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CAUCHY'’S FLUX THEOREM
IN LIGHT OF GEOMETRIC INTEGRATION THEORY

G. RODNAY AND R. SEGEV

ABSTRACT. This work presents a formulation of Cauchy'’s flux theory of continuum me-
chanics in the framework of geometric integration theory as formulated by H. Whitney and
extended recently by J. Harrison. Starting with convex polygons, one constructs a formal
vector space of polyhedral chains. A Banach space of chains is obtained by a completion
process of this vector space with respect to a norm. Then, integration operators, cochains,
are defined as elements of the dual space to the space of chains. Thus, the approach links
the analytical properties of cochains with the corresponding properties of the domains in an
optimal way. The basic representation theorem shows that cochains may be represented by
forms. The form representing a cochain is a geometric analog of a flux field in continuum
mechanics.

1. INTRODUCTION

The Cauchy Theorem for the existence of stresses and fluxes is one of the fundamental
results of continuum mechanics. Over the years, research work contributed to the subject
by making the proof more rigorous, by weakening the postulates needed to prove the theo-
rem, by extending the circumstances under which it is valid, and by proving the existence
of stresses and fluxes using alternative methods and approaches.

In terms of scalar fluxes in space, the basic notions of flux theory may be described
as follows. One considers the total flixdB) of an extensive property through the
boundaryd B of the regionB in a three dimensional Euclidean space. The total flux is
assumed to be given as an integral of the flux dertgjtgssociated with the regioB, a
scalar field defined o6 B, in the form

T(B) :/ tg dA.
B

The dependence of the flux denstigyon the regiorB is considered next and it is assumed
that at each poinp, tg(p) depends orB only through the unit normal vectarto 9B at

p so one writeg (p, n) for the corresponding value. Then, one assumes that the total flux
is balanced by the rate of decrease of the total amount of the prdpemyB as given in
terms of an integral of a scalar figidover B so

/ thAz—/de.
B B

Assuming that the dependencet 6p, n) on p is continuous one proves Cauchy’s theorem
asserting that(p, n) depends linearly om. Thus, there is a vector field such that
t = 7 - n, where the dependence prwas suppressed in the notation.

Considering smooth regions such that Gauss’ theorem may be applied, the balance may
be written in the form of a differential equation as di# b = 0.

Key words and phrases. Continuum mechanics, flux, Cauchy’s theorem, geometric integration, chains,
cochains, flat, sharp, natural. 1991/95 Math. Subject Class. 73A05, 58A05.
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The first major contribution within the continuum mechanics community was made by
Noll in 1957 [11]. Noll was able to prove the dependence of the flux on the normal vector,
using a weaker assumption of locality, namely, the flux dertgityp) is equal for two
regions if the intersection of their boundaries contains an open neighborhgod of

Gurtin and Williams in [5] and later works [12, 6, 13] use alternative assumptions,
bi-additivity and boundedness, to obtain both locality and the representation of total flux
in terms of the integral of a flux density. Specifically, assuming that the collection of
admissible regions has the structure of a Boolean lattice, it is required thatgiven in
terms of a mapping of pairs of bodiésA, B), soT(A) = | (A, B) if B is the complement
of A. For separate (disjoint) domais and B, | satisfiesl (A Y B,C) = I (A,C) +
I(B,C)andI(C,AY B) = I(C, A) + I (C, B). Then, it is assumed thét(A, B)| <
| aregd Ano B)+k volume A)—the boundedness assumption—to obtain locality. To prove
Cauchy’s theorem it is assumed also théd, B) = —I (B, A) and that the dependence of
T(p, n) on p is continuous.

In [4] Gurtin and Matrtins prove the linearity im of t(p, n) almost everywhere, while
using similar additivity and boundedness assumptions but relaxing the hypothesis that
t(p, n) is a continuous function of.

In [20, 21] Silhawy uses a weak approach to prove the existence of stress tensors or
flux vectors. Admissible bodies are sets of finite perimeteE™ and the assumptions
and results pertain to “almost every subbody” in a way which allows singularities. The
resulting flux vectorr has anL P weak divergence.

Degiovanni et al. [1] generalize [20, 21] by considering flux mappihgshose corre-
sponding flux vector fields are only locally integrable. The field = — divz is mean-
ingful only in the weak sense.

In order to present results that hold for domains and flux fields that are increasingly
irregular, the works cited above rely on geometric measure theory of Federer [2] and de
Giorgi (see [14]). For example, tools of geometric measure theory are used for choosing
a universe of bodies, for a measure theoretic definition of the normal vector, and for using
generalizations of Gauss’ theorem to such irregular domains.

Another approach for proving Cauchy’s theorem directly from an integral balance equa-
tion is introduced in [3]. In this paper a variational approach it taken to prove the linear
dependence on the normal starting from a weaker locality postulate.

Stress theory for manifolds that are not equipped with a metric is presented in [15] from
a weak point of view. Forces are defined as elements of the dual space of the Banach space
of CK-sections of a vector bundle over the body. Stresses are Borel measures valued in
the dual of a jet bundle and they represent forces using a representation theorem. Further
analytical aspects of the theory are presented in [18]. In particular, as the theory introduces
continuum mechanics of ordéras corresponding to the space ®f-sections, general
consistency conditions that are analogous to Cauchy’s postulates are formulated for arbi-
trary values ok and for stresses as irregular as Borel measures. In [16], and the following
[19] and [17] the analog of the classical Cauchy theorem is presented for differentiable
manifolds.

In 1947 and 1948 Whitney [22] and Wolfe [24] presented a geometric theory of
dimensional integration in amdimensional Euclidean space. A comprehensive treatment
[23] of the theory was published by H. Whitney in 1957. While geometric measure theory
received a lot of attention because of its relevance to the Plateau problem, the mathemat-
ical work continuing Whitney’s geometric integration theory is limited. In [7] and the
following [8, 9, 10] J. Harrison made important extensions to Whitney’s work. To the best



FLUXES AND GEOMETRIC INTEGRATION 3

of our knowledge, Whitney’s abstract geometric integration theory was never used in the
formulation of Cauchy flux theory in continuum mechanics.

It is our objective here to present the Cauchy flux theory from the point of view of geo-
metric integration. In addition to offering a different approach to flux theory, the following
features make it eminently suitable. Firstly, the theory considers various aspects namely,
the collection of domains, integration, Stokes’ theorem (the analog of Gauss’ theorem),
and fluxes, from a unified point of view. The properties and degrees of regularity of the
various variables are linked. Thus, one may consider less regular domains if one is willing
to consider smoother fluxes. In fact, the regions may be as irregular as the Dirac measure
and its derivatives if one is willing to admit differentiable flux fields. On the other hand,
the flux fields may be as irregular as essentially bounded and measurable functions when
the boundaries are as irregular as the graph df'amapping. The way the theory is con-
structed, the relation between the regularity properties of domains and fluxes is optimal in
the following sense. The class of domains is the largest class for which the evaluation of
the various fluxes is continuous. Conversely, the class of fluxes is the largest class such
that the total fluxes depend continuously on the domains.

The codimensiom —r, is not limited to the value of 1 as in regular Cauchy flux theory.

It follows that the theory may be used to formulate flux theory on membranes, strings etc.
Furthermore, the theory does not require thatrtttémensional domains be smooth. In
fact, it permits for example the calculation of flux through a 1-dimensional “arc” on a 2-
dimensional domain iiR3 which is itself the graph of ah!-mapping. In other words,

not only the boundary is irregular, but so is the domain itself. Finally, the construction
of continuous chains creates a bridge between the classical and weak formulation of the
theory.

The elegance of the structure enables its description in just a few sentences. One
starts with the building blocks,-dimensional oriented cells (convex polygons) inran
dimensional Euclidean spaég'. Then, the formal vector space of linear combinations of
r-cells is considered, where two linear combinatighand B are identified if they may
be further subdivided to obtain a common subdivision. The elements of this vector space
are called polyhedral-chains. Then, the space of polyhedral chains is completed with
respect to a norm to obtain a Banach space. The elements of the resulting complete space
are called either flat, sharp, or naturathains depending on the norms used, and chains
collectively. Integration operators are referred tor aochains and they are defined as
continuous linear operators on the space of chains.

The application of geometric integration theory to Cauchy flux theory is based on the
identification of a total flux operator on regions with a cochain. In other words, a cochain is
analogous to a total flux operator acting on the various domains to produce real numbers.
In the case of traditional continuum mechanics, the total flux is regarded a 2-cochain in
ES. The analog of Cauchy’s flux theorem is a representation theorem stating that a cochain
may be represented by arform, an antisymmetric-tensor inE", using integration. As
mentioned earlier, the analytical properties of chains and forms representing cochains are
determined by the norm used. The topology on the space of chains allows one to extend
various operations, e.g., integrals and boundaries, from polyhedral chains to the chains
obtained as limits of sequences.

Federer [2, pp. 367—378] introduces flat chains as currents, roughly, continuous linear
functionals on the space of smooth forms with compact supports—the geometric analogs
of Schwartz distributions, and defines the flat norm as the norm induced on the dual space
by the norm||¢|| = sup{lo (Pl |d¢ (p)|} on the space of smooth forms. While Federer's
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treatment of flat chains is concise and elegant, it does not contain the analogs for sharp
and natural chains. In addition, it seems to us that Whitney’s approach is closer in spirit

to the traditional approach of continuum mechanics. Furthermore, as Federer states in [2,
p. 378] his main interest has been in chains while Whitney’s main concern has been with

cochains—the objects representing Cauchy fluxes of continuum mechanics.

It is noted that the expression for the representation of cochains in terms of forms also
applies on general manifolds rather than a Euclidean space. In addition, while the defini-
tions of the various norms utilize the metric structureedf the various topological spaces
of chains remain invariant under diffeomorphisms. This suggests an extension of the theo-
ries to general manifolds. However, a formal presentation of such a theory is not available
yet and will not be considered here.

Thus, the basic constructions, results, and applications to Cauchy flux theory are de-
scribed below. For details of the mathematical constructions and proofs see [23] and
[8, 9]. We start in Section 2 with the basic building blocks: polyhedral chains and in-
tegration on polyhedral chains. Section 3 considers the construction of the various Banach
spaces of chains and Section 4 presents the definitions and basic properties associated with
cochains—the analogs of the Cauchy flux operators. The Cauchy theorem of fluxes is im-
plied by the representation theorem of cochains by forms as presented in Section 5. Finally,
Section 6 considers the extension of the exterior derivative to hon-smooth forms through
the notion of a coboundary, and the resulting local balance equation.

2. CHAINS AND INTEGRATION

2.1. Cells and polyhedral chains. We start with a review of the basic definitions related
to integration on chains in amdimensional Euclidean spa&' whose associated vector
space isV. A cell, o, is a non empty bounded subsettst expressed as an intersection of
a finite collection of half spaces. Tiptane of ¢ is the smallest affine subspace containing
o, and thedimension of ¢ is the dimension of its plane. We referrtalimensional cells as
r-cells.

An oriented r -cell is anr -cell with a choice of one of the two orientations of the vector
space associated with its plane. The eedl is the cell that contains the same points as
o but has the opposite orientation. Thaundary of an oriented -cell, do, is a collection
of oriented(r — 1)-cells. The boundary of a 1-cell consists of two points, and 0-cell has
no boundary. The orientations of the cells that make up the bourddagre determined
by the orientation of, in the following way. Given a celb’ C do, letvy, ..., v be a
collection ofr — 1 independent vectors that belong to the plane’ofThen, this collection
is positively oriented if given a vectan ato’ that belongs to the plane ef and points
out of o, the collection(vy, . .., vy) is positively oriented relative t6. The boundary of a
1-cell oriented by the vectquq, consists of the two 0-cellg positive andp negative.

Oriented cells are the building blocks of chains. p8lyhedral r-chain in E" is an
element of the vector space spanned by formal linear combinationsels, together
with the following properties. 1) The polyhedral chain & identified with the celb. 2)

We associate multiplication of a cell byl with the operation of inversion of orientation,

i.,e., —1lo = —o. 3) If an oriented celb is cut into several cellsgy, ..., om, theno

andoi + ... + on are identified as polyhedral chains. Thus, we identify the union of
orientedr -cells having disjoint interiors with the polyhednaichain which is the sum of
ther-cells. Polyhedral 0-chains are expressions of the fdrra p;, wherep; are points.

The boundary of a cell is thus a chain, the sum of the various oriented cells that make up
the boundary as above.
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The space of polyhedralchains inE" is now an infinite-dimensional vector space
denoted byA; (E™). Theboundary of a polyhedral r-chain A = Y ajoi, is a polyhedral
(r — D-chain defined to b8 A = ) & doi. The boundary of a polyhedral 0-chain is 0.
Note that by this definition is a linear operatad, (E™) — A;_1(E").

2.2. Multivectors. A simpler-vector in V is defined in a formal way, to be an expression
of the formvy A --- A v, Wherev; € V, the vector space associated wiR. We setr -
vectorsin V to be elements of the vector spageof formal linear combinations of simple
r-vectors, together with the following properties:

D viA-A@FY)A A
=VIA AV A AV F VLA AV A A
2 viA---A@U))A--Avy =a(vI A AV A+ Ar);
@) VIA- AV A AV A AY
=—VIA- AV A=AV A= Ay,

1-vectors are just vectors, and 0-vectors are defined to be real numbers. It is noted that any
r-vector can be written in various equivalent ways. The various identifications above, in
particular the antisymmetry, imply that dimension of the spagewctors is
n!

(n—=n)lr!’
wheren is the dimension o¥. If r > nthenV, is empty. Given a basig} of V, the
r-vectors{ey, », =€, A--- A€}, suchthatl< 1y < --- < Ay < n, form a basis of
Vr.

Given an oriented-simplexo in E", with verticespg . . . pr, ther -vector of o, denoted
by {c}, is defined to bgo} = v1 A --- A v /r!, where the vectors; are defined by
vi = pi — po and are ordered in such a way that they belong to the orientation kvfis
noted that in casgr1} = af{o»} for two r-simplexess; andoy, then, the ratio between the
r-dimensional volumes of the two simplexes relative to any mettig|isTher -vector of a
polyhedral r-chain A = )" ajoi, where)_ a;o; is a simplicial subdivision of\, is defined
by {Z aj oj } = Y a{oi}. Clearly, this defines the-vectors ofr -cells too, ag -cells are
particular polyhedrat-chains.

d|m Vr ==

2.3. Multi-covectors. The dual space of; is denoted by'" and its elements are referred
to asr-covectors. We now show how -covectors can be expressed using covectors. We
denote byV* the dual space o¥, and byV;* the space which is constructed exactly like
the space/,, but using the (co-) vectors af*. Hence, elements &f* are expressions of
the formY a f'L A-.. A fI', wheref!l € V*. Thescalar product of elements o¥/,* and
elements ol is defined by

(FEA A iAo Aw) = Y M i) £ ()
A
ffop -+ fln)
ffw) - ()
for simple vectors, and extends linearly to the vector spaces. Hete,{A1,..., Ar}

ranges over the set of all permutationg(df. . ., r), ande*1* is the alternating symbol.
Any element? of V* may be identified with an elementof V' by t(¢) = 7 - « for
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anyr-multivectora. Furthermore, an elementof V' may be regarded as an alternating
multilinear form? by

T(VLA---Av) =T(v1, ..., vp).

2.4. Integration of forms over polyhedral chains. The natural integrands overchains
arer -forms. Anr-formin a setQ c E" is anr-covector valued mapping defined@ An
r-form is continuous if its components are continuous functions. Rieann integral of
a continuous -form t over anr-simplexo is defined as

/ar:kli_)mO<> > (pi) - fowil.

oki €Sko

whereSko is a sequence of simplicial subdivisiosig of o with mesh— 0, and eachpy;
is a point inoyj. The Riemann integral of a continuousorm over a polyhedral-chain
A =>4, is defined byfA T=) g fm 7, where)_ g o is a simplicial subdivision of
the polyhedral chair.

Anr-form in E" is bounded and measurable if all its components relative to a basis of
V are bounded and measurable. Tiebesgue integral of anr-form = over anr-cell o is

defined by
/r=/r(p)-@dp,
o o o]

where|o| is ther-dimensional volume of and the integral on the right is a Lebesgue
integral of a real function. This is extended by linearity to domains that are polyhedral

chains by
T = a; T,
INXT

2.5. Stokes’ theorem for polyhedral chains. The exterior derivative of a differentiable
r-form t is an(r + 1)-form dt defined by

r+1

dr(p) - (LA Avg) =Y (=D IV T(p) - (A AT A A ),
i=1

wherev; denotes a vector that has been omitted, @pds a directional derivative operator.
The last definition is represented using coordinates by
r+1 P
i-1
A0n 2 (P) = D DT et 4, (P
i=1

Stokes’ theorem for polyhedral chains, based on the fundamental theorem of differential

calculus, states that
/dr :/r
A

A
for every differentiable -form r and an(r + 1)-polyhedral chairA.
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3. BANACH SPACES OF CHAINS

3.1. Flat chains. The mass of a polyhedraF-chain A = Y ao; in E" is defined to be
Al = Y l|ai||oi|, where|o;| denotes the the-dimensional volume ofoi|. Thus, in case
the interiors of the cells; of a polyhedral -chain do not intersect, andaf = 1, then the
mass of the polyhedral chain is exactlyritslimensional volume.

Definition 3.1. Theflat norm, |A|”, of a polyhedraf -chain A in E" is defined by
|A” = inf{|A—aD| + |D|},
using all polyhedrair + 1)-chainsD.

We note that it is not immediate that |” is indeed a norm. Furthermore, the actual
calculation of the the flat norm may be quite complicated even for simpleains. (For
example, consider a 1-chain in the plane consisting two oriented line segments.) Taking
D = 0 above, itis clear thatA|” < |A].

Completing the spacd, (E™) with respect to the flat norm gives a Banach space de-
noted byA'r’(E”). That is,A?(E”) contains the formal limits of all the sequences of
polyhedralr -chainsA;, such that lim_, o |Aiy1 — Ai” = 0. Elements OM?(E”) which
are limits of such sequences are sometimes denoted ByAlimWe refer to elements of
AF(E”) asflat r-chains inE". If there are no intersections between cells and all coeffi-
cients have the value of 1, we identify the flat chain with the set that contains its points.

Example 3.2, Consider the sequence of 1-chai#§) in E? such thatA; = Ly + Ly;
whereL; andL;, are 1-simplexes associated with two parallel line segments having the
same lengthL, opposite orientation, and the line segment correspondihg;tis obtained
from the line segment correspondinglig by a translation of distana perpendicularly
to its direction. If we take the rectangle generated by the two line segmeitsiaghe
definition of the flat norm, it follows thatA; |” < (L + 2)d;. Thus, ifd; — 0, the sequence
(Ay) converges to the zero chain in the flat norm. On the other hand, in the mass norm we
have| A — Aj_1| = 2L for alli so the sequence does not converge. Roughly speaking, the
geometrical significance of the flat norm is that, unlike the mass norm, it takes into account
how closely the two segments are located.

If we let the length of the line segments shrink also so that¥grL = d;, then by
taking D; as above we gé®|> < d? + 2d; while takingD; = 0, implies|A|” < 2d; so
|Ai|> — 0 asd;.

Example 3.3, Consider the “staircase” sequend) shown in Fig. 1. Here,

2i-1

Aj = Z Aj|
|:l

is the sum of 2~1 oriented 1-squares of sitg = 1/2), B = Bo+Zij=1 Aj, and we take
the limit asi — oo. Set for each squardj|, the cellDj; such tha_tA“ = dDjj. Then,
usingDj; in the definition of the flat norm we géa | |” < dj2 = 272i, Hence,

B - Bioal” = |A] <2727,
so the sequendgB;) converges.

Flat chains may be used to represent continuous and smooth submanif@fsaofi
even irregular surfaces as shown above. As another example, starting with a triafgle on
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FIGURE 1. The staircase.

one may construct a planeR¥ by mapping the vertices using the values at the vertices of
a real valued functiom on R2. One may subdivide the triangle and map the new vertices
again using the mapping to construct a piecewise flat surfaceRd approximating the
graph ofu. This procedure may be repeated to construct a sequence of 2-chains. If for the
functionu one uses a continuous function that is nowhere differentiable one obtains a flat
chain that represents a surface that is not rectifiable.

TheRiemannintegral of a continuousr -formz over a flatr -chainA = lim A, is defined
tobe [,z =lim [, 7, if the limit exists.

Theboundary of aflat (r + 1)-chain A = lim® A;, is defined to bé A = lim 3 A;. The
boundary of a flatr + 1)-chain always exists as a flatchain.

3.2. Sharp chains. Whitney obtained chains that are even less regular then the flat chains
by introducing a possibly smaller norm. Thus, more Cauchy sequences will converge and
one ends up with a larger completed space.

Definition 3.4. Thesharp norm|A|* of a polyhedraf -chainA = 3" g0 is defined by
. X lalloillvil , o
|A| —|nf{T+‘Zaltransﬁ O'I‘ )

using all vectors; € E", where trangis a translation operator that moves each pgiof
o to p+ v, giving a translated cell traps with the same orientation as

Clearly, setting alyy = 0, we conclude thatA|* < |A|” so the sharp norm defines
a coarser topology. Completing the spadg E") with respect to the sharp norm gives
a Banach space denoted b@(E”) whose elements are referred toshsrp chains. It
follows thatA?(E“) is a Banach subspaceﬁf(E”).

Example 3.5. Consider again the sequence of pairs of 1-vectoRinf lengthd; situated
a distanced; apart as above. Takingg = 0, andvz as the vector such that transwill

cause the two line segments to overlapsg = d;, we havel A |* < di2/2. Hence, for
di — 0, the sharp norm of the shrinking pairs tends to zero faster than the flat norm.
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Consider the “staircase strain_er" sequetBe constructed in the unit square as shown
in Fig. 2. Here,Aj is the sum of 21 pairs of sized; = 1/2!, B = Bo + le=l Aj, and
we take the limit as — oo. For the flat norm we have

B —Biaf = AP <2722 =1,
so the sequena@;) does not converge. On the other hand, for the sharp norm
B — Biaff = |AF <2711/2)?2=27/4,

and the sequence converges. Thus, we will be able to calculate the total flux through the
staircase strainer limit. (The extensive property under consideration may flow through the
strainerB; at the horizontal segments only.)

| | |
| | | _—
| + | + |
| | | )
B A Y
| | |
The dashed lines are for reference only.
P — e
| — | —
| -~ | —
| - | g
+ | -— e | - e o o o
: Az -— : Bs
| - | -

FIGURE 2. The staircase strainer

Similarly, the “staircase mixer” sequence shown in Fig. 3 converges in the sharp norm
but not in the flat norm.

Roughly speaking, the difference in behavior between the flat norm and the sharp norm
may be described as follows. Consider a sequéA¢g of shrinkingr -polyhedral chains
of typical sizes — 0. If A is the boundaryB; of a shrinking(r + 1)-chain B;, then
taking D = B; in the definition of the flat norm,A;|” shrinks Iikes{*l. If Aj cannot be
represented as the boundary of(ar- 1)-chain, the -dimensional mass of some subset of
A will always be present in the definition of the flat norm and hewg¢ will shrink like
s only. On the other hand, for the sharp norm, if one can cancel the flat norm of a chain
by translating simplexes by vectors of the same order of magnituge then the price to
pay in the definition of the sharp norm is boundedsbi‘/1 whetherA; is the boundary of
another chain or not.

The Riemann integral of a continuous r-form t over a sharpg-chain A = lim A;, is
defined to bef, 7 =lim [, 7, if the limit exists.

It is noted that being less regular than a flat chain, the boundary of a sharp chain need
not exist as a sharp chain.
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FIGURE 3. The staircase mixer

3.3. Natural chains. A basic notion of Harrison’s constructions is that of a dipole. A
simpler -dimensional O-dipoleis anr -simplexs® whose diameter diat®) < 1. A simple
r-dimensional 1-dipole is a chain of the fomt = o® — trans, o© for a vectorvy, such
that jv1| < 1, and trang o9 is disjoint from¢®. Inductively, a simple -dimensional
j-dipole is anr-chain of the formo} = oJ=1 — trang, o ~1, wheres )~ is a simple
r-dimensional(j — 1)-dipole, andvj is a vector withvj| < 1 such that tran,.fsaj*l is
disjoint fromo 1 =1, A simple j-dipole is therefore determined by the simptekand the
v1, ..., vj vectors. Aj-dipoleis a simplicial chain

DI = Zamij
i

of simple j-dipoles. _
Given a simplej-dipoles! constructed by the simplex® and vectora, . . ., vj, its
j-dipole massis defined by

o1 = 1o®lval -+ - [vj
(Io9] is the mass o0f°). The j-dipole mass of the j-dipole DI = Y a0/ is defined as

DI} = "laille} ;.
i

Using the notion of a dipole and the dipole mass,kh®tural norm,k = 1,2, ..., 0n
the space of polyhedral chains is defined by

k

|Alg = inf {DD% + |C|;1} :
s=0

where the infimum it taken over all decompositionsfoih the formA = Zis(:o D%+ 4C,

for s-dipolesDS. The Banach space one obtains by completing the space of polyhedral

chains relative to this norm is denoted Hff and its elements are referred tokagatural

r-chains. Clearly, the O-natural norm is equivalent to the flat norm. Harrison also defines
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norms associated with fractional valuesrathat are related to the dtder conditions but
we omit the discussion of such chains here.

As k increases, the the spaces of natural chains become Iargemﬁ.ds,a Banach
subspace otél'r for k < |I. For increasing values df these spaces contain increasingly
irregular chains. For example, various fractals are natural chains, akdHhttéstributional
derivative of the Dirac measure on the real line belong&ﬁﬁl (see [8]).

For ak-naturalr-chain A, let t be a form onA that hask — 1 bounded derivatives
and whosek-th derivative is Lipschitz. Th&emann integral of t over a naturat -chain
A = lim" A, is defined to bef, 7 = lim [, 7. Indeed, Harrison shows that the limit
always exists as integrals over polyhedral chains are bounded by the natural norms of the
chains.

A clear advantage of using the natural norms in comparison with the sharp norm is
the behavior of the natural chains under the boundary operator: the boundary operator of
polyhedral chains extends to a continuous linear opef)atotﬁ — Afj.

4. COCHAINS

Cochains are elements of the dual spaces to the Banach spaces of flat, sharp, and nat-
ural chains. The basic idea of the application of Whitney’s abstract integration theory to
the analysis of Cauchy fluxes is that cochains in the various dual spaces are abstract coun-
terparts of total fluxes. Specifically, for classical continuum mechanics we regard the total
flux Ta of a certain extensive properfy through a 2-dimensional domaikin E2 as the
actionT - A of a 2-cochainT on the 2-chainA associated with the domain. For the sake
of simplicity of the notation we used here the same notation for both the domain and the
representing chain. It is noted that chains contain more information than just the domain
where they are supported. For example, any continuous function defined on a submanifold
of the Euclidean space may be represented as a chain. Obviously, the coefficients for the
simplexes that make up the chain will be different than 1 and will represent the values of
the function. In such a case, if we interpret the value of the function as a component of a
velocity field, the action of a cochain on the chain may be interpreted as the calculation of
power. Thus, geometric integration theory combines the classical approaches to flux theory
and the variational weak approach. An immediate benefit of using geometric integration
theory is that the analysis holds forchains inE" for all values ofr < n.

The properties of cochains that make them suitable mathematical models for Cauchy
fluxes follow firstly from the linearity of their action on chains which is common to all
Banach spaces considered above. Linearity of the action of cochains implies both the addi-
tivity and the action-interaction-antisymmetry properties assumed in various formulations
of continuum mechanics. For example, given a cocAgiwe haveT - (—A) = —T - A
Secondly, the properties of the various cochains are determined by the continuity of their
action on chains which is directly linked to the norm on the respective space of chains.
Basic observations regarding the relations between the various norms and the properties
we expect fluxes to have will described below.

4.1. Flat cochains. Flat r-cochains in E" are the elements oﬂ?(E”)*, the dual space

of A?(E"). We will see next how the topology induced by the flat norm is related to
traditional assumptions of Cauchy flux theory. We recall that in various formulations of
Cauchy’s flux theory it is assumed that the total flux is bounded by both the volume and
area of the corresponding region. That is, there are positive nurhlaeaad N, such that
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for every regionA,

[Taal < N2[dA[,  [Tyal < Ni|Al,
where we use the mass norm to denote both the area and volume of the respective sets. In
terms of a cochaif these boundedness conditions will be written as

IT-A < N2[Al, [T-0D] < Ny|DJ,
for anyr-chain A and an(r + 1)-chainD. Thus,
IT-A=|T-A-T.-9D+T-9dD|
<|IT-A—T.90D|+|T-0D|
< Ni|/A—09D]| + N2|D|
< Cr (IA-09D[+ DD,

whereCr+ is the least upper bound of all positive numbers satisfying this relation for all
(r + 1)-chainsD. The basic idea is to look at this relation as a requirement of continuity,
IT - Al < Ct||All, for the linear operatof . SinceD is arbitrary it is natural to set then

|A|b=irt1)f{|A—8D|+|D|}.

It follows that the flat norm is the smallest of all norms that make the flux operators sat-
isfying the boundedness condition continuous. As such, upon the completion of the space
of polyhedral chains with respect to the flat norm, we obtain the largest Banach space for
which the bounded flux operators are continuous. This means that flat chains are the most
general geometrical objects for which the action of bounded flux operators is continuous.
Conversely, if we consider norms |* on the space of polyhedral chains and wish to
consider the action of a continuous flux functiodalthen, |T - A] < Ct|A]*. If one
requires thatAl* < |A] and|dD|* < |D|, for anyr-chain A and(r + 1)-chainD, then
the boundedness conditions are implied by continuity because

IT- Al <Cr]A* <Cr|Al, and |T-38D|<Crl|dDI* <Cr|D].
In order to admit the most general flux operators that satisfy these conditions we need the

largest norm such thafA|* < |A] and|dD|* < |DJ. Indeed it can be shown that the flat
norm is the largest norm satisfying these two conditions.

4.2. Sharp cochains. Sharpr-cochainsin E" are elements oﬁ?(E”)*, the dual the space
of Aﬁ(E”). Since flat chains form a Banach subspaca,%(fE”), every sharp cochain may
be restricted to flat chains. In other words, any sharp cochain is also flat.
The additional property of sharp cochains that distinguishes them from flat cochains is
the boundedness under translation. Given a sharp codhaiansider for am-cell o and
a vectorv, the difference in the flux due to the translationiyy.e.,|T -0 — T - trang o|.
The continuity ofT implies that

IT-o0 —T-trans o| < Ctlo —trans o |*
|lo||v]
T
by choosingv1 = 0 andvy, = —uv in the definition of the sharp norm. Thus, continuity
implies that there is a positidz such that

<C

IT-o—T-trang o| < Nz|o||v].

In particular, the difference tends to zero if so does the magnitude Glearly, this im-
poses a regularity restriction on sharp cochains. In analogy with flat chains, the sharp norm
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is the smallest of all norms for which all the flux operators satisfying the earlier bounded-
ness conditions and boundedness under translation are continuous. Hence, in comparison
with all other norms, it allows more elements to be added to the space of polyhedral chains
in the process of completion.

Conversely, if we consider nornis |* on the space of polyhedral chains and wish to
consider the action of a continuous flux functioalthen, |T - A] < Ct|A]*. If one
requires thatAl* < |A|, |0D|* < |D| and|o — trans, o |* < |o||v], for everyr-chain A,

(r + 1)-chainD, r-cell o, and vectomw, then the boundedness conditions are implied by
continuity. For example, boundedness under translation is implied by

IT-oc —T-trang o| < Ct|o —trang o|* < Ctlo||v].

In order to admit the most general flux operators that satisfy these three conditions we need
the largest norm satisfying them. Indeed it can be shown that the sharp norm is the largest
norm satisfying the conditions.

4.3. Natural cochains. A k-natural r-cochain is an element of4¥*, the dual space of

AF. Since the natural norms |uk are smaller than the flat norm fé&r > 0, all natural
cochains are flat cochains. In fact, we will see later that natural cochains are very regular.
It is a basic guiding principle in geometric integration that as chains become increasingly
irregular the cochains become increasingly regular.

5. REPRESENTATION OF COCHAINS
THE ISOMORPHISM THEOREM AND FLUXES

5.1. The Cauchy mapping. The Cauchy mapping ofdirections induced by ancochain

is completely analogous to the mapping that gives the dependence of the flux density on
the unit normal in classical continuum mechanics, hence the terminology we use. Let the
r-direction @ of anr-cell o be ther-vector{c}/|o|. TheCauchy mapping DT, associated

with the cochairil is defined to be the function of points andlirections such that

. gj
Dr(p,o) = lim T . —,
imoo ol
whereg; is a sequence af-cells containingp with r-directiona such that

lim diam(cj) = 0.

I —>00

As ther-directiona is the analog of the unit normal used in continuum mechanics,
the analog of Cauchy’s flux theorem will be the assertion that the restriction of the Cauchy
mapping to each poirt may be extended to a linear mapping efectors. In other words,
Dt isaforminE".

5.2. The representation theorem for sharp fluxes.The analog to Cauchy’s flux theorem
in Whitney’s geometric integration theory for sharp cochains states the following.

Proposition 5.1. For each sharp-cochainT, the Cauchy mappin®t may be extended
to a unique -form that represents by

T-A:/DT,
A

for every polyhedral chair\.
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Clearly, the proposition defines the integral of a form over a sharp chain by continuity.
Whitney's theory determines exactly the forms that represent sharp cochainshahe
forms. Firstly, the norm| - |o is defined orV" by

Itlo = sup{|w - «| | & simple, |a| = 1}.
The sharp norm of the formis defined by
Iv@ ~ =(Po)
Iq — pl

Then, asharp formis defined to be a form whose sharp norm is finite. Thus, sharp forms
are bounded Lipschitz forms. Using the norm topology on the space of cochains where

ITI* = sup [T - Al
|AlF=

7F = sup {Iz(P)lo. ¢ + D)
p.qeE"

it can be shown that the previous proposition defines an isomorphism of the Banach space
of sharp cochains and the Banach space of sharp forms.

5.3. Representation of flat cochains.While sharpr-cochains are regular enough to be
represented uniquely by shargforms, flatr-cochains are less regular, and each iffat
cochain is represented by an equivalence classfofms which satisfy certain regularity
conditions. Sharp forms representing sharp cochains are continuous and Riemann inte-
gration may be used. The representation of flat cochains by forms uses the analogous
Lebesgue integration.

The Lebesgue integral of anr -form over a flar -chain A = lim” A; is defined by

/Ar:nm/Aif

if the limit exists. (The integrals on the right-hand side are Lebesgue integrals on polyhe-
dral chains defined earlier.)

The analysis of the representation of flat cochains by forms requires more attention then
the sharp counterpart. For example, in the definition of the Cauchy mapping

Dr(p,@) = lim T - i,
i—o0 |oi |

it is required that in the converging sequerieg, each of the simplexes will contaimas
a vertex. It turns out that for eachdirectiona, Dt (p, «) is defined almost everywhere.
Wolfe's representation theorem as formulated by Whitney [23, p. 261] for flat cochains
states as follows.

Proposition 5.2. Let T be a flatr-cochain in an open sé&® c E". Then, there is a set
Q C R, with [R — Q] = 0, such that for eaclp € Q, Dt (p, @) is defined for allr -
directionsw, and is extendable to allvectors, giving am-covectorDt (p). Ther-form
D is bounded and measurableRn For anyr -simplexs in R, Dt is a measurable-form
relative to the plane of and
T.-0= / Dt.
o

In fact, one can describe exactly tat forms—those forms that represent flat cochains.
The exact conditions such that any ftatorm is associated with a unique flatcochain
use the notions of)-good simplexes andhssociation of a form with a flat cochain. In
order to avoid the technical details and since we are mainly interested in the existence of
the representing forms, these notions will not be presented here (see [23, pp. 263—-266] for
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the details). As one would expect, a flat cochain is associated with an equivalence class
of forms under equality almost everywhere. The quotient space of flat forms obtained by

identifying forms that are equal almost everywhere together with an appropriate norm, the

flat norm of forms, is isomorphic to the space of flat cochains.

5.4. Representation of natural cochains.As mentioned earlier, natural cochains are reg-
ular. Harrison’s representation theorem states thalt fer0 everyk-natural cochairT is
represented by a unique differential folby as

T-A:/DT.
A

where the firsk derivatives ofDt are bounded and thHeth derivative is Lipschitz. In

fact, this relation defines an isomorphism of the of the spa&eraftural cochains and the
space of differential forms having this degree of smoothness (equipped with the suitable
ckLP_norm).

6. COBOUNDARIES AND DIFFERENTIAL BALANCE EQUATIONS

Coboundaries generalize exterior differentiation and their definition is purely algebraic.
Thecoboundary dT of anr-cochainT is the(r + 1)-cochain defined by

dT-A=T:9A,

i.e., it is the dual of the boundary operator for chains.oA$A) = 0, one hasl(dT) = 0.
The basic result concerning coboundaries is that the coboundary of a flat cochain is flat and
the same holds for the coboundary of a sharp cochain. This implies a very general formu-
lation of the balance equation. For a cochaithat is either sharp or flat, the coboundary
exists as a flat cochain and we may defingra# 1)-cochainS, satisfyingdT + S= 0, so
the balance equatio®- A+ T - 9 A = 0 holds. HereSis interpreted as the cochain giving
the rate of change of total amount of the propé®tin the flat(r + 1)-chain A (assuming
there is no source term).

If the form Dt representing the cochaih is differentiable, then the flat forrDgt
representingl T is given as the exterior derivative 8fr as one would expect, i.e.,

Dgr = dDr.

Thus, usingr for Dt, the abstract balance equation above assumes the form

dr +b =0, fb+[ T =0.
A A

In the more general case wheres an arbitrary flat form representing the flat cochiijn
dT is a flat cochain and hence it may be represented by any flatdgriim the equivalence
class ofDg7. Thus, one may write the “differential” balance in the general situation of flat
cochains. In fact,

T’ = sgpuDT(p)L |Dat (P)I}-

The right-hand side of this identity is the flat norm of the fobm.

In the particular case whefleis a sharp cochain represented by the sharp toemDr,
the functions giving the componentsofire Lipschitz mappings, hence, it has an analytic
exterior derivativedr as in Subsection 2.5 almost everywhere. Furthermore, it turns out
thatdpr = dr almost everywhere.
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6.1. Coboundaries for natural cochains. The fact that the boundary operator is contin-
uous for natural chains allows the definition of the coboundary operator as the dual of the
boundary operator. For natural cochains, oneDgs = dD+. It is noted that for natu-
ral cochains one may use a geometric definition of the exterior derivative as follows. Let
p be a point andr anr -direction, then taking a decreasing sequence-simplexes(oj)
containingp, all of which are in the direction af, then

hmr

dr(p, ) = lim .

loi|—>0 o]

Thus, the balance equation holds pointwise.
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