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Here, |σ(x)| is a the norm of the value of the stress at x . To evaluate it we use some norm on the vector space of
matrices. The value of Kt,σ clearly depends on the norm used and various norms are discussed in Section 4. Using the
essential supremum, we ignore high stresses on sets of zero volume.

Noting that without specifying particular constitutive relations there is a class Σt of stress fields that are in
equilibrium with t , we define the optimal stress concentration factor as

Kt = inf
σ∈Σt

Kt,σ . (1.2)

Next, realizing that an engineer usually does not know a-priori the nature of the loads acting on a body exactly, the
generalized stress concentration factor is defined as

K = sup
t

Kt = sup
t

 inf
σ∈Σt

ess sup
x∈Ω

|σ(x)|

ess sup
y∈∂Ω

|t (y)|

 (1.3)

where the supremum is taken over all traction fields – essentially bounded vector fields on ∂Ω – i.e., over all
t ∈ L∞(∂Ω ,R3). It is noted that K is a purely geometric property of the body Ω .

In [2,3] we related the generalized stress concentration factor to the norms of the trace mappings on Sobolev
spaces and L D-spaces. It turns out that for the formulation of equilibrium and stress theory, particularly in the context
of stress concentration, the Sobolev space W 1

1 (Ω ,R
3) and the related L D(Ω) space are especially useful. We recall

that the space L D(Ω) contains integrable vector fields w such that the components of their associated stretching, or
(infinitesimal, linear) strain,

ε(w) =
1
2
(∇w + (∇w)T), ε(w)i j =

1
2
(wi, j + w j,i ), (1.4)

are also integrable (see [4–7]).
Assuming that Ω is an open subset of Rn having a C2-boundary, for both spaces one has a well defined, linear,

bounded trace mapping γ , such that for every vector field w defined on Ω , γ (w) is a vector field defined on ∂Ω
satisfying the following compatibility condition. For every continuous vector field u defined on the closure Ω , γ acts
as the restriction to the boundary, i.e.,

γ (u|Ω ) = u|∂Ω . (1.5)

In [2] we have shown that if we ignore the requirement that the total force and total torque on every subbody of Ω
vanish, then,

K = ‖γ ‖, for γ : W 1
1 (Ω ,R

3) −→ L1(∂Ω ,R3). (1.6)

For the case where the total forces and torques on the various subbodies do vanish, a more detailed analysis is required
(see [3]). Letting R be the finite dimensional vector space of rigid vector fields, one has to consider the quotient spaces
L D(Ω)/R and L1(∂Ω ,R3)/R. For these spaces, one can define an induced trace mapping

γ /R: L D(Ω)/R −→ L1(∂Ω ,R3)/R, (1.7)

and it turns out that

K = ‖γ /R‖. (1.8)

Thus, apart from the mathematical interest in estimates on ‖γ ‖ and ‖γ /R‖, such estimates are very significant in
stress analysis. It is our objective here to estimate these constants. Our method of estimation has a mechanical flavor.
In a way, it is dual to the analysis leading to the relation between generalized stress concentration factors and the
norms of the trace mappings.

For the particular case of the Sobolev space W 1
1 (Ω), Motron obtained recently [8] some estimates on the bounds.

The method used here is different and is based on the maximum principle for the Dirichlet problem. The bounds we
obtain give a concrete estimate for ‖γ ‖. Subsequently, we extend our method to the space of L D-fields. Specifically,
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recalling that the L D-norm is given by

‖w‖L D =

∑
i

‖wi‖L1 +

∑
i,m

‖ε(w)im‖L1 , (1.9)

we obtain bounds on the constants A and B such that∫
∂Ω

|γ (w)| 6 A
∫
Ω

|w| + B
∫
Ω

|ε(w)| (1.10)

for all L D-fields w (so that max{A, B} bounds ‖γ ‖).
Section 2 presents the results and methods of [3] relating stress concentration to the norm of the trace mapping.

The last subsection discusses the simplification to the case of sourceless vector fields (rather then stress tensors) which
may serve as motivation for studying the norm of the trace mapping for the Sobolev space W 1

1 (Ω). In Section 3 we
introduce the basic method for obtaining the bounds on the trace mapping for the Sobolev space using harmonic vector
fields. The main result of this section is Theorem 3.4. As background material for the discussion of the bounds for
the trace mapping on L D(Ω), Section 4 presents some standard results on norms of matrices. These are significant
in the mechanical context as they are used on the space of stress matrices. For example, a yield criterion is usually a
seminorm on the space of stress matrices. Section 5 presents additional preparatory material—the optimal boundary
values for the stresses for a given boundary traction field. Section 6 studies the bounds on the norm of the trace
mapping for L D(Ω) using the method of harmonic tensor fields and the central result is Theorem 6.1. Finally, the
concluding remarks of Section 7 discuss the mechanical interpretation of the preceding analysis.

2. Generalized stress concentration and the norm of the trace mapping

2.1. Basic definitions and notation

We consider an open set Ω ⊂ R3, where in some sections, the presentation is in the setting of Rn . We assume that Ω
is bounded and that it has a C2-boundary. (The results hold for less restrictive assumptions.) We will use the summation
convention for repeated indices and subscripted comma followed by an index will indicate partial differentiation with
respect to the corresponding variable.

A vector field on Ω is interpreted physically as a virtual velocity field on the body or alternatively as a field of
virtual infinitesimal displacements. A rigid field in R3 is a vector field of the form

w(x) = a + b × x, a, b ∈ R3.

Clearly, rigid fields may be restricted to subsets of R3. We denote the space of rigid fields by R and it is a
6-dimensional vector space.

The following definitions and results concerning L D-fields are due to Temam and Strang [4–6]. Given an integrable
vector field w on Ω , we consider the corresponding stretching (linear strain) field ε(w) defined by

ε(w)im =
1
2
(wi,m + wm,i ), (2.1)

where the comma implies distributional derivative relative to the corresponding spatial coordinate. The integrable
vector field w is of integrable stretching, or w ∈ L D(Ω), if the components of the corresponding stretching are also
integrable over Ω . On the vector space L D(Ω) of integrable stretchings it is natural to use the norm

‖w‖ = ‖w‖L D = ‖w‖1 + ‖ε(w)‖1, (2.2)

where ‖·‖p indicates the L p-norm. With this norm, L D(Ω) is a Banach space and we have a continuous and linear

ε: L D(Ω) −→ L1(Ω ,R6). (2.3)

A basic theorem whose classical version is due to Liouville (see [6, pp. 18–19]) states:

Proposition 2.1. Kernel(ε) = R.
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Let W be a Banach space of velocity fields. In the discussion below W will be either L D(Ω) or L1(∂Ω ,R3). We
refer to an element χ ∈ W/R as a distortion. We have the natural projection mapping onto the quotient space

π : W −→ W/R (2.4)

and the induced norm in W/R is given by

‖χ‖ = inf
w∈χ

‖w‖, or ‖[w]‖ = inf
r∈R

‖w + r‖. (2.5)

Proposition 2.2. For both W = L1(∂Ω ,R3) and W = L D(Ω) there are continuous and linear projection mappings

πR : W −→ R. (2.6)

For w ∈ W, πR(w) = a + b × x is given by

a =
1

|U |

∫
U
w, b = I −1

(∫
U

x × w

)
, (2.7)

where U = ∂Ω for W = L1(∂Ω ,R3), U = Ω for W = L D(Ω), |U | is the Hausdorff measure of U, and
Iim =

∫
U (xk xkδim − xi xm) is the moment of inertia of U.

The space L D(Ω) has the following properties (see [6]).
Approximation: The restrictions of fields in C∞(Ω ,R3) to Ω are dense in L D(Ω).
Extensions: There is a continuous linear extension operator E : L D(Ω) → L D(R3).
Regularity: If w is any distribution on Ω whose corresponding stretching is L1, then w ∈ L1(Ω ,R3).
Trace mapping: There is a unique linear, surjective, continuous trace mapping

γ : L D(Ω) −→ L1(∂Ω ,R3) (2.8)

such that γ (w|Ω ) = w|∂Ω for all continuous vector fields w defined on Ω .
Distortions: On L D(Ω)/R,

‖χ‖ε = ‖ε(χ)‖1 (2.9)

is a norm that is equivalent to the quotient norm described above. Thus, there is a constant C(Ω) (depending on Ω
only) such that for every w ∈ L D(Ω)

inf
r∈R

‖w + r‖ 6 C(Ω)‖ε(w)‖1. (2.10)

The infimum is attainable, i.e., for each w ∈ L D(Ω), there is a rigid motion r0 satisfying

‖w + r0‖ = inf
r∈R

‖w + r‖ 6 C(Ω)‖ε(w)‖1. (2.11)

Equivalent norm: If p is a seminorm on L D(Ω) such that p(r) = 0 implies that r = 0 for every r ∈ R (so p is a
norm on R), then,

p(w)+ ‖ε(w)‖1 (2.12)

is a norm on L D(Ω) that is equivalent to the original norm. In particular, using the trace mapping one can take

p(w) = ‖γ (w)‖1,∂Ω , (2.13)

so the following is a norm that is equivalent to original (2.2)

‖w‖× = ‖γ (w)‖1,∂Ω + ‖ε(w)‖1. (2.14)

Furthermore, one may use the projection πR : L1(∂Ω ,R3) → R as in Proposition 2.2 and a norm ‖·‖R to obtain the
equivalent norm

‖w‖⊕ = ‖πR ◦ γ (w)‖R + ‖ε(w)‖1. (2.15)
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Forces are regarded as elements of the dual spaces to the corresponding spaces of virtual velocities. So for a generic
space of velocities W, a force F will be a member of W∗. The evaluation F(w) is interpreted as virtual work, or virtual
power, performed by the generalized force for the corresponding generalized velocity.

In the case the space W of velocities is an L p-space, 1 6 p 6 ∞, (e.g., L1(∂Ω ,R3)) a force may be represented
by an element of the corresponding Lq space with q = p/(p − 1) through integration. We will use the same symbol
for the force and its representing field. For example, for t ∈ L1(∂Ω ,R3)∗ = L∞(∂Ω ,R3) we have

t (w) =

∫
∂Ω

t · w. (2.16)

A force F ∈ W∗ acting on a body is equilibrated if F(r) = 0 for all r ∈ R. An equilibrated force F is of the form
F = π∗(F0) for some F0 ∈ (W/R)∗. Furthermore, π∗ is norm preserving, i.e.,

‖π∗(F0)‖ = ‖F0‖, (2.17)

so one can usually identify an equilibrated F with F0.

2.2. Generalized stress concentration factors and norms of trace mappings

The central mathematical object that we find suitable for formulating the continuum mechanics problem,
particularly, those notions related to stress concentration is (L D(Ω)/R)∗—the dual to the space of L D-distortions.
Specifically, as described below and in further detail in [3], elements of this space may be represented by essentially
bounded stress fields and on the other hand, the dual of the trace mapping associates an element of (L D(Ω)/R)∗ with
any equilibrated boundary traction field.

Consider the composite mapping π ◦ γ : L D(Ω) → L1(∂Ω ,R3)/R. It is noted that for any r ∈ R, γ (r) is a rigid
motion on ∂Ω , hence, π ◦ γ (w + r) = π ◦ γ (w)+ π ◦ γ (r) = π ◦ γ (w). Thus, we have a well defined mapping

γ /R: L D(Ω)/R −→ L1(∂Ω ,R3)/R, (2.18)

given by γ /R(χ) = π ◦ γ (w), for some w ∈ χ . Clearly,

π ◦ γ = (γ /R) ◦ π. (2.19)

In addition,

‖γ (w)+ r‖1 = ‖γ (w + r)‖1 6 ‖γ ‖‖w + r‖. (2.20)

Hence,

‖[γ (w)]‖ = inf
r∈R

‖γ (w)+ r‖1 6 ‖γ ‖ inf
r∈R

‖w + r‖ = ‖γ ‖‖[w]‖ (2.21)

and we conclude that γ /R is indeed bounded and

‖γ /R‖ 6 ‖γ ‖. (2.22)

The dual mapping γ ∗: L∞(∂Ω ,R3) → (L D(Ω))∗ may now be applied to traction fields and
(γ /R)∗: (L1(∂Ω ,R3)/R)∗ → (L D(Ω)/R)∗ may be applied to equilibrated boundary traction fields to give L D-
forces and equilibrated L D-forces respectively. Clearly,

π∗
◦ (γ /R)∗ = γ ∗

◦ π∗. (2.23)

Proposition 2.3. The mappings γ ∗ and (γ /R)∗ are injective.

Proof. The mapping γ ∗ is injective because γ is continuous and surjective. As the quotient space projection
π : L1(∂Ω ,R3) → L1(∂Ω ,R3)/R is also continuous and surjective, the same argument applies to γ /R. �
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Remark 2.4. Henceforth, we will use the equivalent norm ‖·‖ε as in (2.9) on L D(Ω)/R. We will also use the
equivalent norm ‖·‖⊕ on L D(Ω) as in (2.15). This implies that the quotient norm on L D(Ω)/R is actually equal
(not only equivalent) to the norm induced by the strain. That is,

‖[w]‖ = ‖[w]‖ε = ‖ε(w)‖1. (2.24)

It is noted that the last equality, to be used below frequently, is independent of the choice of a particular projection
πR : L D(Ω) → R.

Proposition 2.5. Any T ∈ (L D(Ω)/R)∗ is represented by some symmetric stress field σ ∈ L∞(Ω ,R6)∗, in the form

T = ε∗(σ ), (2.25)

where ε∗: L∞(Ω ,R6) → (L D(Ω)/R)∗ is the dual mapping to

ε: L D(Ω)/R −→ L1(Ω ,R6). (2.26)

In addition, for the dual norm ‖·‖
ε on (L D(Ω)/R)∗, we have

‖T ‖
ε

= inf
σ, T =ε∗(σ )

‖σ‖∞, (2.27)

and the infimum is attained for some σ̂ ∈ L∞(Ω ,R6), i.e.,

‖T ‖
ε

= ‖σ̂‖∞. (2.28)

Proof. Using the duality L1(Ω ,R6)∗ = L∞(Ω ,R6), the assertion follows from the fact that ε: L D(Ω)/R →

L1(Ω ,R6) is a norm-preserving (by our choice of norm as in Remark 2.4), linear injection and using the Hahn–Banach
theorem (see [3] for the details). �

Corollary 2.6. Let t ∈ L∞(∂Ω ,R3) be any equilibrated traction field so there is a t0 ∈ (L1(∂Ω ,R3)/R)∗ such that
t = π∗(t0). Then, there exists some stress field σ ∈ L∞(Ω ,R6) such that

(γ /R)∗(t0) = ε∗(σ ), and γ ∗(t) = π∗
◦ ε∗(σ ). (2.29)

In addition,

‖(γ /R)∗(t0)‖ = inf
ε∗(σ )=(γ /R)∗(t0)

‖σ‖∞, (2.30)

and

‖γ ∗(t)‖ = inf
π∗◦ε∗(σ )=γ ∗(t)

‖σ‖∞. (2.31)

Proof. We make repetitive use of (2.23) and (2.17) and Proposition 2.5. For example,

‖γ ∗(t)‖ = ‖γ ∗
◦ π∗(t0)‖

= ‖π∗
◦ (γ /R)∗(t0)‖

= ‖(γ /R)∗(t0)‖

= inf
π∗◦ε∗(σ )=π∗◦(γ /R)∗(t0)

‖σ‖∞

= inf
π∗◦ε∗(σ )=γ ∗◦π∗(t0)

‖σ‖∞

= inf
π∗◦ε∗(σ )=γ ∗(t)

‖σ‖∞. � (2.32)

Remark 2.7. The conditions (2.29) are equivalent to the principle of virtual work – a weak form of the equations
of equilibrium – of continuum mechanics (as it is assumed throughout that the body forces vanish). For example,
γ ∗(t) = π∗

◦ ε∗(σ ), implies

γ ∗(t)(w) = (π∗
◦ ε∗)(σ )(w), (2.33)
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so that for any w ∈ L D(Ω),

t (γ (w)) = σ(ε ◦ π(w)) = σ(ε(w)). (2.34)

Hence, for a vector field w that is the restriction of a differentiable field on Ω ,∫
∂Ω

tiwi =

∫
Ω
σi jε(w)i j . (2.35)

Theorem 2.8. Let,

‖γ /R‖ = sup
χ∈L D(Ω)/R

‖(γ /R)(χ)‖

‖χ‖
, (2.36)

be the norm of the trace mapping for distortions. Then, the generalized stress concentration factor K for the boundary
traction problem, satisfies

K = ‖γ /R‖. (2.37)

Specifically,

K = sup
w∈C∞(Ω)

inf
r∈R

‖w|∂Ω + r‖1

‖ε(w)‖1
. (2.38)

Proof. We have the standard

‖γ /R‖ = ‖(γ /R)∗‖. (2.39)

However,

‖(γ /R)∗‖ = sup
t0

‖(γ /R)∗(t0)‖ε

‖t0‖
(2.40)

= sup
t0∈((∂Ω ,R3)/R)∗

{
1

‖t0‖
inf

ε∗(σ )=(γ /R)∗(t0)
‖σ‖∞

}
(2.41)

= sup
t∈Imageπ∗

{
1

‖t‖∞

inf
π∗◦ε∗(σ )=γ ∗(t)

‖σ‖∞

}
, (2.42)

where we used Proposition 2.5 and Corollary 2.6. The condition π∗
◦ ε∗(σ ) = γ ∗(t) is equivalent to the condition

that the stress field σ is in equilibrium with t , i.e., σ ∈ Σt , by Remark 2.7. The expression (2.38) simply uses the
definition of ‖γ /R‖ and the fact that C∞(Ω) is dense in L D(Ω). �

2.3. The scalar case and the trace mapping on the Sobolev space W 1
1 (Ω)

The previous discussion is simplified considerably if we consider scalar fields ϕ ∈ W 1
1 (Ω) instead of the vector

fields w ∈ L D(Ω). In this case the boundary data is also a scalar field, the analog of a stress is a vector field, and the
vector space R of rigid motions is replaced by the real numbers.

Consider a sourceless vector field σ on Ω that satisfies boundary conditions for its boundary flux, i.e.,

σi,i = 0, in Ω , (2.43)
σiνi = t, on ∂Ω , (2.44)

for some given essentially bounded t : ∂Ω → R. Physically, σ may be thought of as a material flow field (say for an
incompressible flow) for a given flux density t on the boundary. Alternatively, σ may be thought of as a heat flow field
where there are no heat sources in Ω so t is the given heat flux on the boundary; or σ may be the electric displacement
field and t is the charge density on the boundary.
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The weak formulation of the problem is∫
Ω
σiϕ,i =

∫
∂Ω

tϕ. (2.45)

(The test function ϕ may be thought of as a potential field in the electrostatic example or as the reciprocal of the
temperature in the heat transfer example.)

The analog of the stress concentration factor is then

K = sup
t∈L∞(∂Ω)

Kt = sup
t∈L∞(∂Ω)

inf
σ∈Σt

‖σ‖
∞,Ω

‖t‖∞,∂Ω
= sup

t∈L∞(∂Ω)
inf
σ∈Σt

ess sup
x∈Ω

|σ(x)|

ess sup
y∈∂Ω

|t (y)|
. (2.46)

We will refer to K as the generalized field concentration factor. Thus for example, for the interpretation of σ as a flow
field, for a given flux density t , Kt will be the smallest ratio between the maximal magnitude of the velocity and the
maximal value of the given boundary flux.

Thus, ϕ may be regarded as an element of the Sobolev space W 1
1 (Ω) so

‖ϕ‖W 1
1

= ‖ϕ‖1 + ‖∇ϕ‖1. (2.47)

On the Sobolev space, the trace mapping

γ : W 1
1 (Ω) → L1(∂Ω) (2.48)

is well defined as expected (see [9]). Our assumption that there are no sources in Ω implies that
∫
∂Ω t = 0 which

is equivalent to considering W 1
1 (Ω)/R and γ /R. Thus, with the obvious adaptation of the norm on W 1

1 (Ω) so it is
identical to the one on R ⊕ (W 1

1 (Ω)/R), the analog of Theorem 2.8 will be for the scalar case

K = ‖γ /R‖, γ : W 1
1 (Ω) −→ L1(∂Ω). (2.49)

3. Bounds on the W1
1 -trace operator

3.1. The bounds obtained using normal vector fields

In this section we consider bounds for the trace operator

γ : W 1
1 (Ω) −→ L1(∂Ω). (3.1)

In particular, we are looking for bounds A and B satisfying∫
∂Ω

|ϕ| 6 A
∫
Ω

|∇ϕ| + B
∫
Ω

|ϕ| (3.2)

for every ϕ ∈ W 1
1 (Ω).

Let n be any C1-vector field on Ω and ψ the restriction to Ω of a W 1
1 -function defined in an open neighborhood of

Ω . Then,∫
Ω

niψ,i =

∫
Ω
(niψ),i −

∫
Ω

ni,iψ (3.3)

implies using the Gauss–Green theorem that∫
∂Ω

niνiψ =

∫
Ω

niψ,i +

∫
Ω

ni,iψ, (3.4)

where ν is the outwards pointing unit normal to ∂Ω .
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Definition 3.1. The vector field n on Ω will be referred to as a normal field if the following conditions hold.

(i) n(y) = ν(y) for all y ∈ ∂Ω .
(ii) |n|(x) 6 1 for all x ∈ Ω , where here and in the rest of this section we use the Euclidean norm for elements of Rn

so |n| =
√

nini .

The existence of normal vector fields is discussed in some detail below. We will use N(Ω) for the collection of all
normal vector fields. For a normal field, Eq. (3.4) assumes the form∫

∂Ω
ψ =

∫
Ω

niψ,i +

∫
Ω

ni,iψ. (3.5)

Given a C1 mapping ϕ on Ω , the distributional derivatives |ϕ|,i of its absolute value |ϕ|(x) = |ϕ(x)| are clearly
integrable and hence, |ϕ| is W 1

1 . Rewriting Eq. (3.5) for ψ = |ϕ| we obtain∫
∂Ω

|ϕ| =

∫
Ω

ni |ϕ|,i +

∫
Ω

ni,i |ϕ|. (3.6)

We now estimate each of the integrals on the right hand side.∫
Ω

ni |ϕ|,i 6
∫
Ω

|n|||ϕ|,i |

6
∫
Ω

|∇ϕ|, (3.7)

where we used Definition 3.1(ii) and ||ϕ|,i | = |ϕ,i | 6 |∇ϕ|. Also∫
Ω

ni,i |ϕ| 6 max
Ω

{
|ni,i |

} ∫
Ω

|ϕ|. (3.8)

It follows that∫
∂Ω

|ϕ| 6
∫
Ω

|∇ϕ| + max
x∈Ω

{
|ni,i (x)|

} ∫
Ω

|ϕ|. (3.9)

This inequality is clearly exact and recalling the definition of normal vector fields we have

Theorem 3.2. Let Ω be a bounded open set in Rn having a C2-boundary and set

B(Ω) = inf
n∈N(Ω)

{
max
x∈Ω

{
|ni,i (x)|

}}
= inf

n∈N(Ω)

{
‖ni,i‖∞,Ω

}
. (3.10)

Then, the following exact inequality holds

‖ϕ‖1,∂Ω =

∫
∂Ω

|ϕ| 6
∫
Ω

|∇ϕ| + B(Ω)
∫
Ω

|ϕ| = ‖∇ϕ‖1 + B(Ω)‖ϕ‖1. (3.11)

3.2. Estimation using harmonic normal fields

We now consider the existence of normal vector fields. By the assumption that ∂Ω is C2, ν is a C1-vector field on
∂Ω and we can extend it to a vector field n with |n(x)| 6 1 for all x ∈ Ω (see for example Theorem 3.6.2 in [10]).
Furthermore, we can require that the extension is harmonic in the following sense. For a vector field n, we use 1n for
the vector field (1n) j = (n j ),i i . The field n is harmonic in Ω if

1n = 0, for all x ∈ Ω . (3.12)
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Theorem 3.3. Let Ω be a bounded open subset of Rn such that ∂Ω is C2. Then, there exists a unique normal vector
field n0 ∈ N(Ω) which is harmonic. In addition, for the supremum of the divergence, ∇ · n0 = n0i,i , we have

‖∇ · n0‖∞,Ω = ‖∇ · n0‖∞,∂Ω . (3.13)

Proof. For any fixed j , we have a classical Dirichlet problem

1n j = 0 in Ω , n j = ν j on ∂Ω . (3.14)

Given our smoothness assumption on ∂Ω , there is a unique solution n0 j to each such boundary value problem and we
obtain the harmonic vector field n0.

For |n0|
2

= n0 jn0 j we have,

1(n0 jn0 j ) = (n0 jn0 j ),i i

= (2n0 j,in0 j ),i

= 2n0 j,i in0 j + 2n0 j,in0 j,i . (3.15)

In the last line, the first term vanishes because n0 j is harmonic and hence 1(|n0|
2) > 0. We conclude that |n0|

2 is
subharmonic in Ω . By the maximum principle for subharmonic functions

max
x∈Ω

|n0(x)|2 = max
y∈∂Ω

|n0(y)|2 = max
y∈∂Ω

|ν(y)|2 = 1. (3.16)

Thus, in addition to the boundary conditions, n0 satisfies the condition 3.1(ii), and so n0 ∈ N(Ω).
Next, we note that for the harmonic n0,

1(∇ · n0) = (n0 j, j ),i i

= (n0 j,i i ), j

= 0. (3.17)

Thus, ∇ · n0 is also harmonic in Ω so by the maximum principle Eq. (3.13) holds. �

It turns out that the harmonic vector field of Theorem 3.3 plays an important role in the computation of B(Ω), the
second constant of the Sobolev W 1

1 (Ω) trace inequality. Continuing to use n0 for the unique harmonic normal vector
field we have

Theorem 3.4. The Sobolev constant B(Ω) is given by

B(Ω) = inf
n∈N (Ω)

‖∇ · n‖
∞,Ω = ‖∇ · n0‖∞,∂Ω . (3.18)

Proof. Let (nm), m ∈ N, be a sequence of normal vector fields such that

lim
m→∞

‖∇ · nm‖ = B(Ω). (3.19)

Using normal tubular neighborhoods (e.g., [11, p. 110]), there is a δ > 0 such that we can parameterize an open
neighborhood V of ∂Ω in Ω by

(y, z) ∈ ∂Ω × [0, δ), (3.20)

where for each x ∈ V , y(x) is a unique point on the boundary such that x is on the line through y which is normal to
the boundary, and z is the distance to the boundary along the normal line where x is situated. For each m, let Vm be
the open set

Vm =
{

x ∈ Ω : y(x) ∈ ∂Ω , z(x) < δ/m
}
, (3.21)

and let Ωm = Ω − V m so

∂Ωm =
{

x ∈ Ω : y(x) ∈ ∂Ω , z(x) = δ/m
}
. (3.22)
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Now for each m we construct the harmonic lifting (cf. [12, p. 24]) nm of nm as follows. Let n0m be the solution of
the Dirichlet problem on Ωm with the boundary conditions n0m(x) = nm(x) for x ∈ ∂Ωm . Set

nm(x) =

{
n0m(x), for x ∈ Ωm,

nm(x), for x ∈ V m .
(3.23)

By the maximum principle,

‖nmi‖∞,Ω 6 ‖nmi‖∞,Ω and ‖∇ · nm‖
∞,Ω 6 ‖∇ · nm‖

∞,Ω , (3.24)

so

lim
m→∞

‖∇ · nm‖
∞,Ω = B(Ω). (3.25)

In addition, as the various ‖nmi‖∞,Ω are bounded by 1, the same applies to nmi and the sequence nmi is uniformly
bounded. Thus, (using a standard normal family argument) by Ascoli’s theorem, it has a subsequence that converges
uniformly to a limit continuous normal field n. On any compact subset of Ω this gives a uniformly convergent sequence
of harmonic functions whose limit is then also harmonic. Thus, n is harmonic. Also, the limit n satisfies the conditions
of Definition 3.1 and so it is a normal vector field. Finally, by the uniqueness of the solution to the Dirichlet problem
n = n0. �

Remark 3.5. Within the framework of the AB-program in geometric analysis, [13], Motron proves in [8], using
different methods, the following two theorems for bounds on the trace mapping on W 1

1 (Ω).

(1) For any ε > 0, there exists a Bε such that for any ϕ ∈ W 1
1 (Ω),∫

∂Ω
|ϕ| 6 (1 + ε)

∫
Ω

|∇ϕ| + Bε

∫
Ω

|ϕ|. (3.26)

(2) Assuming that Ω is a connected bounded open subset of Rn whose boundary is piecewise C1, there exists A > 0
such that for any ϕ ∈ W 1

1 (Ω),∫
∂Ω

|ϕ| 6 A
∫
Ω

|∇ϕ| +
|∂Ω |

|Ω |

∫
Ω

|ϕ|. (3.27)

We note that even if we had the solution to the AB-program, we would not have a concrete bound on ‖γ ‖. What we
sought were simultaneous bounds on both A and B.

In addition, for a normal vector field

sup
x∈Ω

|∇ · n||Ω | >
∫
Ω

∇ · n =

∫
∂Ω

n · ν = |∂Ω |, (3.28)

so

inf
n∈N

‖∇ · n‖
∞,Ω >

|∂Ω |

|Ω |
. (3.29)

However, the inequality is not exact and equality is not attainable even for the harmonic normal vector field. (Think
of two circles connected by a narrow neck of width t . Across the narrow neck, ∇ · n has to be of order 1/t in order
to satisfy the boundary conditions. The values of |Ω | and |∂Ω | are not significantly different from those of the two
circles.) Thus, Motron’s bound B is smaller than the value obtained here. On the other hand, the bounds A and B we
obtain are exact in the sense that you cannot lower B without increasing A.

4. Norms of symmetric tensors

As noted earlier, the value of the stress concentration factor depends on the norm we choose to use on the space
of stress matrices. Thus, for the sake of completeness, we review below some elementary properties of norms of
symmetric matrices on Rn . We will denote the norm of a matrix T by |T | (reserving ‖·‖ for norms on function
spaces).
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4.1. Operator norms

In general, for a linear mapping T : V → U between normed spaces, the operator norm of T is defined by

|T |o = sup
v

|T (v)|
|v|

, v 6= 0. (4.1)

The operator p-norm, |T |op, 1 6 p 6 ∞, on the space of matrices is defined as the operator norm for the case where
the p-norm is used on both V = Rm and U = Rn . By the compactness of the unit ball in Rm , the supremum is
attainable and

|T |op = max
|v|=1

|T (v)|p. (4.2)

In case T : W → W is a linear transformation defined on the inner product space Rn equipped with the Euclidean
2-norm, |T |o2 may be calculated by

|T |o2 = sup
v,v′∈W

|T (v) · v′
|

|v||v′|
, v, v′

6= 0. (4.3)

The following relations hold for symmetric matrices on Rn .

|T |o1 = |T |o∞ = max
i

∑
j

|Ti j |, (4.4)

|T |o2 = max{|λ1|, . . . , |λn|}, (4.5)

where λ1, . . . , λn are the (real) eigenvalues of T . The norm |·|o2 is usually referred to as the spectral radius norm.

4.2. Vector norms

We will also regard symmetric matrices as vectors in Rn(n+1)/2 and use the p-norm for them. Thus,

|T |p =

(∑
i, j

|Ti j |
p

)1/p

. (4.6)

In particular,

|T |1 =

∑
i, j

|Ti j |, (4.7)

|T |∞ = sup
i, j

|Ti j |, (4.8)

|T |2 =
√

Ti j T j i =

(∑
λ2

i

)1/2
. (4.9)

We recall that the Frobenius norm of a matrix is |T |F = (Ti j Ti j )
1/2 and it is identical to |·|2 for symmetric matrices.

4.3. Dual norms

Being a finite dimensional space we may identify the space of symmetric matrices Rn(n+1)/2 with its dual space.
Thus, we may regard any symmetric matrix T as a linear functional so that T (S) = Ti j S j i and assign to it the dual
norm |T |p∗

|T |p∗ = sup
S

|T (S)|
|S|p

, (4.10)

where we have the usual |·|p∗ = |·|q , for q = p/(p − 1).
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Dual norms may be used also for the operator norms. In particular, we note that

|T |o2∗ =

∑
i

|λi |. (4.11)

In closing this short review, it is noted that the norms containing the index 2 are associated with the Euclidean
norm for vectors and may be expressed in terms of the eigenvalues. These norms are invariant under orthogonal
transformations of coordinates.

4.4. The equivalence constants

Since all the norms listed above are equivalent, for each pair of norms |·|a and |·|b, there is a finite positive number

K a
b = sup

T

|T |a

|T |b
. (4.12)

In particular, the following exact relations hold:

1
√

n
6

|T |o2

|T |o1
6

√
n, 1 6

|T |2

|T |o2
6

√
n, 1 6

|T |o2

|T |∞
6 n, (4.13)

1 6
|T |o2∗

|T |o2
6 n, 1 6

|T |o2∗

|T |2
6

√
n. (4.14)

Thus, for example, K o2
2 = 1.

In the sequel, we will use |σ(x)| to denote the norm of the value of a symmetric tensor σ at x ∈ Ω using a generic
norm on the space of matrices.

5. Optimal boundary conditions for stresses

Consider the following problem: given a unit vector ν in a Euclidean 3-dimensional space and a unit vector t , find
a symmetric matrix σ such that

(i) σ(ν) = t—the compatibility condition;
(ii) |σ | = inf{|T |, T (ν) = t, T = T T

}, i.e., σ is the optimal symmetric matrix that satisfies condition (i).

The problem has an obvious mechanical interpretation. If ν denotes the normal to the boundary at some given
point, and t denotes the value of the surface traction field at that point, then, σ(ν) = t is the boundary condition for
the stress field σ . Thus, a matrix σ satisfying the conditions above is the optimal stress matrix that will satisfy the
boundary condition. Obviously, the normalization condition on t causes no loss of generality.

Let tn = (t · ν)ν = ν ⊗ ν(t) be the normal component of t and let tt = ν × (t × ν) be the tangent component of t .
Thus, denoting the angle between ν and t by θ , |tn| = cos θ and |tt | = sin θ . We choose a basis { f j } where f1 = ν, f2
is a unit vector in the direction of tt and f3 completes the other two to form a right-hand oriented orthonormal basis.
In this basis, the matrix of σ satisfying the condition σ(ν) = t has to satisfy σ11 = cos θ , σ12 = σ21 = sin θ , and
σ13 = σ31 = 0. The rest of the components cannot be determined by the compatibility condition above and should
be determined by the requirement for minimal norm of σ . (In the case where ν and t are parallel, one can take any
orthonormal basis containing ν.)

5.1. Optimal boundary conditions relative to the |·|∞-norm

We wish to regard σ as an element of the dual space of symmetric matrices. Then, using the basis fi as above, the
compatibility condition implies that we have a linear functional σ0 defined on the subspace V of symmetric matrices
containing elements of the form

[ε] =

ε11 ε12 0
ε12 0 0
0 0 0

 . (5.1)
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The functional σ0 acts on elements of V by

σ0([ε]) = ε11 cos θ + 2ε12 sin θ. (5.2)

Thus, on this subspace

sup{|σ0(ε)|; ε ∈ V, |ε|1 = 1} = max{| cos θ |, | sin θ |}. (5.3)

The extension

[σ ] =

cos θ sin θ 0
sin θ 0 0

0 0 0

 (5.4)

of σ0 to the space of all symmetric matrices, has the same norm and as such it provides the optimal boundary condition.
It is noted that while the development depends on the basis chosen, the optimal norm depends only on the angle θ , an
invariant quantity.

5.2. Optimal boundary conditions relative to the |·|2-norm

If one uses |σ | = |σ |2 induced by the inner product in the space of symmetric matrices as in the previous section,
the optimal matrix can be obtained by orthogonality conditions of the optimal stress to basis vectors for the matrices
that correspond to the undetermined components of the stress. This implies that all the undetermined components
should vanish. Thus, the optimal stress is given in the { fi }-basis by Eq. (5.4) also, and

|σ |2 =

√
1 + sin2 θ. (5.5)

While the optimal σ for the |·|∞-norm depended on the basis { fi } chosen, the construction here is rotation-invariant.

5.3. The case where t = ek

We now consider the special case where t = ek , where ek , k = 1, 2, 3 is a base vector. In this case, cos θ = ν · ek =

νk and sin θ =

√
1 − ν2

k . Using

σ = cos θν ⊗ ν + sin θ(ν ⊗ f2 + f2 ⊗ ν), (5.6)

we may write the matrix for σ relative to the {ei }-basis. We first note that

f2 =
ek − cos θν

sin θ
=

ek − νkν√
1 − ν2

k

, (5.7)

thus,

σ = νkν ⊗ ν + ν ⊗ (ek − νkν)+ (ek − νkν)⊗ ν. (5.8)

Rearranging the terms we conclude that for the case t = ek , the optimal boundary conditions for the stress are

σ = −νkν ⊗ ν + (ν ⊗ ek + ek ⊗ ν), (5.9)

and the optimal values are

|σ |2 =

√
2 − ν2

k ,

|σ |∞ = max
{
|νk |,

√
1 − ν2

k

}
, for the natural basis { fi }.
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5.4. Example: The 2-dimensional case for the |·|o2-spectral radius norm

Using the same notation as above and using the coordinate system in the plane where the x and y axes are along
f1 and f2, respectively, we are looking for a 2 × 2 symmetric matrix that will satisfy the condition t = σ(ν) of least
spectral radius, i.e., minimizes max{|λ1|, |λ2|}. The condition σ(ν) = t implies that σxx = cos θ and σxy = sin θ .
Thus, to determine σ completely, one has to determine the single number σyy .

In two dimensions we have the explicit expression for the eigenvalues as

λ1,2 =
σxx + σyy

2
±

√(
σxx − σyy

2

)2

+ σxy2. (5.10)

Setting

a =
cos θ

2
=
σxx

2
, z =

σyy

2
, so σ 2

xy = sin2 θ = 4 − a2, (5.11)

we have

λ1,2 = a + z ±

√
1 − 3a2 − 2az + z2 = a + z ±

√
(z − a)2 + 1 − 4a2. (5.12)

Minimizing |λ1,2| is like minimizing λ2
1,2 so we differentiate with respect to z. Thus,

dλ2
1,2

dz
= 2λ1,2

dλ1,2

dz

= 2λ1,2

(
1 ±

z − a√
(z − a)2 + 1 − 4a2

)
that vanishes identically only if 4a2

= 1. Hence, for extremum, θ = 0. In general,

1 − 4a2
= 1 − cos2 θ > 0, (5.13)

which implies that

dλ2
1,2

dz
(5.14)

has the same sign as the eigenvalue. It follows that z 6= 0 can only make |λ1,2| larger and the infimum is attained for
z = σyy = 0.

Remark 5.1. We note that the problem of optimal boundary condition for the stress is a generalization of the
requirement in Definition 3.1(i) for the boundary value of a normal vector field with the difference that now we
consider matrices rather than vectors. Indeed, n = ν gives the smallest value for |n|2, the Euclidean norm of the
vector field n, such that n · ν = n(ν) = 1.

5.5. Worst case optimal boundary conditions

By worst case optimal boundary conditions we refer to the inclination of t relative to the normal ν for which the
norm of the optimal stress attains a maximal value. That is, we are looking for

D‖ = sup
t

{
inf
σ

|σ | : σ(ν) = t, |t | = 1
}
. (5.15)

The number D‖ (the subscript ‖ indicating the particular norm chosen) and the corresponding σ and t depend only on
the choice of norms. For example, for the |·|2-norm, D2 =

√
2 is attained for any unit traction t perpendicular to ν.

For the |·|∞-norm, relative to the boundary natural basis, D∞ = 1 is attained for either traction that is parallel to ν or
traction that is perpendicular to it.
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5.6. The spaces Nk(Ω) and ek-optimal tensor fields

For k = 1, 2, 3 we now choose a symmetric tensor field T k
= (T k

i j ) on ∂Ω that satisfies the following conditions.

(i) If ek denotes the k-th base vector in R3, then, T k(ν) = ek so T k
i jν j = δk

i .
(ii) Clearly, at each point y on the boundary there is a collection of matrices that satisfy condition (i) above. We

choose T k(y) to be a symmetric matrix that satisfies condition (i) and that has the least norm (of our choice on
the space of matrices). Thus,

|T k(y)| = inf
Sk

{
|Sk

| : Sk(ν(y)) = ek

}
, (5.16)

where the infimum is taken over all symmetric matrices. Thus, in the terminology of the preceding subsections,
T k is the optimal stress for the ek as boundary traction and the discussion of Section 5.3 applies.

Clearly, the fields T k depend on Ω only. They depend continuously on ν so by the assumption that ∂Ω is C2 they
are continuous. Consider now the worst value of |T k(y)| on the boundary, i.e.,

sup
y∈∂Ω

{
|T k(y)|

}
= sup

y∈∂Ω

{
inf
Sk

{
|Sk

| : Sk(ν(y)) = ek

}}
. (5.17)

As ∂Ω is assumed to be smooth, any angle between ν and any fixed vector is attained on the boundary, hence, the
worst case optimal boundary conditions are attained on the boundary always. Thus,

sup
y∈∂Ω

{
|T k(y)|

}
= sup

y∈∂Ω

{
inf
Sk

{
|Sk

|: Sk(ν(y)) = ek

}}
= D‖ (5.18)

and depends only on the choice of a norm.
We use the notation T k for a tensor field on the boundary satisfying the two conditions above. Using Whitney’s

extension theorem (cf. [10, Theorem 3.6.2]), T k can be extended to symmetric differentiable tensor fields σ k on Ω
that satisfy the following condition

sup
x∈Ω

{
|σ k(x)|

}
= sup

y∈∂Ω

{
|T k(y)|

}
= D‖. (5.19)

We denote the class of symmetric C1-tensor fields σ k on Ω that satisfy the boundary condition σ k(y) = T k(y),
y ∈ ∂Ω , and condition (5.19) above by Nk(Ω). We will refer to a tensor field σ k

∈ Nk(Ω) as an ek-optimal tensor
field.

It is quite clear that the foregoing discussion applies in the continuum mechanics context to the optimal stress field
for the normalized boundary traction t = ek . If σ k

∈ Nk(Ω), we have for the stress concentration factor and optimal
stress concentration factor,

Kek ,σ k = Kek = D‖. (5.20)

Although the total force on the body is not equilibrated, D‖, may serve as a bound.

6. Bounds of the L D(Ω)-trace operator

Theorem 6.1. Let the constants A(Ω) and B(Ω) be given by

A(Ω) = 3D‖, (6.1)

B(Ω) =

∑
k

‖∇ · σ k
0 ‖∞,∂Ω , (6.2)

where σ k
0 is the solution of the Dirichlet problem 1σ k

i j = 0, in Ω , σ k
i j = T k

i j , on ∂Ω . Then,

‖w‖1,∂Ω 6 A(Ω)‖ε(w)‖1 + B(Ω)‖w‖1, (6.3)

for all w ∈ L D(Ω), is an exact estimate.
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The following subsections present the proof. (We will use A and B for A(Ω) and B(Ω), respectively, in order to
simplify the notation.)

6.1. The principle of virtual work

Let Ω be an open region in R3 having a smooth boundary, σ = (σi j ) a symmetric smooth tensor field on Ω and
w = (wi ) an L D-vector field on Ω . Then,

σi jwi, j = (σi jwi ), j − σi j, jwi . (6.4)

Also, by the symmetry of σ ,

σi jwi, j = σi jεi j . (6.5)

Thus, we may write∫
Ω
σi jεi j =

∫
Ω
(σi jwi ), j +

∫
Ω
σi j, jwi , (6.6)

and using the Green–Gauss theorem on the first term on the right-hand side we obtain∫
Ω
σi jεi j =

∫
Ω
σi j

1
2
(wi, j + w j,i ) =

∫
∂Ω
σi jwiν j +

∫
Ω
σi j, jwi , (6.7)

where ν is the unit outward pointing normal. We will refer to the identity above as the principle of virtual work.

6.2. The bounds

We now write the principle of virtual work (6.7) for the vector field 〈w〉 = (|wi |). (We reserve the notation |v| for
the norm of the vector v in a finite dimensional space.) Thus,∫

Ω
σi j

1
2
(|wi |, j + |w j |,i ) =

∫
∂Ω
σi j |wi |ν j +

∫
Ω
σi j, j |wi |. (6.8)

Let σ k satisfy σ k(ν) = ek on ∂Ω so σ k
i jν j = δk

i . Then, the identity above assumes the form∫
∂Ω

|wk | =

∫
Ω

1
2
(|wi |, j + |w j |,i )σ

k
i j −

∫
Ω
σ k

i j, j |wi |. (6.9)

Consider the integrand

integrand =
1
2
(|wi |, j + |w j |,i )σ

k
i j (6.10)

of the first integral on the right. As the expression is invariant under orthogonal transformations, it may be evaluated
in the principle coordinate system of the matrix (|wi |, j + |w j |,i )/2 where the off-diagonal elements vanish. Thus,
without loss of generality, we may write (we do not use the summation convention here)

integrand =

∑
i

|wi |,iσ
k
ii

6 max
i

{|σ k
ii |}

∑
i

|wi |,i

6 |σ k
|
∞

∑
i

|wi,i | (using |wi |, j = sign(wi )wi, j )

6 |σ k
|
∞

|ε(w)|1,



682 R. Peretz, R. Segev / Computers and Mathematics with Applications 53 (2007) 665–684

where the equality is clearly attainable. Thus,∫
∂Ω

|wk | 6
∫
Ω

|σ k
|
∞

|ε(w)|1 +

∫
Ω

|σ k
i j, j ||wi |

6 sup
x∈Ω

{
|σ k(x)|

∞

} ∫
Ω

|ε(w)|1 + sup
i,x∈Ω

{|σ k
i j, j (x)|}

∫
Ω

∑
i

|wi |.

As

sup
i,x∈Ω

|σ k
i j, j (x)| = ‖∇ · σ k

‖
∞,Ω , (6.11)

we have

‖wk‖1,∂Ω =

∫
∂Ω

|wk | 6 ‖σ k
‖
∞,Ω‖ε(w)‖1 + ‖∇ · σ k

‖
∞,Ω‖w‖1, (6.12)

where we use ‖T ‖∞ = ‖|T |∞‖L∞ , and ‖T ‖1 = ‖|T |1‖L1 , for the respective norms of a tensor field T .
Adding this equation for k = 1, 2, 3, we obtain for the L1-norm of the restriction ofw to the boundary the following

bound

‖w‖1,∂Ω 6
∑

k

‖σ k
‖
∞,Ω‖ε(w)‖1 +

∑
k

‖∇ · σ k
‖
∞,Ω‖w‖1. (6.13)

Clearly, for

A = inf
σ k

{∑
k

‖σ k
‖
∞,Ω : σ k(ν) = ek

}
(6.14)

and

B = inf
σ k

{∑
k

‖∇ · σ k
‖
∞,Ω : σ k(ν) = ek

}
(6.15)

this bound is the tightest and we have

‖w‖1,∂Ω 6 A‖ε(w)‖1 + B‖w‖1, for all w ∈ L D(Ω). (6.16)

Since in general

sup
x∈Ω

|σ k(x)|∞ > sup
y∈∂Ω

|σ k(y)|∞

> sup
y∈∂Ω

|T k(y)|∞, T koptimal as in (5.16)

= D‖

and equality holds for σ k
∈ Nk(Ω), we conclude that A is attained for fields σ k

∈ Nk(Ω) and A = 3D‖. This proves
the first part (Eq. (6.1)) of Theorem 6.1.

6.3. Estimating B

The procedure we use is completely analogous to that of Section 3.2 and the proofs of Theorems 3.3 and 3.4. For
a tensor field σ we use 1σ for the Laplacian 1σi j = σi j,ll . We say that σ is harmonic if 1σ = 0.

Proposition 6.2. There is a unique harmonic tensor field σ k
∈ Nk(Ω), i.e., σ k is ek-optimal. For the harmonic

ek-optimal σ k , we have

‖∇ · σ k
‖
∞,Ω = ‖∇ · σ k

‖∞,∂Ω . (6.17)
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Proof. Consider the Dirichlet problem

1σ k
= 0, in Ω , σ k

= T k, on ∂Ω . (6.18)

The existence and uniqueness are standard. Let σ k be harmonic, then, for each component σ k
i j (no sum on repeated

indices)

1((σ k
i j )

2) = (σ k
i jσ

k
i j ),ll ,

= 2(σ k
i j,lσ

k
i j ),l

= 2σ k
i j,lσ

k
i j,l + 2σ k

i j,llσ
k
i j

> 0. (6.19)

Thus, σ k
i j is subharmonic in Ω . By the maximum principle for subharmonic functions

max
x∈Ω

(σ k
i j (x))

2
= max

y∈∂Ω
(σ k

i j (y))
2 (6.20)

and so the analogous property holds for |σ k
i j |. Thus, using the boundary conditions

‖σ k
‖
∞,Ω = max

i, j,x∈Ω
|σ k

i j (x)| = max
i, j,y∈∂Ω

|σ k
i j (y)| = max

i, j,y∈∂Ω
|T k

i j (y)| = D∞. (6.21)

Hence, the solution is also in Nk(Ω). Finally,

1(∇ · σ k) = (σ k
i j, j ),ll

= (σ k
i j,ll), j

= 0, (6.22)

so by the maximum principle for the components of ∇ · σ k , (6.17) holds. �

Proof of the second part of Theorem 6.1 (Eq. (6.2)). Clearly, as the three σ k fields are independent, we should look
for

Bk = inf
σ k

{
‖∇ · σ k

‖
∞,Ω : σ k(ν) = ek

}
. (6.23)

Thus, let (σ k
m), m ∈ N, be a sequence of ek-optimal tensor fields such that

lim
m→∞

‖∇ · σ k
m‖ = Bk . (6.24)

The sets Vm and Ωm may be constructed just as in the proof of Theorem 3.4. Let σ k
0m be the solution of the Dirichlet

problem in Ωm with the boundary condition σ k
0m(x) = σ k

m(x), for x ∈ ∂Ωm , and define the harmonic lifting
accordingly as

σ k
m(x) =

{
σ k

0m(x), for x ∈ Ωm,

σ k
m(x), for x ∈ V m .

(6.25)

By the maximum principle

‖σ k
mi j‖∞,Ω 6 ‖σ k

mi j‖∞,Ω and ‖∇ · σ k
m‖

∞,Ω 6 ‖∇ · σ k
m‖

∞,Ω , (6.26)

so

lim
m→∞

‖∇ · σ k
m‖

∞,Ω = Bk . (6.27)

We apply the normal family argument and uniqueness of solutions as in the proof of Theorem 3.4, to obtain

Bk = ‖∇ · σ k
0 ‖∞,∂Ω , (6.28)

where σ k
0 is the solution of the Dirichlet problem (6.18). Eq. (6.2) now follows from (6.15). �
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7. Discussion

We may describe the foregoing analysis in the mechanical context. For a given boundary traction field, we
constructed the optimal boundary condition for the stress field. In Section 5, the case where the traction vector was a
unit vector was considered, but as the relation between stress and traction is linear, this causes no loss of generality.
Thus, one can assign the optimal boundary condition for the stress field for any given boundary traction field.

Next, one can solve the Laplace equation for each of the stress components. Unlike the usual case of continuum
mechanics, we have a unique solution without imposing constitutive relations and the equilibrium equations are not
satisfied. For the harmonic solution of the boundary value problem, the maximal stresses occur on the boundary and
these stresses are the smallest that satisfy the traction boundary conditions. Eq. (6.2) and its proof indicate that the
maximal value of ∇ ·σ is the smallest possible. In light of the usual equilibrium equations ∇ ·σ +b = 0 of continuum
mechanics (b being the body force field), we can interpret the field −∇ ·σ as additional body forces one has to supply
for the equilibrium condition to hold. Thus, for equilibrium, the harmonic stress field is associated with an additional
body force field whose maximum is the least (and is attained on the boundary). It is noted that the total of the traction
field,

∫
∂Ω t , was not required to vanish so it is not possible for equilibrium to hold. With the foregoing limitations in

mind, the harmonic stress field solves the problem of optimal stress field for a given traction.
Next, we note that the generalized stress concentration factor may be described as the largest optimal stress

concentration factor when we can vary the boundary traction fields while keeping their maximal value on the boundary
to ‖t‖∞,∂Ω = 1. Thus, in the analysis all the components of the traction fields are set to be 1 everywhere. Again,
this precludes equilibrium as the total force on the body in each direction is equal to the area of the boundary. The
mathematical analog of this limitation is that we obtain bounds on γ and not γ /R. However, the bound on ‖γ ‖ gives
a bound ‖γ /R‖ because ‖γ /R‖ 6 ‖γ ‖ (Eq. (2.22)).
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