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represented by various matrices for a number of bases for the corresponding vector
spaces.

Additional reason to avoid the use of affine and metric structures in the formu-
lation of stress theory originates from the various applications of the continuum
mechanics methods to generalized continua. For such continua (e.g. [10], [2], [3],
the state of the body is described by internal state variables, or order parameters,
for which we might not have affine or metric properties.

Over the years, research work contributed to the subject by weakening the pos-
tulates needed to prove Cauchy’s theorem, by making the proof more rigorous
and establishing the existence of stresses using alternative methods and approaches
(e.g., [7, 8], [9], [5], [15, 17]). This paper presents the generalization of Cauchy’s
theory of forces and stresses, to general differentiable manifolds. The terminol-
ogy of differential forms is used to formulate Cauchy’s postulates and Cauchy’s
theorem.

In a previous paper, [16], the corresponding theory was introduced for balance
laws of real valued properties (such as mass). Here, the theory is extended to forces
valued in the dual of a vector bundleW over anm-dimensional material manifold
S . Thus, forces are presented as entities that produce power densities when acting
on generalized velocity fields—sections ofW. The usual assumption that forces
consist of body forces and surface forces is retained. Thus, following [4], a body
forceβR on a bodyR is a section ofL

(
W,
∧m(TR)

)
and a surface forceτR is a

section ofL
(
W,
∧m−1(T∂R)

)
. Using integration of differential forms, the power

densities of the body force and surface force are combined to generate the force
functionalFR as

FR(w) =
∫
R

βR(w)+
∫

∂R

τR(w).

These and other preliminary topics are considered in Section 2.
As a unit normal is not available in the case of general manifolds, the local

dependence of the surface force on the normal is replaced by dependence on the
tangent space to the boundary—an element of the Grassmann manifold of hyper-
planes in the tangent space toS . In addition, the outwards direction of the normal
is replaced by the outwardsinclinationor outer orientationof the tangent space to
the boundary.

In the setting presented here, stresses are(m− 1)-forms, valued inW
∗
, de-

fined on the material manifold. The analog of the operationST(n) that appears
in Cauchy’s theorem, is theinclined restrictionof forms. Instead of “taking the
normal component” of the stress tensor, the stress form is restricted to the tangent
space of the boundary. However, while a simple restriction is not sensitive to the
outwards inclination (outer orientation) of the tangent space at the point on the
boundary under consideration, the inclined restriction is an odd function of the in-
clination. This is done using a sign rule that is induced by an orientation of the
material manifold. While the orientation is assumed to be given, odd forms can be
used to render the presentation independent of the arbitrary choice of orientation
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(see [18]). Since the orientation is needed only locally, there is no need to require
of orientability of the material manifold.

One additional aspect of the theory that needs attention is the continuous depen-
dence of the surface force on both the point on the boundary and the hyperplane.
Since, in the case of manifolds, it is not possible to compare hyperplanes at dis-
tinct points, the mapping that assigns the surface force to the inclined tangent space
is presented as a continuous section—theCauchy section—of a fiber bundle, the
bundle of interaction densities, over the bundle of inclined hyperplanes. Following
[18], inclined hyperplanes, Cauchy sections and inclined restrictions are consid-
ered in Section 3.

Section 4 presents the generalized Cauchy postulates and theorem. The only
aspect of the theory not mentioned above is the balance equation. The balance
equation is formulated in terms of the total expanded power in the form

∣∣FR(w)
∣∣=

∣∣∣∣∣
∫
R

β (w)+
∫

∂R

τR(w)

∣∣∣∣∣≤
∫
R

ς(w),

whereς is somem-form that we assume to exist and that satisfies this inequality
for any bodyR. This form of the balance equation emphasizes the fact that we
regard the balance law as a regularity assumption on the force fields for the various
bodies, or alternatively, as a boundedness assumption on the collection of force
functionals for the various bodies (c.f. [17]).

Section 5 considers the situation where a volume element is given on the ma-
terial manifoldS (e.g., a mass density). In such a case the stress form can be
represented by a tensor—a vector bundle morphismW→ TS . It also considers a
somewhat generalized version of the normal projection of the stress. Finally, Sec-
tion 6 assumes that a Riemannian metric is given onS and the classical Cauchy
formula is recovered. As a final remark it is noted that in the current framework, the
Cauchy stress and the first Piola-Kirchhoff stresses are simply two representations
of the stress form under two different Riemannian metrics.

2. PRELIMINARY DEFINITIONS AND ASSUMPTIONS

2.1. Kinematics. It is assumed that there is amaterial manifoldS of dimension
mcontaining all bodies as subsets. Abodyis anm-dimensional compact submani-
fold with corners ofS .

Thephysical spaceis modeled as a manifold without boundaryM , and acon-
figuration of a bodyR in space is a smooth mappingκ : R →M . One usually
requires that the configuration is an embedding although this will not have any
affect on the following discussion.

A generalizedvelocityfield at a given configurationκ is a mappingw: R →
TM such thatτM ◦w = κ. HereTM is the tangent bundle of the space manifold
andτM : TM →M is the tangent bundle projection.

For a given configurationκ, consider the pull-back

κ
∗(τM ) : κ

∗(TM )→R,
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of TM by κ. A velocity field at the configurationκ can be regarded also as the sec-
tion w′ : R→ κ

∗(TM ), wherew′(x) is identified with the elementw(x)∈ T
κ(x)M .

Since the configurationκ will be fixed during the following discussion, the second
point of view is preferable as we can regard the velocity field as a section of a fixed
vector bundle. Thus, in the sequel, we will consider a fixed vector bundleW→S
over the material manifold. We can restrict this vector bundle naturally to any body
R ⊂S and we will abuse the notation by writingW→R for the restricted bundle.
Thus, a velocity field over a bodyR will be a sectionw: R→W.

2.2. Forces. For a general manifold geometry, forces may be defined invariantly
as covectors or linear functionals. For example, a concentrated forcef acting on
the material pointx∈S at the configurationκ is an element of the cotangent space
T∗

κ(x)M . Such a force may be evaluated for a velocityw(x) and the valuef (w(x)) is
interpreted as the power that the forcef expends while the material pointx travels
at the velocityw(x). Clearly, using the pullback ofTM by κ the velocity becomes
a member ofW and the force will be a member ofW∗.

Force densities operate on the velocity fields to produce power densities that may
be integrated. It is assumed henceforth that force densities (and the resulting power
densities) are continuous. Thus, aforce densityon ann-dimensional submanifold
P of S is a continuous section ofL

(
W,
∧n(TP)

)
. Here

∧n(TP) is the bundle of
n-forms onP, and for two vector bundlesU andV overS , L(U,V) is the vector
bundle whose fiber atx is the vector space of linear mappingsUx→Vx. The power
the force densityγ produces for the generalized velocityw is∫

P

γ(w) =
∫
P

γ(x)
(
w(x)

)
.

In the sequel we will often abuse notation by using the same symbol for both a
differential form and its value at a point.

It is usually assumed in continuum mechanics that the force on a body consists of
a body force distributed over the volume of the body and a surface force distributed
over the boundary. Hence, the forceF on a bodyR is represented by two force
densities, thebody forceβ , a section ofL

(
W,
∧m(TS)

)
, and aboundaryor surface

forceτ, a section ofL
(
W,
∧m−1(T∂R)

)
. Thus, forx∈R

β (x) : Wx→
m∧

TxS

is a linear mapping, and so is

τ(y) : Wy→
m−1∧

Ty∂R.

for somey∈ ∂R.
We conclude that the power expended by a combination of a body force and a

surface force is of the form ∫
R

β (w)+
∫

∂R

τ(w).
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It is note that the last expression may be conceived as the evaluation of a linear
functionalF on the space of velocity fields on a particular fieldw to produce the
global power.

Thus, we will refer to such a linear functionalF as aforce acting on the body
R represented by{β ,τ}, the body force and the surface force. The power that the
forceF produces for the generalized velocity fieldw is represented in the form

F(w) =
∫
R

β (w)+
∫

∂R

τ(w).

So far we were concerned with one particular bodyR. When the family of all
bodies within the material manifold and the force operating on each is considered,
we use the notationFR to denote the force acting on the bodyR. Similarly, βR
andτR will denote the corresponding body force and boundary force. Thus, we
have

FR(w) =
∫
R

βR(w)+
∫

∂R

τR(w).

We will refer to the collection{(βR ,τR)} for the various bodies, as aforce
systemon S . A force system may be regarded as a set function assigning to each
bodyR the corresponding two force fields(βR ,τR). Usually, it is assumed that the
value of the body force at a point does not depend on the particular body containing
that point. Thus, in fact, only the surface force fieldτR depends onR. It is the
stress that allows one to specify the fieldsτR for the various bodies with a single
field onS .

2.3. Vector Valued Forms. Mathematically, the body forceβ and the surface
forceτ are similar—at eachx∈R they are linear mappings fromWx into a space of
alternating multi-linear mappings. We will identify such objects with (co-)vector
valued forms as follows.

Let γx ∈ L
(
Wx,

∧k(TxP)
)
, be a linear mapping, whereP is an arbitrary submani-

fold of S andk≤ dim(P). For a fixed collection ofk vectorsv1, . . . ,vk,

γx(u)(v1, . . . ,vk) ∈ R

is linear inu. Hence, there is an elementψ ∈W
∗
x such that

ψ(u) = γx(u)(v1, . . . ,vk).

Sinceψ depends on the collectionv1, . . . ,vk multi-linearly and in alternating way,
there is an alternating mapping, aW

∗
x -valued form

γ̃x : (TxP)n→W
∗
x ,

such that
γ̃x(v1, . . . ,vk)(u) = γx(u)(v1, . . . ,vk).

It is noted that the same relation can be used to define a unique element of
L
(
Wx,

∧k(TxP)
)

once aW
∗
x vector valuedk-form is given. (The isomorphism is of

course a particular case of isomorphisms of the typeL
(
E,L(E,F)

)
→ L2(E,F) for

two vector spacesE andF .)
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Clearly, this can be globalized and in the sequel we will use

k∧(
TP,W

∗)
for the bundle ofW

∗
-valuedk-forms. Because of the isomorphisms

L
(
W,

m∧
(TR)

)
→

m∧(
TR,W

∗)
we will often view body forces as sections of either bundle and the meaning will
be clear from the context. A similar convention will apply to surface forces as a
result of the isomorphism

L
(
W,

m−1∧
(T∂R)

)
→

m−1∧ (
T∂R,W

∗)
.

3. HYPERPLANES, ORIENTATION AND INCLINATION

One expects that a theory of stresses will enable the formulation and proof of an
analogue of Newton’s third law of action and reaction. In order to do that, a notion
of a “sense” for a tangent hyperplane should be defined so we can distinguish
between the interactions on two bodies that are tangent at a point but are situated
at opposite sides of the common tangent hyperplane.

In the following, ahyperplane Hat a pointx means an(m− 1)-dimensional
subspace ofTxS . The collection of hyperplanes atx, a Grassmann manifold, will
be denoted byGm−1(TxS ). Clearly, a hyperplaneH is uniquely defined by an
arbitrary formφ in the one-dimensional subspaceH+ ⊂ T∗x S of annihilators ofH.

The union
Gm−1(TS ) =

⋃
x∈S

Gm−1(TxS )

is the Grassmann bundle of hyperplanes.

3.1. Inclinations of Hyperplanes. Let H be a hyperplane atx. For two vectors
v1,v2 ∈ TxS that are transversal toH, one says thatv1 andv2 areon the same side
of H if for someφ ∈ H+, φ(v1) andφ(v2) in R have the same sign. Otherwise,
one says that the two vectors are onopposite sides of H. We note that ifφ(v1) and
φ(v2) have the same sign, then,φ

′(v1) andφ
′(v2) will have the same sign for any

otherφ ′ ∈H+. Clearly,−v andv are on opposite sides. In addition, the relation “v1
andv2 are on the same side ofH” is an equivalence relation. The quotient space
of TxS −H by this equivalence relation contains two elements—the twosidesof
H. An inclined hyperplaneis a hyperplaneH together with a side—thepositive
inclinationof H.

In [14] the termouter orientationis used for what is referred to here as “incli-
nation”. We chose to use the latter for the sake of brevity.

For an inclined hyperplaneh, there exists an inclined hyperplane−h of the op-
posite inclination. A vectorv ∈ TxS is positively inclinedif it belongs to the
equivalence class corresponding to to the positive inclination. The collection of
inclined hyperplanes atx∈S will be denoted byG⊥m−1(TxS ).
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Given an inclined hyperplane, there is a subsetH⊥ of H+ containing the forms
φ such thatφ(v)> 0 for any positively inclined vectorv. Consider the equivalence
relation by whichφ1∼ φ2 if φ2 = aφ1 for somea> 0. Clearly, any two elements of
H⊥ are so related. Thus,H⊥ is an element of the quotient spaceT∗x S /∼. Since any
covectorφ ∈ T∗x S determines a unique inclined hyperplane that it annihilates, we
can identifyG⊥m−1(TxS ) with this quotient space. Clearly, the operationh 7→ −h,
is a natural involution onG⊥m−1(TxS ).

In addition, we have a natural mapping

px : G⊥m−1(TxS )→Gm−1(TxS )

that ignores the inclination of the hyperplanes. For a given inclined hyperplaneh,
we will often useH to denote its non-inclined counterpartp(h).

Using a metric to identifyH⊥ with a unit normal vector toh, G⊥m−1(TxS ) can
be given the differentiable structure of the(m−1)-sphere. Thus, the construction
can be globalized to the entireS manifold to generate the fiber bundle

G⊥m−1(TS ) =
⋃

x∈S
G⊥m−1(TxS )→S

of inclined hyperplanes, and a fiber bundle morphism

p: G⊥m−1(TS )→Gm−1(TS ).

It is noted that ifx∈S is on an(m−1)-dimensional face on the boundary of an
m-dimensional submanifold with cornersR of S , then, outward pointing vectors
are defined invariantly as tangents to curves inS throughx that lie outsideR for
0< t < ε, and someε > 0. This allows one to assign a specific inclination toTx∂R.

3.2. Interaction Densities and Cauchy Sections.The basic Cauchy postulate for
force systems, states that the surface force at pointx∈ ∂R depends on the outwards
pointing normal to the boundary at that point. In the current framework, the de-
pendence on the normal is replaced by dependence on the inclined hyperplaneh,
Tx∂R with the outwards inclination.

For an inclined hyperplaneh associated withTx(∂R) , τR(x) belongs to the
vector space

∧m−1(H,W
∗
x ), where,H = p(h). Consider the vector bundle

m−1∧ (
Gm−1(TS ),W

∗)→Gm−1(TS )

whose fiber atH ∈ Gm−1(TS ), with H ⊂ TxS , is
∧m−1(H,W

∗
x ). One can pull

back this vector bundle usingp: G⊥m−1(TS )→Gm−1(TS ) to obtain

D = p∗
(m−1∧ (

Gm−1(TS ),W
∗))→G⊥m−1(TS ),

to which we will refer as theinteraction density bundle.
Thus, mathematically, the analog of Cauchy’s postulate is the assumption that

there is a section, theCauchy section

τ : G⊥m−1(TS )→ D,
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such that

τR(x) = τ(h),

whereh is the outwards inclined tangent space to∂R atx.

3.3. Inclined Restrictions of Forms. In order to formulate the generalized ver-
sion of Cauchy’s formulat = ST(n) we will need the notion of inclined restriction.

Consider an oriented hyperplaneh at x whose inclination is specified by the
transversal vectorv. We will useI : H = p(h)→ TxS to denote the inclusion
mapping so

I ∗ :
k∧

(TxS ,W
∗
)→

k∧
(H,W

∗
),

given by

I ∗(γ)(v1, . . . ,vk) = γ

(
I (v1), . . . ,I (vk)

)
,

is the restriction of forms.
For the definition, it is assumed that an orientation ofS is given in a neigh-

borhood ofx. (See [18] for the required generalization in case an orientation is
not specified.) For an(m−1), W

∗
-valued formσ ∈

∧m−1(TxS ,W∗x ), theinclined
restrictionι

∗
h(σ) ∈

∧m−1(p(h)
)

is defined by the requirement that

ι
∗
h(σ)(v1, . . . ,vm−1) = I ∗(σ)(v1, . . . ,vm−1)

if (v,v1, . . . ,vm−1) are positively oriented and

ι
∗
h(σ)(v1, . . . ,vm−1) =−I ∗(σ)(v1, . . . ,vm−1)

if (v,v1, . . . ,vm−1) are negatively oriented relative to the given orientation. It fol-
lows from the definition that

ι
∗
h(σ) =−ι

∗
−h(σ).

Let σ be aW
∗
-valued,(m−1)-form. Then, the mapping

h 7→ ι
∗
h(σ) ∈

m−1∧ (
p(h),W

∗)
is clearly a Cauchy section. We will refer to the formσ as astress form. Indeed,
Cauchy’s postulates guarantee that the surface forces are generated by a unique
stress form.

4. THE GENERALIZED CAUCHY ’ S POSTULATES AND THEOREM

The following are the generalized Cauchy postulates for a force system{(βR ,τR);R⊂
S }.

(i) For everyx∈S and every bodyR, βR(x) = β (x), that is, the value of the
body force at a point is independent of the body containing it. Accordingly,
we will omit the subscriptR.
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(ii ) There is a Cauchy section

τ : G⊥m−1(TS )→ D,

such that for any bodyR,

τR(x) = τ(h),

whereh is the tangent hyperplane toR atx with the outwards pointing incli-
nation.

(iii ) The Cauchy sectionτ is continuous.
(iv) There is aW

∗
-valuedm-form ς onS such that

∣∣FR(w)
∣∣=

∣∣∣∣∣
∫
R

β (w)+
∫

∂R

τR(w)

∣∣∣∣∣≤
∫
R

ς(w)

for every bodyR.

Remark4.1. It is noted that the last Cauchy postulate implies thatFR is a linear
functional on the space of vector fields overR which is continuous with respect to
theC0-topology. In fact, it is a statement of absolute continuity relative toς .

Remark4.2. If we consider the balance of a real valued property, or any other situ-
ation where the vector bundleW is trivial, one can consider the power for constant
velocity fields. In the case of a balance of a real valued property, it is natural to de-
fine the total (resultant) forcēFR = FR(1). In this case, the fourth postulate implies
that ∣∣F̄R

∣∣=

∣∣∣∣∣
∫
R

β +
∫

∂R

τR

∣∣∣∣∣≤
∫
R

ς .

This is the relevant Cauchy postulate in the case of balance laws for real valued
properties considered in [16].

Remark4.3. Let {FR = (βR ,τR)} be a force system that satisfies Cauchy’s postu-
lates and letw be a vector field onS . Then,

{FR(w) =
(
βR(w),τR(w)

)
},

is a force system for a balance of a real valued property onS for which the corre-
sponding Cauchy postulates are satisfied.

Proposition 4.4(The generalized Cauchy theorem). Assume that an orientation is
given onS and let{FR = (βR ,τR)} be a force system that satisfies the generalized
Cauchy postulates. Then, there exists a unique differential stress formσ , a section
of
∧m−1(TS ,W

∗
), such that for any bodyR andx∈ ∂R,

τR(x) = ι
∗
h

(
σ(x)

)
,

where,h is the tangent space to∂R at x equipped with the outwards pointing
inclination.
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Proof. The sketch of proof described below is based on the corresponding detailed
proof for the real valued case in [16]. Another simple method for the construction
of the proof is implied by the discussion pertaining to Riemannian manifolds (see
Remark 6.2).

Since the expression in the assertion of the proposition is invariant and local, it
is enough to prove that it holds in a vector bundle chart onW. As any vector field
w can be written locally as a linear combinationw = wiei , of theµ = dimWx base
vector fieldsei corresponding to the chart, we may consider only the scalar valued
surface forcesτRi = τR(ei). However, by Cauchy’s theorem for scalar valued
balance laws (see [16]), for eachi = 1, . . . ,m there is a unique(m− 1)-form σi ,
such that

τRi(x) = ι
∗
h

(
σi(x)

)
.

Clearly, the formsσi transform as components of an element ofW
∗
—the required

(m−1), W
∗
-valued formσ .

Remark4.5. In the case where an orientation is not given onS , the Proposition
still holds if one replaces the formσ by an odd form (see [18] for the details
of the required generalization). Orientation is assumed here merely to make the
presentation clearer.

5. THE CASE OFVOLUME MANIFOLDS

5.1. The Stress Tensor.In this Section we restrict ourselves to the situation where
a volume elementθ is given on the material manifoldS . Evidently, such a vol-
ume element induces an orientation onS . We will first make a straightforward
extension of the contraction of a form by a vector.

Definition 5.1. Let φ ∈
∧k(TxS ) be a form and letS∈ L(Wx,TxS ) be a linear

mapping. Thecontraction Syφ ∈ L(Wx,
∧k−1TxS ) of the formφ with the mapping

S is defined by
(Syφ)(w) = S(w)yφ ,

for everyw∈Wx.

If we regardSyφ as a vector valued form in
∧k−1(TxS ,W∗x ), then

Syφ(v1, . . . ,vk−1)(w) = φ(S(w),v1, . . . ,vk−1).

Proposition 5.2. Given a volume elementθ ∈
∧mTS and a stress formσ ∈∧m−1(TxS ,W∗x ) there is a unique linear mapping

S∈ L(Wx,TxS )

such thatσ = Syθ .

Proof. The mapping

L(W,TS )→ L
(
W,

m−1∧
(TS )

)
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given byS 7→ Syθ is an isomorphism due to the fact that forS 6= 0,

Syθ(w)(v1, . . . ,vm−1) = θ

(
S(w),v1, . . . ,vm−1

)
6= 0

for some choice ofw,v1, . . . ,vm−1.

Thus, when a volume element is given, we obtain the representation of stresses by
linear mappings as in traditional continuum mechanics. Given a volume elementθ

and a stressσ , we will refer to the unique linear mappingSsuch thatSyθ = σ as
thestress tensorrepresentingσ relative toθ .

5.2. The Orthogonal Projection of the Stress Tensor.Consider a bodyR and a
pointx∈ ∂R. Leth be the inclined hyperplane tangent to∂R atx and letH = p(h)
beTx∂R. In this paragraph we are concerned with the form that the relation

τR(x) = ι
∗
h(σ)

assumes when a volume element is given.
Using the orientation induced by the volume elementθ we can define the map-

ping
or : G⊥m−1(TxS )→ F

(
(TxS )m−1,{+1,−1}

)
,

whereF
(
(TxS )m−1,{+1,−1}

)
is the set of functions from(TxS )m−1 to{+1,−1},

by

or(h)(v1, . . . ,vm−1) =

{
+1 if v,v1, . . . ,vm−1 are postively oriented,

−1 if v,v1, . . . ,vm−1 are negatively oriented.

Here,v is any vector representing the inclination ofh. Clearly, this mapping is odd.
Next, consider the linear mapping

rH(θ) : TxS →
m−1∧

H,

given by
rH(θ)(u) = I ∗

H(uyθ),
whereI ∗

H is the restriction ofuyθ to H induced by the inclusionIH .
With this notation, the expression

τR(x)(w)(v1, . . . ,vm−1) = or(h)(v1, . . . ,vm−1)θ(S(w),v1, . . . ,vm−1),

wherev is any vector specifying the inclination ofH = Tx∂R, may be written in
the form

τR(w) = or(h) rH

(
θ)(S(w)

)
.

Remark5.3. Letube any vector inH. Clearly,rH(θ)(u) = 0 and in fact Kernel(rH(θ)) =
H. In the sequel will use the following notation. For a hyperplaneH atx∈S , the
one dimensionalspace of layersatx is Λ = TxS /H, i.e., alayer λ ∈Λ is an equiv-
alence class of vectors such that the difference between any two belongs toH. We
will denote byπΛ : TxS → Λ the natural projection onto the quotient space.
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Thus, there is a linear mapping ˆrH : Λ→
∧m−1H such that

r̂H(θ)(λ ) = r̂H(θ)
(
πΛ(u)

)
= rH(θ)(u),

whereu is any element of the equivalence classλ = [u]. Thus, the relation between
the surface force and the stress tensor assumes the form

τR(w) = or(h) r̂H(θ)
(
πΛ ◦S(w)

)
.

Remark5.4. An annihilatorφ of H induces an isomorphismI
φ

: Λ→ R by λ 7→
φ(v), wherev is any vector in the equivalence classλ = [v]. Thus,

I
φ
(πΛ ◦S) = φ ◦S= S∗(φ),

whereS∗ : (TxS )∗→W
∗

is the dual (adjoint) mapping to the stress tensor.
Also, I

φ
induces the mapping

ρ
φ
(θ) : R→

m−1∧
TxS , ρ

φ
(θ) = r̂H(θ)◦ I−1

φ
,

so we have

τR(w) = or(h)ρ
φ
(θ)
(
S∗(φ)(w)

)
.

As ρ
φ
(θ) is represented by the unique(m−1)-form ρ

φ
= ρ

φ
(θ)(1) we may write

τR(w) = or(h)ρ
φ

S∗(φ)(w).

Remark5.5. Consider an additional bodyR ′ such thatx ∈ ∂R ′ and the inclined
hyperplane tangent toR ′ atx is h′ =−h. Then

τR ′ = or(h′)ρ
φ

S∗(φ) =−or(h)ρ
φ

S∗(φ)

If we require thatφ is compatible with the inclination ofh so thatφ(v) > 0 for
every vectorv specifying the inclination ofh, then, the sign or(h) is included in the
choice ofφ and

τR = ρ
φ

S∗(φ)

holds for bothR andR ′.

6. THE CASE OFRIEMANNIAN MANIFOLDS

We now assume that a Riemannian metric is given onS . Hence, even if the
volume elementθ is not the one induced by the metric, we have a natural volume
elementnyθ on ∂R, wheren is the unit outwards pointing normal vector. Thus,
the surface forceτ is represented by aW∗-valued fieldtR , the component with
respect to the basis elementnyθ , such that

τR = tR (nyθ).
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On the other hand, with the metric structure there is a natural formφn, φn(u) =
n ·u, compatible with the inclination ofh. Thus we have

ρ
φn

(v1, . . . ,vm−1) = ρ
φn

(θ)(1)(v1, . . . ,vm−1)

= θ(u,v1, . . . ,vm−1), φn(u) = n ·u = 1

= θ(n,v1, . . . ,vm−1), for u = n in particular,

= nyθ(v1, . . . ,vm−1).

Hence, in the metric case, choosing the natural normal form, we have

ρ
φn

= nyθ .

In addition,

S∗(φn)(w) = φn
(
S(w)

)
= n ·

(
S(w)

)
= ST(n)(w),

whereST : TxS →W
∗
x is defined by the condition

v·
(
S(w)

)
= ST(v)(w).

We conclude that in the situation whereS is a metric manifold,

tR = ST(n)

—the classical Cauchy formula.

Remark6.1. It is noted that in the reduction above it is not required that the volume
element is the one induced by the Riemannian metric. Also there is no need for
any additional structure on the vector bundleW.

Remark6.2. The reduction to the classical Cauchy formula indicates another method
of proof of Cauchy’s theorem. Since the theorem is formulated without any refer-
ence to a Riemannian metric and since one can always assign a Riemannian metric
to a manifold, Cauchy’s theorem in the framework of Riemannian Geometry (e.g.,
[5] or [9] for the three dimensional scalar valued case) implies the validity of the
generalized version of Cauchy’s theorem given here.

Remark6.3. The First Piola-Kirchhoff Stress Tensor, used frequently in contin-
uum mechanics, is usually defined in term of the Cauchy stress tensor but is intro-
duced as a different entity. (See for example [9], p. 135, or [6] p. 178.) The forego-
ing formulation implies that the Cauchy stress and first Piola-Kirchhoff stress are
simply two representations of the same mathematical entity under different met-
ric tensors (in space and the body reference configuration, respectively). In other
words, thePiola transformationof [9] is simply the transformation rule for the
stress tensor representing a stress form, under a change of a Riemannian metric.
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