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CAUCHY’S FLUX THEOREM
IN LIGHT OF GEOMETRIC INTEGRATION THEORY

G. RODNAY AND R. SEGEV

ABSTRACT. This work presents a formulation of Cauchy’s flux theory of continuum me-
chanics in the framework of geometric integration theory as formulated by H. Whitney and
extended recently by J. Harrison. Starting with convex polygons, one constructs a formal
vector space of polyhedral chains. A Banach space of chains is obtained by a completion
process of this vector space with respect to a norm. Then, integration operators, cochains,
are defined as elements of the dual space to the space of chains. Thus, the approach links
the analytical properties of cochains with the corresponding properties of the domains in an
optimal way. The basic representation theorem shows that cochains may be represented by
forms. The form representing a cochain is a geometric analog of a flux field in continuum
mechanics.

1. INTRODUCTION

The Cauchy Theorem for the existence of stresses and fluxes is one of the fundamental
results of continuum mechanics. Over the years, research work contributed to the subject
by making the proof more rigorous, by weakening the postulates needed to prove the theo-
rem, by extending the circumstances under which it is valid, and by proving the existence
of stresses and fluxes using alternative methods and approaches.

In terms of scalar fluxes in space, the basic notions of flux theory may be described
as follows. One considers the total fluxT (∂ B) of an extensive propertyP through the
boundary∂ B of the regionB in a three dimensional Euclidean space. The total flux is
assumed to be given as an integral of the flux densitytB associated with the regionB, a
scalar field defined on∂ B, in the form

T (∂ B) =
∫

∂ B
tB d A.

The dependence of the flux densitytB on the regionB is considered next and it is assumed
that at each pointp, tB(p) depends onB only through the unit normal vectorn to ∂ B at
p so one writest (p, n) for the corresponding value. Then, one assumes that the total flux
is balanced by the rate of decrease of the total amount of the propertyP in B as given in
terms of an integral of a scalar fieldb over B so∫

∂ B
tB d A = −

∫
B

b dV .

Assuming that the dependence oft (p, n) on p is continuous one proves Cauchy’s theorem
asserting thatt (p, n) depends linearly onn. Thus, there is a vector fieldτ such that
t = τ · n, where the dependence onp was suppressed in the notation.

Considering smooth regions such that Gauss’ theorem may be applied, the balance may
be written in the form of a differential equation as divτ + b = 0.

Key words and phrases. Continuum mechanics, flux, Cauchy’s theorem, geometric integration, chains,
cochains, flat, sharp, natural. 1991/95 Math. Subject Class. 73A05, 58A05.
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The first major contribution within the continuum mechanics community was made by
Noll in 1957 [11]. Noll was able to prove the dependence of the flux on the normal vector,
using a weaker assumption of locality, namely, the flux densitytB(p) is equal for two
regions if the intersection of their boundaries contains an open neighborhood ofp.

Gurtin and Williams in [5] and later works [12, 6, 13] use alternative assumptions,
bi-additivity and boundedness, to obtain both locality and the representation of total flux
in terms of the integral of a flux density. Specifically, assuming that the collection of
admissible regions has the structure of a Boolean lattice, it is required thatT be given in
terms of a mapping of pairs of bodiesI (A, B), soT (A) = I (A, B) if B is the complement
of A. For separate (disjoint) domainsA and B, I satisfiesI (A � B, C) = I (A, C) +
I (B, C) and I (C, A � B) = I (C, A) + I (C, B). Then, it is assumed that|I (A, B)| ≤
l area(∂ A∩∂ B)+k volume(A)—the boundedness assumption—to obtain locality. To prove
Cauchy’s theorem it is assumed also thatI (A, B) = −I (B, A) and that the dependence of
τ(p, n) on p is continuous.

In [4] Gurtin and Martins prove the linearity inn of t (p, n) almost everywhere, while
using similar additivity and boundedness assumptions but relaxing the hypothesis that
t (p, n) is a continuous function ofp.

In [20, 21] Šilhav́y uses a weak approach to prove the existence of stress tensors or
flux vectors. Admissible bodies are sets of finite perimeter inEn , and the assumptions
and results pertain to “almost every subbody” in a way which allows singularities. The
resulting flux vectorτ has anL p weak divergence.

Degiovanni et al. [1] generalize [20, 21] by considering flux mappingsT whose corre-
sponding flux vector fieldsτ are only locally integrable. The fieldb = − div τ is mean-
ingful only in the weak sense.

In order to present results that hold for domains and flux fields that are increasingly
irregular, the works cited above rely on geometric measure theory of Federer [2] and de
Giorgi (see [14]). For example, tools of geometric measure theory are used for choosing
a universe of bodies, for a measure theoretic definition of the normal vector, and for using
generalizations of Gauss’ theorem to such irregular domains.

Another approach for proving Cauchy’s theorem directly from an integral balance equa-
tion is introduced in [3]. In this paper a variational approach it taken to prove the linear
dependence on the normal starting from a weaker locality postulate.

Stress theory for manifolds that are not equipped with a metric is presented in [15] from
a weak point of view. Forces are defined as elements of the dual space of the Banach space
of Ck-sections of a vector bundle over the body. Stresses are Borel measures valued in
the dual of a jet bundle and they represent forces using a representation theorem. Further
analytical aspects of the theory are presented in [18]. In particular, as the theory introduces
continuum mechanics of orderk as corresponding to the space ofCk-sections, general
consistency conditions that are analogous to Cauchy’s postulates are formulated for arbi-
trary values ofk and for stresses as irregular as Borel measures. In [16], and the following
[19] and [17] the analog of the classical Cauchy theorem is presented for differentiable
manifolds.

In 1947 and 1948 Whitney [22] and Wolfe [24] presented a geometric theory ofr -
dimensional integration in ann-dimensional Euclidean space. A comprehensive treatment
[23] of the theory was published by H. Whitney in 1957. While geometric measure theory
received a lot of attention because of its relevance to the Plateau problem, the mathemat-
ical work continuing Whitney’s geometric integration theory is limited. In [7] and the
following [8, 9, 10] J. Harrison made important extensions to Whitney’s work. To the best
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of our knowledge, Whitney’s abstract geometric integration theory was never used in the
formulation of Cauchy flux theory in continuum mechanics.

It is our objective here to present the Cauchy flux theory from the point of view of geo-
metric integration. In addition to offering a different approach to flux theory, the following
features make it eminently suitable. Firstly, the theory considers various aspects namely,
the collection of domains, integration, Stokes’ theorem (the analog of Gauss’ theorem),
and fluxes, from a unified point of view. The properties and degrees of regularity of the
various variables are linked. Thus, one may consider less regular domains if one is willing
to consider smoother fluxes. In fact, the regions may be as irregular as the Dirac measure
and its derivatives if one is willing to admit differentiable flux fields. On the other hand,
the flux fields may be as irregular as essentially bounded and measurable functions when
the boundaries are as irregular as the graph of anL1-mapping. The way the theory is con-
structed, the relation between the regularity properties of domains and fluxes is optimal in
the following sense. The class of domains is the largest class for which the evaluation of
the various fluxes is continuous. Conversely, the class of fluxes is the largest class such
that the total fluxes depend continuously on the domains.

The codimension,n −r , is not limited to the value of 1 as in regular Cauchy flux theory.
It follows that the theory may be used to formulate flux theory on membranes, strings etc.
Furthermore, the theory does not require that ther -dimensional domains be smooth. In
fact, it permits for example the calculation of flux through a 1-dimensional “arc” on a 2-
dimensional domain inR3 which is itself the graph of anL1-mapping. In other words,
not only the boundary is irregular, but so is the domain itself. Finally, the construction
of continuous chains creates a bridge between the classical and weak formulation of the
theory.

The elegance of the structure enables its description in just a few sentences. One
starts with the building blocks,r -dimensional oriented cells (convex polygons) in ann-
dimensional Euclidean spaceEn . Then, the formal vector space of linear combinations of
r -cells is considered, where two linear combinationsA and B are identified if they may
be further subdivided to obtain a common subdivision. The elements of this vector space
are called polyhedralr -chains. Then, the space of polyhedral chains is completed with
respect to a norm to obtain a Banach space. The elements of the resulting complete space
are called either flat, sharp, or naturalr -chains depending on the norms used, and chains
collectively. Integration operators are referred to asr -cochains and they are defined as
continuous linear operators on the space of chains.

The application of geometric integration theory to Cauchy flux theory is based on the
identification of a total flux operator on regions with a cochain. In other words, a cochain is
analogous to a total flux operator acting on the various domains to produce real numbers.
In the case of traditional continuum mechanics, the total flux is regarded a 2-cochain in
E3. The analog of Cauchy’s flux theorem is a representation theorem stating that a cochain
may be represented by anr -form, an antisymmetricr -tensor inEn , using integration. As
mentioned earlier, the analytical properties of chains and forms representing cochains are
determined by the norm used. The topology on the space of chains allows one to extend
various operations, e.g., integrals and boundaries, from polyhedral chains to the chains
obtained as limits of sequences.

Federer [2, pp. 367–378] introduces flat chains as currents, roughly, continuous linear
functionals on the space of smooth forms with compact supports—the geometric analogs
of Schwartz distributions, and defines the flat norm as the norm induced on the dual space
by the norm‖φ‖ = supp{|φ(p)|, |dφ(p)|} on the space of smooth forms. While Federer’s
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treatment of flat chains is concise and elegant, it does not contain the analogs for sharp
and natural chains. In addition, it seems to us that Whitney’s approach is closer in spirit
to the traditional approach of continuum mechanics. Furthermore, as Federer states in [2,
p. 378] his main interest has been in chains while Whitney’s main concern has been with
cochains—the objects representing Cauchy fluxes of continuum mechanics.

It is noted that the expression for the representation of cochains in terms of forms also
applies on general manifolds rather than a Euclidean space. In addition, while the defini-
tions of the various norms utilize the metric structure ofEn , the various topological spaces
of chains remain invariant under diffeomorphisms. This suggests an extension of the theo-
ries to general manifolds. However, a formal presentation of such a theory is not available
yet and will not be considered here.

Thus, the basic constructions, results, and applications to Cauchy flux theory are de-
scribed below. For details of the mathematical constructions and proofs see [23] and
[8, 9]. We start in Section 2 with the basic building blocks: polyhedral chains and in-
tegration on polyhedral chains. Section 3 considers the construction of the various Banach
spaces of chains and Section 4 presents the definitions and basic properties associated with
cochains—the analogs of the Cauchy flux operators. The Cauchy theorem of fluxes is im-
plied by the representation theorem of cochains by forms as presented in Section 5. Finally,
Section 6 considers the extension of the exterior derivative to non-smooth forms through
the notion of a coboundary, and the resulting local balance equation.

2. CHAINS AND INTEGRATION

2.1. Cells and polyhedral chains.We start with a review of the basic definitions related
to integration on chains in ann-dimensional Euclidean spaceEn whose associated vector
space isV . A cell, σ , is a non empty bounded subset ofEn expressed as an intersection of
a finite collection of half spaces. Theplane of σ is the smallest affine subspace containing
σ , and thedimension of σ is the dimension of its plane. We refer tor -dimensional cells as
r -cells.

An oriented r -cell is anr -cell with a choice of one of the two orientations of the vector
space associated with its plane. The cell−σ is the cell that contains the same points as
σ but has the opposite orientation. Theboundary of an orientedr -cell, ∂σ , is a collection
of oriented(r − 1)-cells. The boundary of a 1-cell consists of two points, and 0-cell has
no boundary. The orientations of the cells that make up the boundary∂σ are determined
by the orientation ofσ , in the following way. Given a cellσ ′ ⊂ ∂σ , let v2, . . . , vr be a
collection ofr − 1 independent vectors that belong to the plane ofσ ′. Then, this collection
is positively oriented if given a vectorv1 at σ ′ that belongs to the plane ofσ and points
out ofσ , the collection(v1, . . . , vr ) is positively oriented relative toσ . The boundary of a
1-cell oriented by the vectorpq, consists of the two 0-cellsq positive andp negative.

Oriented cells are the building blocks of chains. Apolyhedral r-chain in En is an
element of the vector space spanned by formal linear combinations ofr -cells, together
with the following properties. 1) The polyhedral chain 1σ is identified with the cellσ . 2)
We associate multiplication of a cell by−1 with the operation of inversion of orientation,
i.e., −1σ = −σ . 3) If an oriented cellσ is cut into several cells,σ1, . . . , σm , thenσ

andσ1 + . . . + σm are identified as polyhedral chains. Thus, we identify the union of
orientedr -cells having disjoint interiors with the polyhedralr -chain which is the sum of
ther -cells. Polyhedral 0-chains are expressions of the form

∑
ai pi , wherepi are points.

The boundary of a cell is thus a chain, the sum of the various oriented cells that make up
the boundary as above.
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The space of polyhedralr -chains inEn is now an infinite-dimensional vector space
denoted byAr (En). Theboundary of a polyhedral r-chain A = ∑

aiσi , is a polyhedral
(r − 1)-chain defined to be∂ A = ∑

ai∂σi . The boundary of a polyhedral 0-chain is 0.
Note that by this definition∂ is a linear operatorAr (En) −→ Ar−1(En).

2.2. Multivectors. A simple r-vector in V is defined in a formal way, to be an expression
of the formv1 ∧ · · · ∧ vr , wherevi ∈ V , the vector space associated withEn . We setr -
vectors in V to be elements of the vector spaceVr of formal linear combinations of simple
r -vectors, together with the following properties:

(1) v1 ∧ · · · ∧ (vi + v′
i ) ∧ · · · ∧ vr

= v1 ∧ · · · ∧ vi ∧ · · · ∧ vr + v1 ∧ · · · ∧ v′
i ∧ · · · ∧ vr ;

(2) v1 ∧ · · · ∧ (avi ) ∧ · · · ∧ vr = a(v1 ∧ · · · ∧ vi ∧ · · · ∧ vr );
(3) v1 ∧ · · · ∧ vi ∧ · · · ∧ v j ∧ · · · ∧ vr

= −v1 ∧ · · · ∧ v j ∧ · · · ∧ vi ∧ · · · ∧ vr .

1-vectors are just vectors, and 0-vectors are defined to be real numbers. It is noted that any
r -vector can be written in various equivalent ways. The various identifications above, in
particular the antisymmetry, imply that dimension of the space ofr -vectors is

dim Vr = n!
(n − r)!r ! ,

wheren is the dimension ofV . If r > n thenVr is empty. Given a basis{ei } of V , the
r -vectors{eλ1...λr = eλ1 ∧ · · · ∧ eλr }, such that 1≤ λ1 < · · · < λr ≤ n, form a basis of
Vr .

Given an orientedr -simplexσ in En , with verticesp0 . . . pr , ther -vector of σ , denoted
by {σ }, is defined to be{σ } = v1 ∧ · · · ∧ vr/r !, where the vectorsvi are defined by
vi = pi − p0 and are ordered in such a way that they belong to the orientation ofσ . It is
noted that in case{σ1} = a{σ2} for two r -simplexesσ1 andσ2, then, the ratio between the
r -dimensional volumes of the two simplexes relative to any metric is|a|. Ther-vector of a
polyhedral r-chain A = ∑

aiσi , where
∑

aiσi is a simplicial subdivision ofA, is defined
by

{∑
aiσi

} = ∑
ai {σi }. Clearly, this defines ther -vectors ofr -cells too, asr -cells are

particular polyhedralr -chains.

2.3. Multi-covectors. The dual space ofVr is denoted byV r and its elements are referred
to asr -covectors. We now show howr -covectors can be expressed using covectors. We
denote byV ∗ the dual space ofV , and byV ∗

r the space which is constructed exactly like
the spaceVr , but using the (co-) vectors ofV ∗. Hence, elements ofV ∗

r are expressions of
the form

∑
ai f i1 ∧ · · · ∧ f ir , where f i j ∈ V ∗. Thescalar product of elements ofV ∗

r and
elements ofVr is defined by

( f 1 ∧ · · · ∧ f r ) · (v1 ∧ · · · ∧ vr ) =
∑
λ

ελ1...λr f 1(vλ1) · · · f r (vλr )

= det

 f 1(v1) · · · f 1(vr )

· · · · · · · · ·
f r (v1) · · · f r (vr )

 ,

for simple vectors, and extends linearly to the vector spaces. Here,λ = {λ1, . . . , λr }
ranges over the set of all permutations of(1, . . . , r), andελ1...λr is the alternating symbol.
Any elementτ̄ of V ∗

r may be identified with an elementτ of V r by τ(α) = τ̄ · α for
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anyr -multivectorα. Furthermore, an elementτ of V r may be regarded as an alternating
multilinear formτ̃ by

τ(v1 ∧ · · · ∧ vr ) = τ̃ (v1, . . . , vr ).

2.4. Integration of forms over polyhedral chains. The natural integrands overr -chains
arer -forms. Anr -form in a setQ ⊂ En is anr -covector valued mapping defined inQ. An
r -form is continuous if its components are continuous functions. TheRiemann integral of
a continuousr -form τ over anr -simplexσ is defined as∫

σ

τ = lim
k→∞

∑
σki ∈Skσ

τ (pki ) · {σki },

whereSkσ is a sequence of simplicial subdivisionsσki of σ with mesh→ 0, and eachpki

is a point inσki . The Riemann integral of a continuousr -form over a polyhedralr -chain
A = ∑

aiσi , is defined by
∫

A τ = ∑
ai

∫
σi

τ , where
∑

aiσi is a simplicial subdivision of
the polyhedral chainA.

An r -form in En is bounded and measurable if all its components relative to a basis of
V are bounded and measurable. TheLebesgue integral of anr -form τ over anr -cell σ is
defined by ∫

σ

τ =
∫

σ

τ (p) · {σ }
|σ | dp,

where|σ | is ther -dimensional volume ofσ and the integral on the right is a Lebesgue
integral of a real function. This is extended by linearity to domains that are polyhedral
chains by ∫

A
τ =

∑
ai

∫
σi

τ ,

if A = ∑
i aiσi .

2.5. Stokes’ theorem for polyhedral chains.Theexterior derivative of a differentiable
r -form τ is an(r + 1)-form dτ defined by

dτ(p) · (v1 ∧ · · · ∧ vr+1) =
r+1∑
i=1

(−1)i−1∇vi τ(p) · (v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vr+1),

wherêvi denotes a vector that has been omitted, and∇vi is a directional derivative operator.
The last definition is represented using coordinates by

(dτ)λ1...λr+1(p) =
r+1∑
i=1

(−1)i−1 ∂

∂xi
τ
λ1...λ̂i ...λr+1

(p).

Stokes’ theorem for polyhedral chains, based on the fundamental theorem of differential
calculus, states that ∫

A

dτ =
∫
∂ A

τ

for every differentiabler -form τ and an(r + 1)-polyhedral chainA.
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3. BANACH SPACES OF CHAINS

3.1. Flat chains. The mass of a polyhedralr -chain A = ∑
aiσi in En is defined to be

|A| = ∑ |ai ||σi |, where|σi | denotes the ther -dimensional volume of|σi |. Thus, in case
the interiors of the cellsσi of a polyhedralr -chain do not intersect, and ifai = 1, then the
mass of the polyhedral chain is exactly itsr -dimensional volume.

Definition 3.1. Theflat norm, |A|�, of a polyhedralr -chainA in En is defined by

|A|� = inf{|A − ∂ D| + |D|},
using all polyhedral(r + 1)-chainsD.

We note that it is not immediate that| · |� is indeed a norm. Furthermore, the actual
calculation of the the flat norm may be quite complicated even for simpler -chains. (For
example, consider a 1-chain in the plane consisting two oriented line segments.) Taking
D = 0 above, it is clear that|A|� � |A|.

Completing the spaceAr (En) with respect to the flat norm gives a Banach space de-
noted byA�

r (En). That is,A�
r (En) contains the formal limits of all the sequences of

polyhedralr -chainsAi , such that limi→∞ |Ai+1 − Ai |� = 0. Elements ofA�
r (En) which

are limits of such sequences are sometimes denoted by lim� Ai . We refer to elements of
A�

r (En) asflat r -chains inEn . If there are no intersections between cells and all coeffi-
cients have the value of 1, we identify the flat chain with the set that contains its points.

Example 3.2. Consider the sequence of 1-chains(Ai ) in E2 such thatAi = L1i + L2i

whereL1i andLi2 are 1-simplexes associated with two parallel line segments having the
same lengthL, opposite orientation, and the line segment corresponding toL2i is obtained
from the line segment corresponding toL1i by a translation of distancedi perpendicularly
to its direction. If we take the rectangle generated by the two line segments asDi in the
definition of the flat norm, it follows that|Ai |� � (L +2)di . Thus, ifdi → 0, the sequence
(Ai ) converges to the zero chain in the flat norm. On the other hand, in the mass norm we
have|Ai − Ai−1| = 2L for all i so the sequence does not converge. Roughly speaking, the
geometrical significance of the flat norm is that, unlike the mass norm, it takes into account
how closely the two segments are located.

If we let the length of the line segments shrink also so that forAi , L = di , then by
taking Di as above we get|Ai |� � d2

i + 2di while takingDi = 0, implies|Ai |� � 2di so
|Ai |� → 0 asdi .

Example 3.3. Consider the “staircase” sequence(Bi ) shown in Fig. 1. Here,

A j =
2 j−1∑
l=1

A jl

is the sum of 2j−1 oriented 1-squares of sized j = 1/2 j , Bi = B0+∑i
j=1 A j , and we take

the limit asi → ∞. Set for each squareA jl , the cellD jl such thatA jl = ∂ D jl . Then,
usingD jl in the definition of the flat norm we get|A jl |� � d2

j = 2−2 j . Hence,

|Bi − Bi−1|� = |Ai |� � 2i−12−2i ,

so the sequence(Bi ) converges.

Flat chains may be used to represent continuous and smooth submanifolds ofEn and
even irregular surfaces as shown above. As another example, starting with a triangle onR

2
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B0 A1 A2

A3 B3

The dashed lines are for reference only.

FIGURE 1. The staircase.

one may construct a plane inR3 by mapping the vertices using the values at the vertices of
a real valued functionu on R

2. One may subdivide the triangle and map the new vertices
again using the mappingu to construct a piecewise flat surface inR

3 approximating the
graph ofu. This procedure may be repeated to construct a sequence of 2-chains. If for the
functionu one uses a continuous function that is nowhere differentiable one obtains a flat
chain that represents a surface that is not rectifiable.

TheRiemann integral of a continuous r-form τ over a flatr -chainA = lim Ai , is defined
to be

∫
A τ = lim

∫
Ai

τ , if the limit exists.

Theboundary of a flat (r + 1)-chain A = lim� Ai , is defined to be∂ A = lim ∂ Ai . The
boundary of a flat(r + 1)-chain always exists as a flatr -chain.

3.2. Sharp chains. Whitney obtained chains that are even less regular then the flat chains
by introducing a possibly smaller norm. Thus, more Cauchy sequences will converge and
one ends up with a larger completed space.

Definition 3.4. Thesharp norm |A|	 of a polyhedralr -chainA = ∑
aiσi is defined by

|A|	 = inf

{∑ |ai ||σi ||vi |
r + 1

+
∣∣∣∑ ai transvi σi

∣∣∣�} ,

using all vectorsvi ∈ En , where transv is a translation operator that moves each pointp of
σ to p + v, giving a translated cell transv σ with the same orientation asσ .

Clearly, setting allvi = 0, we conclude that|A|	 � |A|� so the sharp norm defines
a coarser topology. Completing the spaceAr (En) with respect to the sharp norm gives
a Banach space denoted byA	

r (En) whose elements are referred to assharp chains. It
follows thatA�

r (En) is a Banach subspace ofA	
r (En).

Example 3.5. Consider again the sequence of pairs of 1-vectors inR
2 of lengthdi situated

a distancedi apart as above. Takingv1 = 0, andv2 as the vector such that transv2 will
cause the two line segments to overlap so|v2| = di , we have|Ai |	 � d2

i /2. Hence, for
di → 0, the sharp norm of the shrinking pairs tends to zero faster than the flat norm.
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Consider the “staircase strainer” sequence(Bi ) constructed in the unit square as shown
in Fig. 2. Here,A j is the sum of 2j−1 pairs of sized j = 1/2 j , Bi = B0 + ∑i

j=1 A j , and
we take the limit asi → ∞. For the flat norm we have

|Bi − Bi−1|� = |Ai |� � 2i−12/2i = 1,

so the sequence(Bi ) does not converge. On the other hand, for the sharp norm

|Bi − Bi−1|	 = |Ai |	 � 2i−1(1/2i )2/2 = 2−i/4,

and the sequence converges. Thus, we will be able to calculate the total flux through the
staircase strainer limit. (The extensive property under consideration may flow through the
strainerBi at the horizontal segments only.)

=+

+ +

B0 A1 A2

A3 B3

The dashed lines are for reference only.

FIGURE 2. The staircase strainer

Similarly, the “staircase mixer” sequence shown in Fig. 3 converges in the sharp norm
but not in the flat norm.

Roughly speaking, the difference in behavior between the flat norm and the sharp norm
may be described as follows. Consider a sequence(Ai ) of shrinkingr -polyhedral chains
of typical sizesi → 0. If Ai is the boundary∂ Bi of a shrinking(r + 1)-chain Bi , then
taking D = Bi in the definition of the flat norm,|Ai |� shrinks likesr+1

i . If Ai cannot be
represented as the boundary of an(r + 1)-chain, ther -dimensional mass of some subset of
Ai will always be present in the definition of the flat norm and hence|Ai |� will shrink like
sr

i only. On the other hand, for the sharp norm, if one can cancel the flat norm of a chain
by translating simplexes by vectors of the same order of magnitude assi , then the price to
pay in the definition of the sharp norm is bounded bysr+1

i whetherAi is the boundary of
another chain or not.

The Riemann integral of a continuous r-form τ over a sharpr -chain A = lim Ai , is
defined to be

∫
A τ = lim

∫
Ai

τ , if the limit exists.
It is noted that being less regular than a flat chain, the boundary of a sharp chain need

not exist as a sharp chain.
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The dashed lines are for reference only.

FIGURE 3. The staircase mixer

3.3. Natural chains. A basic notion of Harrison’s constructions is that of a dipole. A
simple r-dimensional 0-dipole is anr -simplexσ 0 whose diameter diam(σ 0) � 1. A simple
r -dimensional 1-dipole is a chain of the formσ 1 = σ 0 − transv1 σ 0 for a vectorv1, such
that |v1| � 1, and transv1 σ 0 is disjoint from σ 0. Inductively, a simpler -dimensional
j-dipole is anr -chain of the formσ j = σ j−1 − transv j σ j−1, whereσ j−1 is a simple
r -dimensional( j − 1)-dipole, andv j is a vector with|v j | � 1 such that transv j σ j−1 is
disjoint fromσ j−1. A simple j-dipole is therefore determined by the simplexσ 0 and the
v1, . . . , v j vectors. A j -dipole is a simplicial chain

D j =
∑

i

aiσ
j

i

of simple j-dipoles.
Given a simplej-dipoleσ j constructed by the simplexσ 0 and vectorsv1, . . . , v j , its

j -dipole mass is defined by
|σ j | j = |σ 0||v1| · · · |v j |

(|σ 0| is the mass ofσ 0). The j -dipole mass of the j-dipole D j = ∑
i aiσ

j
i is defined as

|D j | j =
∑

i

|ai ||σ j
i | j .

Using the notion of a dipole and the dipole mass, thek-natural norm, k = 1, 2, . . . , on
the space of polyhedral chains is defined by

|A|
k = inf

{
k∑

s=0

|Ds |s + |C |
k−1

}
,

where the infimum it taken over all decompositions ofA in the formA = ∑k
s=0 Ds + ∂C ,

for s-dipolesDs . The Banach space one obtains by completing the space of polyhedral
chains relative to this norm is denoted byAk

r and its elements are referred to ask-natural
r-chains. Clearly, the 0-natural norm is equivalent to the flat norm. Harrison also defines
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norms associated with fractional values ofr that are related to the Ḧolder conditions but
we omit the discussion of such chains here.

As k increases, the the spaces of natural chains become larger, i.e.,Ak
r is a Banach

subspace ofAl
r for k < l. For increasing values ofk these spaces contain increasingly

irregular chains. For example, various fractals are natural chains, and thek-th distributional
derivative of the Dirac measure on the real line belongs toAk+1

1 (see [8]).
For a k-naturalr -chain A, let τ be a form onA that hask − 1 bounded derivatives

and whosek-th derivative is Lipschitz. TheRiemann integral of τ over a naturalr -chain
A = lim
 Ai , is defined to be

∫
A τ = lim

∫
Ai

τ . Indeed, Harrison shows that the limit
always exists as integrals over polyhedral chains are bounded by the natural norms of the
chains.

A clear advantage of using the natural norms in comparison with the sharp norm is
the behavior of the natural chains under the boundary operator: the boundary operator of
polyhedral chains extends to a continuous linear operator∂ : Ak

r → Ak−1
r−1.

4. COCHAINS

Cochains are elements of the dual spaces to the Banach spaces of flat, sharp, and nat-
ural chains. The basic idea of the application of Whitney’s abstract integration theory to
the analysis of Cauchy fluxes is that cochains in the various dual spaces are abstract coun-
terparts of total fluxes. Specifically, for classical continuum mechanics we regard the total
flux TA of a certain extensive propertyP through a 2-dimensional domainA in E3 as the
actionT · A of a 2-cochainT on the 2-chainA associated with the domain. For the sake
of simplicity of the notation we used here the same notation for both the domain and the
representing chain. It is noted that chains contain more information than just the domain
where they are supported. For example, any continuous function defined on a submanifold
of the Euclidean space may be represented as a chain. Obviously, the coefficients for the
simplexes that make up the chain will be different than 1 and will represent the values of
the function. In such a case, if we interpret the value of the function as a component of a
velocity field, the action of a cochain on the chain may be interpreted as the calculation of
power. Thus, geometric integration theory combines the classical approaches to flux theory
and the variational weak approach. An immediate benefit of using geometric integration
theory is that the analysis holds forr -chains inEn for all values ofr � n.

The properties of cochains that make them suitable mathematical models for Cauchy
fluxes follow firstly from the linearity of their action on chains which is common to all
Banach spaces considered above. Linearity of the action of cochains implies both the addi-
tivity and the action-interaction-antisymmetry properties assumed in various formulations
of continuum mechanics. For example, given a cochainT , we haveT · (−A) = −T · A.
Secondly, the properties of the various cochains are determined by the continuity of their
action on chains which is directly linked to the norm on the respective space of chains.
Basic observations regarding the relations between the various norms and the properties
we expect fluxes to have will described below.

4.1. Flat cochains. Flat r-cochains in En are the elements ofA�
r (En)∗, the dual space

of A�
r (En). We will see next how the topology induced by the flat norm is related to

traditional assumptions of Cauchy flux theory. We recall that in various formulations of
Cauchy’s flux theory it is assumed that the total flux is bounded by both the volume and
area of the corresponding region. That is, there are positive numbersN1 andN2 such that
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for every regionA,
|T∂ A| � N2|∂ A|, |T∂ A| � N1|A|,

where we use the mass norm to denote both the area and volume of the respective sets. In
terms of a cochainT these boundedness conditions will be written as

|T · A| � N2|A|, |T · ∂ D| � N1|D|,
for anyr -chainA and an(r + 1)-chainD. Thus,

|T · A| = |T · A − T · ∂ D + T · ∂ D|
� |T · A − T · ∂ D| + |T · ∂ D|
� N1|A − ∂ D| + N2|D|
� CT (|A − ∂ D| + |D|) ,

whereCT is the least upper bound of all positive numbers satisfying this relation for all
(r + 1)-chainsD. The basic idea is to look at this relation as a requirement of continuity,
|T · A| � CT ‖A‖, for the linear operatorT . SinceD is arbitrary it is natural to set then

|A|� = inf
D

{|A − ∂ D| + |D|}.
It follows that the flat norm is the smallest of all norms that make the flux operators sat-
isfying the boundedness condition continuous. As such, upon the completion of the space
of polyhedral chains with respect to the flat norm, we obtain the largest Banach space for
which the bounded flux operators are continuous. This means that flat chains are the most
general geometrical objects for which the action of bounded flux operators is continuous.

Conversely, if we consider norms| · |x on the space of polyhedral chains and wish to
consider the action of a continuous flux functionalT , then, |T · A| � CT |A|x . If one
requires that|A|x � |A| and|∂ D|x � |D|, for anyr -chain A and(r + 1)-chain D, then
the boundedness conditions are implied by continuity because

|T · A| � CT |A|x � CT |A|, and |T · ∂ D| � CT |∂ D|x � CT |D|.
In order to admit the most general flux operators that satisfy these conditions we need the
largest norm such that|A|x � |A| and|∂ D|x � |D|. Indeed it can be shown that the flat
norm is the largest norm satisfying these two conditions.

4.2. Sharp cochains. Sharp r-cochains in En are elements ofA	
r (En)∗, the dual the space

of A	
r (En). Since flat chains form a Banach subspace ofA	

r (En), every sharp cochain may
be restricted to flat chains. In other words, any sharp cochain is also flat.

The additional property of sharp cochains that distinguishes them from flat cochains is
the boundedness under translation. Given a sharp cochainT , consider for anr -cell σ and
a vectorv, the difference in the flux due to the translation byv, i.e.,|T · σ − T · transv σ |.
The continuity ofT implies that

|T · σ − T · transv σ | � CT |σ − transv σ |	

� CT
|σ ||v|
r + 1

,

by choosingv1 = 0 andv2 = −v in the definition of the sharp norm. Thus, continuity
implies that there is a positiveN3 such that

|T · σ − T · transv σ | � N3|σ ||v|.
In particular, the difference tends to zero if so does the magnitude ofv. Clearly, this im-
poses a regularity restriction on sharp cochains. In analogy with flat chains, the sharp norm
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is the smallest of all norms for which all the flux operators satisfying the earlier bounded-
ness conditions and boundedness under translation are continuous. Hence, in comparison
with all other norms, it allows more elements to be added to the space of polyhedral chains
in the process of completion.

Conversely, if we consider norms| · |x on the space of polyhedral chains and wish to
consider the action of a continuous flux functionalT , then, |T · A| � CT |A|x . If one
requires that|A|x � |A|, |∂ D|x � |D| and|σ − transv σ |x � |σ ||v|, for everyr -chain A,
(r + 1)-chain D, r -cell σ , and vectorv, then the boundedness conditions are implied by
continuity. For example, boundedness under translation is implied by

|T · σ − T · transv σ | � CT |σ − transv σ |x � CT |σ ||v|.
In order to admit the most general flux operators that satisfy these three conditions we need
the largest norm satisfying them. Indeed it can be shown that the sharp norm is the largest
norm satisfying the conditions.

4.3. Natural cochains. A k-natural r-cochain is an element ofAk∗
r , the dual space of

Ak
r . Since the natural norms| · |
k are smaller than the flat norm fork > 0, all natural

cochains are flat cochains. In fact, we will see later that natural cochains are very regular.
It is a basic guiding principle in geometric integration that as chains become increasingly
irregular the cochains become increasingly regular.

5. REPRESENTATION OF COCHAINS,
THE ISOMORPHISM THEOREM AND FLUXES

5.1. The Cauchy mapping. The Cauchy mapping ofr -directions induced by anr -cochain
is completely analogous to the mapping that gives the dependence of the flux density on
the unit normal in classical continuum mechanics, hence the terminology we use. Let the
r -direction α of anr -cell σ be ther -vector{σ }/|σ |. TheCauchy mapping DT , associated
with the cochainT is defined to be the function of points andr -directions such that

DT (p, α) = lim
i→∞ T · σi

|σi | ,

whereσi is a sequence ofr -cells containingp with r -directionα such that

lim
i→∞ diam(σi) = 0.

As ther -directionα is the analog of the unit normaln used in continuum mechanics,
the analog of Cauchy’s flux theorem will be the assertion that the restriction of the Cauchy
mapping to each pointp may be extended to a linear mapping ofr -vectors. In other words,
DT is a form inEn .

5.2. The representation theorem for sharp fluxes.The analog to Cauchy’s flux theorem
in Whitney’s geometric integration theory for sharp cochains states the following.

Proposition 5.1. For each sharpr -cochainT , the Cauchy mappingDT may be extended
to a uniquer -form that representsT by

T · A =
∫

A
DT ,

for every polyhedral chainA.
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Clearly, the proposition defines the integral of a form over a sharp chain by continuity.
Whitney’s theory determines exactly the forms that represent sharp cochains—thesharp

forms. Firstly, the norm| · |0 is defined onV r by

|τ |0 = sup
{|w · α| ∣∣ α simple,|α| = 1

}
.

The sharp norm of the formτ is defined by

|τ |	 = sup
p,q∈En

{
|τ(p)|0, (r + 1)

|τ(q) − τ(p)|0
|q − p|

}
Then, asharp form is defined to be a form whose sharp norm is finite. Thus, sharp forms
are bounded Lipschitz forms. Using the norm topology on the space of cochains where

|T |	 = sup
|A|	=1

|T · A|,

it can be shown that the previous proposition defines an isomorphism of the Banach space
of sharp cochains and the Banach space of sharp forms.

5.3. Representation of flat cochains.While sharpr -cochains are regular enough to be
represented uniquely by sharpr -forms, flatr -cochains are less regular, and each flatr -
cochain is represented by an equivalence class ofr -forms which satisfy certain regularity
conditions. Sharp forms representing sharp cochains are continuous and Riemann inte-
gration may be used. The representation of flat cochains by forms uses the analogous
Lebesgue integration.

TheLebesgue integral of anr -form over a flatr -chainA = lim� Ai is defined by∫
A

τ = lim
∫

Ai

τ

if the limit exists. (The integrals on the right-hand side are Lebesgue integrals on polyhe-
dral chains defined earlier.)

The analysis of the representation of flat cochains by forms requires more attention then
the sharp counterpart. For example, in the definition of the Cauchy mapping

DT (p, α) = lim
i→∞ T · σi

|σi | ,
it is required that in the converging sequence(σi ), each of the simplexes will containp as
a vertex. It turns out that for eachr -directionα, DT (p, α) is defined almost everywhere.
Wolfe’s representation theorem as formulated by Whitney [23, p. 261] for flat cochains
states as follows.

Proposition 5.2. Let T be a flatr -cochain in an open setR ⊂ En . Then, there is a set
Q ⊂ R, with |R − Q| = 0, such that for eachp ∈ Q, DT (p, α) is defined for allr -
directionsα, and is extendable to allr -vectors, giving anr -covectorDT (p). Ther -form
DT is bounded and measurable inR. For anyr -simplexσ in R, DT is a measurabler -form
relative to the plane ofσ and

T · σ =
∫

σ

DT .

In fact, one can describe exactly theflat forms—those forms that represent flat cochains.
The exact conditions such that any flatr -form is associated with a unique flatr -cochain
use the notions ofQ-good simplexes andassociation of a form with a flat cochain. In
order to avoid the technical details and since we are mainly interested in the existence of
the representing forms, these notions will not be presented here (see [23, pp. 263–266] for
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the details). As one would expect, a flat cochain is associated with an equivalence class
of forms under equality almost everywhere. The quotient space of flat forms obtained by
identifying forms that are equal almost everywhere together with an appropriate norm, the
flat norm of forms, is isomorphic to the space of flat cochains.

5.4. Representation of natural cochains.As mentioned earlier, natural cochains are reg-
ular. Harrison’s representation theorem states that fork > 0 everyk-natural cochainT is
represented by a unique differential formDT as

T · A =
∫

A
DT .

where the firstk derivatives ofDT are bounded and thek-th derivative is Lipschitz. In
fact, this relation defines an isomorphism of the of the space ofk-natural cochains and the
space of differential forms having this degree of smoothness (equipped with the suitable
Ck,Lip-norm).

6. COBOUNDARIES AND DIFFERENTIAL BALANCE EQUATIONS

Coboundaries generalize exterior differentiation and their definition is purely algebraic.
Thecoboundary dT of anr -cochainT is the(r + 1)-cochain defined by

dT · A = T · ∂ A,

i.e., it is the dual of the boundary operator for chains. As∂(∂ A) = 0, one hasd(dT ) = 0.
The basic result concerning coboundaries is that the coboundary of a flat cochain is flat and
the same holds for the coboundary of a sharp cochain. This implies a very general formu-
lation of the balance equation. For a cochainT that is either sharp or flat, the coboundary
exists as a flat cochain and we may define an(r + 1)-cochainS, satisfyingdT + S = 0, so
the balance equationS · A + T · ∂ A = 0 holds. Here,S is interpreted as the cochain giving
the rate of change of total amount of the propertyP in the flat(r + 1)-chain A (assuming
there is no source term).

If the form DT representing the cochainT is differentiable, then the flat formDdT

representingdT is given as the exterior derivative ofDT as one would expect, i.e.,

DdT = d DT .

Thus, usingτ for DT , the abstract balance equation above assumes the form

dτ + b = 0,

∫
A

b +
∫

∂ A
τ = 0.

In the more general case whereτ is an arbitrary flat form representing the flat cochainT ,
dT is a flat cochain and hence it may be represented by any flat formd0τ in the equivalence
class ofDdT . Thus, one may write the “differential” balance in the general situation of flat
cochains. In fact,

|T |� = sup
p

{|DT (p)|, |DdT (p)|}.
The right-hand side of this identity is the flat norm of the formDT .

In the particular case whereT is a sharp cochain represented by the sharp formτ = DT ,
the functions giving the components ofτ are Lipschitz mappings, hence, it has an analytic
exterior derivativedτ as in Subsection 2.5 almost everywhere. Furthermore, it turns out
thatd0τ = dτ almost everywhere.
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6.1. Coboundaries for natural cochains. The fact that the boundary operator is contin-
uous for natural chains allows the definition of the coboundary operator as the dual of the
boundary operator. For natural cochains, one hasDdT = d DT . It is noted that for natu-
ral cochains one may use a geometric definition of the exterior derivative as follows. Let
p be a point andα anr -direction, then taking a decreasing sequence ofr -simplexes(σi )

containingp, all of which are in the direction ofα, then

dτ(p, α) = lim|σi |→0

∫
∂σi

τ

|σi | .

Thus, the balance equation holds pointwise.
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[20] M. Šilhav́y. The existence of the flux vector and the divergence theorem for general Cauchy fluxes.Archive

for Rational Mechanics and Analysis, 90:195–212, 1985.



FLUXES AND GEOMETRIC INTEGRATION 17

[21] M. Šilhav́y. Cauchy’s stress theorem and tensor fields with divergences inL p . Archive for Rational Me-
chanics and Analysis, 116:223–255, 1991.

[22] H. Whitney. Algebraic topology and integration theory.Proceedings of the National Academy of Sciences,
33:1–6, 1947.

[23] H. Whitney.Geometric Integration Theory. Princeton University Press, Princeton, New Jersey, 1957.
[24] J.H. Wolfe.Tensor Fields Associated with Lipschitz Cochains. PhD thesis, Harvard, 1948.

DEPARTMENT OF MECHANICAL ENGINEERING,, BEN-GURION UNIVERSITY,, P.O.BOX 653,, BEER-
SHEVA 84105, ISRAEL,, E-MAIL : RSEGEV@BGUMAIL .BGU.AC.IL


