S—|¢(V]_7 cr avk_l) (W) = q)(S(W)?Vla te 7V|(_1)‘

Proposition 5.2. Given a volume elemen® ¢ A™T.# and a stress forno ¢
AT (T” W) there is a unique linear mapping

Se LW, T.y”)
such thaic = S. 6.
Proof. The mapping

m-1

LW, T.) — LW, \ (T.¥))



given byS— S.6 is an isomorphism due to the fact that 8¢ 0,

SSO(W)(Vq, ... Vyq) = 0(SW),V,,....Vp1) #0

for some choice o, v,,...,v,, ;.

O
Thus, when a volume element is given, we obtain the representation of stresses by
linear mappings as in traditional continuum mechanics. Given a volume elé&ment

and a stress, we will refer to the unigue linear mappirsuch thatS. 0 = ¢ as
the stress tensorepresentings relative to6.

5.2. The Orthogonal Projection of the Stress Tensor.Consider a body? and a
pointx € dZ. Leth be the inclined hyperplane tangentt@ atx and letH = p(h)
beTi0Z. In this paragraph we are concerned with the form that the relation

74(X) = 1n(0)
assumes when a volume element is given.
Using the orientation induced by the volume elem@nte can define the map-
ping
or: Gi1 () = F((Te?)™ L {+1,-1}),
whereF ()™ 1, {+1,—1}) is the set of functions frorfil,.) ™ to {+1, -1},
by

+1 ifvyv,,...,v,_, are postively oriented
-1 ifvv,... v, 4 are negatively oriented

or(h)(vy,....Vyq) = {

Here,vis any vector representing the inclinationtofClearly, this mapping is odd.
Next, consider the linear mapping

m-1

rq(6): e — A\ H,

given by
1 (6)(U) = 743 (us8),
where.#} is the restriction ofiL 6 to H induced by the inclusiow,.
With this notation, the expression

T (X) (W) (Vq, .. V1) = Or(h)(Vq, ... .V 1) O(S(W),Vy,... Vi q),

wherev is any vector specifying the inclination éf = T,d%, may be written in
the form

7, (W) = or(h) r, (0)(S(W))..

Remarks.3. Letube any vectoritd. Clearly,r,(0)(u) =0 and in fact Kerndr,(0)) =
H. In the sequel will use the following notation. For a hyperplahatx € ., the

one dimensionapace of layeratxisA =Ty’ /H, i.e., alayer A € A is an equiv-
alence class of vectors such that the difference between any two beldAg$\te

will denote byr, : T, — A the natural projection onto the quotient space.



Thus, there is a linear mappimg "A — A™1H such that

P (0)(A) =y (8) (A (W) = (8)(u),

whereu is any element of the equivalence cldss [u]. Thus, the relation between
the surface force and the stress tensor assumes the form

7,,(W) = or(h) f;(0) (7, o S(W)).

Remarks.4. An annihilator¢ of H induces an isomorphisﬂg: AN—RbyAw—
¢ (v), wherev is any vector in the equivalence class= [v]. Thus,

ly(Tp0S) = ¢0S=S(¢),

whereS": (Tx.)* — W' is the dual (adjoint) mapping to the stress tensor.
Also, I¢ induces the mapping

m-1

Py(0): R— A\ T, py(6) =Fy(6)ols?
so we have
T, (W) = 01(h) s (6) (S'(¢) ().
As p,(0) is represented by the unig@e— 1)-form p, = p,(6)(1) we may write

7,(W) = or(h) p, S'(¢)(w).

Remarks.5. Consider an additional bodg’ such thatx € 0%’ and the inclined
hyperplane tangent t&’ atxis h’ = —h. Then

7, = 0r(h) p, S'(9) = —or(h) p, S (9)

If we require thatp is compatible with the inclination df so that¢(v) > O for
every vectown specifying the inclination o, then, the sign @h) is included in the
choice of¢ and

T = Py S'(¢)
holds for both#Z and%’.

6. THE CASE OFRIEMANNIAN MANIFOLDS

We now assume that a Riemannian metric is givens6n Hence, even if the
volume elemen® is not the one induced by the metric, we have a natural volume
elementn., 6 on d%, wheren is the unit outwards pointing normal vector. Thus,
the surface force is represented by W*-valued fieldt,,, the component with
respect to the basis elememt, such that

T, =1,(n106).



On the other hand, with the metric structure there is a natural fgrm, (u) =
n - u, compatible with the inclination di. Thus we have

Po, (V- Vip1) = P, (0)(D)(Vy, - Viy_y)
=0(U,Vy,....V 1), On(u)y=n-u=1

=0(n,vy,....V,, 1), for u=n inparticular,

=N16(Vy,....Vy ).
Hence, in the metric case, choosing the natural normal form, we have
Py, =N 0.

In addition,

whereS' : T,.# — W, is defined by the condition
V- (S(w)) = ST (v)(w).
We conclude that in the situation whef€ is a metric manifold,
t, =S (n)
—the classical Cauchy formula.

Remark6.1 Itis noted thatin the reduction above it is not required that the volume
element is the one induced by the Riemannian metric. Also there is no need for
any additional structure on the vector bundle

Remark6.2 The reduction to the classical Cauchy formula indicates another method
of proof of Cauchy’s theorem. Since the theorem is formulated without any refer-
ence to a Riemannian metric and since one can always assign a Riemannian metric
to a manifold, Cauchy’s theorem in the framework of Riemannian Geometry (e.g.,
[5] or [9] for the three dimensional scalar valued case) implies the validity of the
generalized version of Cauchy’s theorem given here.

Remark6.3. The First Piola-Kirchhoff Stress Tenspused frequently in contin-

uum mechanics, is usually defined in term of the Cauchy stress tensor but is intro-
duced as a different entity. (See for example [9], p. 135, or [6] p. 178.) The forego-
ing formulation implies that the Cauchy stress and first Piola-Kirchhoff stress are
simply two representations of the same mathematical entity under different met-
ric tensors (in space and the body reference configuration, respectively). In other
words, thePiola transformationof [9] is simply the transformation rule for the
stress tensor representing a stress form, under a change of a Riemannian metric.
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