
HAL Id: hal-00956769
https://hal.science/hal-00956769

Preprint submitted on 7 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building explicit induction schemas for cyclic induction
reasoning

Sorin Stratulat

To cite this version:
Sorin Stratulat. Building explicit induction schemas for cyclic induction reasoning. 2014. �hal-
00956769�

https://hal.science/hal-00956769
https://hal.archives-ouvertes.fr

Building explicit induction schemas for cyclic

induction reasoning

Sorin Stratulat

Université de Lorraine
LITA, Department of Computer Science
Ile du Saulcy, Metz, F-57000, FRANCE
sorin.stratulat@univ-lorraine.fr

Abstract. In the setting of classical first-order logic with inductive
predicates, two kinds of sequent-based induction reasoning are distin-
guished: cyclic and structural. Proving their equivalence is of great the-
oretical and practical interest for the automated reasoning community.
In [3,4], it has been shown how to transform any structural proof de-
veloped with the LKID system into a cyclic proof using the CLKIDω

system. However, the inverse transformation was only conjectured.
We provide a simple procedure that performs the inverse transforma-
tion for an extension of LKID with explicit induction rules issued from
the structural analysis of CLKIDω proofs, then establish the equivalence
of the two systems. This result is further refined for an extension of
LKID with Noetherian induction rules. We show that Noetherian induc-
tion subsumes the two kinds of reasoning. This opens the perspective
for building new effective induction proof methods and validation tech-
niques supported by (higher-order) certification systems integrating the
Noetherian induction principle, like Coq.

1 Introduction

(Mathematical) induction reasoning is known to be one of the most effective
reasoning methods. Its distinctive feature is the use, during the proof process,
of induction hypotheses representing ‘not yet proved’ formulas.

The induction hypotheses can be defined before their use, by explicit induc-
tion schemas that can be directly embedded in inference systems using explicit
induction rules. On the other hand, the induction hypotheses can also be de-
fined by need, at the moment of their use. In this case, the induction reasoning
is schemata-free but should be performed at the proof level because the induction
hypotheses can be (instances of) formulas positioned anywhere in the derivation.

The relation between the two kinds of induction reasoning was previously
studied for Gentzen-style µ-calculus proof systems and proved equivalent, i.e.,
the proofs are convertible between systems. In [8], the explicit induction proofs
are finite and the induction rules locally implement the Noetherian induction
principle. The second kind of reasoning is captured by ω-regular proof trees that
are finitely represented by stopping the development of the (sub-)derivations

for nodes labelled with formulas already encountered in the derivation. The
soundness of the method is ensured if the cyclic induction reasoning associated
to each strongly connected component of the proof graph is well-founded.

We are interested to extrapolate the equivalence result for sequent-based sys-
tems that extend the Gentzen’s LK system [6] to reason on inductively defined
predicates [1]. We focuss on two representative systems, proposed by Brother-
ston [3,4]: i) the LKID structural system that integrates induction rules gener-
alizing Noetherian induction reasoning by the means of schemas issued from the
recursion analysis of (mutually defined) inductive predicates, and ii) the CLKIDω

cyclic system, issued from LKID by replacing the induction rules with case-split
rules. A main result of [3,4] is that any LKID proof is convertible into a CLKIDω

proof. However, the conversion in the other direction is only conjectured.
In this paper, we present a procedure that builds dynamically explicit induc-

tion schemas from the structural analysis of CLKIDω proofs. Firstly, we show the
equivalence between CLKIDω and an extension of LKID, denoted by LKID∼,
with induction rules that embed cyclic reasoning from existing CLKIDω proofs.
The procedure is further refined to build Noetherian induction schemas from
the productions defining new inductive predicate symbols attached to strongly
connected components. LKID and CLKIDω, extended to deal with the new sym-
bols, are shown equivalent. We conclude that Noetherian induction is sufficient
to represent the structural and cyclic induction reasoning in this setting. Aside
the theoretical and technical interests, this result can help developing i) effective
sequent-based induction methods that combine the advantages of the two kinds
of reasoning, and ii) automated techniques for their validation, supported by
(higher-order) certification environments integrating the Noetherian induction
principle, like Coq [11].

The paper is structured in 6 sections. Section 2 gives the preliminaries for rea-
soning with sequent-based inference systems for classical first-order logic (FOL)
with inductively defined predicates (FOLID), then presents the CLKIDω and
LKID systems. The structural analysis of cyclic proofs is explained in Section 3.
LKID∼ is introduced in Section 4. The extension of LKID with Noetherian
induction rules, denoted by LKIDe, is presented in Section 5, as well as the pro-
cedure transforming CLKIDω proofs into LKIDe proofs. As a running example,
we consider ‘P and Q’ [12]. The conclusions are presented in Section 6.

2 Syntax and sequent systems for FOLID

Syntax. The logical framework is based on FOLID using a standard (countable)
first-order language Σ. The predicate symbols are labelled either as ordinary
or inductive. We assume that Σ has P1, . . . , Pn as inductive predicate symbols.
The terms are defined as usual. By t, we denote a vector of terms (t1, . . . , tm) of
length m, the value of m being usually deduced from the context. New terms and
formulas are built from replacing (free) variables by terms via substitutions. A
substitution is a mapping from variables to terms, of the form {x1 7→ t1; . . . ;xp 7→
tp}, written in a more compact form as {x 7→ t}, where x is the vector of variables

2

(x1, . . . , xp) and t is the vector of terms (t1, . . . , tp). An identity substitution
consists only of mappings of the form x 7→ x. ≡ denotes the syntactical equality.
A term t is an instance of t′ if there is a substitution σ such that t ≡ t′σ. Let
FV (φ) denote the free variables of a given formula or set of formulas φ. We
denote the instance of a formula ψ with σ by ψ[σ], where dom(σ) ⊆ FV (ψ).
Also, given a multiset of formulas Ψ , Ψ [σ] denotes the set {ψσ|ψ ∈ Ψ}, where
dom(σ) ⊆ FV (Ψ).

Following [3,4], a specification is the union of the finite inductive definition
sets ΦPi

defining each Pi (i ∈ [1..n]) and consisting of productions of the form

Q1(u1), . . . Qh(uh), Pj1(t1), . . . , Pjm(tm) → Pi(t) (1)

where i, j1, . . . jm ∈ [1..n] and Q1, . . . , Qh are ordinary predicate symbols.

The sequent-based inference system. The Gentzen’s LK system [6], presented
in Fig. 1, is extended with equality and unfold rules using the definitions of
inductive predicates. The proof derivations are built from sequents of the form
Γ ⊢ ∆, where Γ and ∆ are finite multisets of formulas, separated by commas.
The comma is an associative and commutative operator which can be classically
interpreted as a conjunction in the antecedent Γ , and as a disjunction in the
succedent ∆; Γ ⊢ ∆ can also be interpreted in FOL as the clause C(Γ ⊢ ∆) ≡
(
∨

F∈Γ (¬F)) ∨ (
∨

F∈∆ F). By abuse of notation, FV (Γ ⊢ ∆) denotes the set of
free variables of Γ ⊢ ∆. The instance of the sequent Γ ⊢ ∆ with a substitution
δ, denoted by (Γ ⊢ ∆)[δ], is Γ [δ] ⊢ ∆[δ]. The inference system is built from
inference rules. A rule is represented by a simple horizontal line that separates
a sequent, called conclusion and written beneath it, from a (potentially empty)
multiset of sequents, called premises and written above it. Side annotations may
specify the name of the rule and its application conditions. Derivations are built
by successive applications of inference rules and have a tree shape. When it is
clear from the context, we use a double line instead of a simple line to mean
that formulas may be permuted in the antecedent of the conclusion and one or
several occurrences of the rules specified aside are successively applied.

Γ ∩ ∆ 6= ∅ (Ax)
Γ ⊢ ∆

Γ ′ ⊢ ∆′

Γ ′ ⊆ Γ,∆′ ⊆ ∆ (Wk)
Γ ⊢ ∆

Γ ⊢ F,∆ Γ, F ⊢ ∆
(Cut)

Γ ⊢ ∆

Γ ⊢ F,∆
(¬L)

Γ,¬F ⊢ ∆

Γ,F ⊢ ∆
(¬R)

Γ ⊢ ¬F,∆

Γ, F ⊢ ∆ Γ,G ⊢ ∆
(∨L)

Γ, F ∨ G ⊢ ∆

Γ,F, F ⊢ ∆
(contrL)

Γ, F ⊢ ∆

Γ ⊢ F, F∆
(contrR)

Γ ⊢ F,∆

Γ ⊢ F,G,∆
(∨R)

Γ ⊢ F ∨ G,∆

Γ, F,G ⊢ ∆
(∧L)

Γ, F ∧ G ⊢ ∆

Γ ⊢ F,∆ Γ ⊢ G,∆
(∧R)

Γ ⊢ F ∧ G,∆

Γ ⊢ F,∆ Γ,G ⊢ ∆
(⇒ L)

Γ, F ⇒ G ⊢ ∆

Γ,F ⊢ G,∆
(⇒ R)

Γ ⊢ F ⇒ G,∆

Γ, F ⊢ ∆
x ∩ FV (Γ ∪ ∆) = ∅(∃L)

Γ, ∃xF ⊢ ∆

Γ ⊢ F,∆
x ∩ FV (Γ ∪ ∆) = ∅(∀R)

Γ ⊢ ∀xF,∆

Γ, F [{x 7→ t}] ⊢ ∆
(∀L)

Γ, ∀xF ⊢ ∆

Γ ⊢ F [{x 7→ t}], ∆
(∃R)

Γ ⊢ ∃xF,∆

Fig. 1. The LK rules.

3

The equality rules are given in Fig. 2. The (=L) rule replaces in Γ and ∆

occurrences of t by u, as well as of u by t.

(= R)
Γ ⊢ t = t,∆

Γ [{x 7→ u; y 7→ t}] ⊢ ∆[{x 7→ u; y 7→ t}]
(= L)

Γ [{x 7→ t; y 7→ u}], t = u ⊢ ∆[{x 7→ t; y 7→ u}]

Fig. 2. The equality rules.

Assuming that (1) is the r-th production defining Pi, the unfold rule applies

on any sequent with a succedent formula Pi(t
′
) for which there is a substitution

σ such that Pi(t
′
) ≡ Pi(t)[σ]:

Γ ⊢ Q1(u1)[σ], ∆ . . . Γ ⊢ Qh(uh)[σ], ∆ Γ ⊢ Pj1(t1)[σ], ∆ . . . Γ ⊢ Pjm(tm)[σ], ∆
(PiRr)

Γ ⊢ Pi(t
′

), ∆

The CLKIDω system. It consists of the rules from Fig. 1 and Fig. 2, as well
as the case-split rule representing a left-introduction operation for inductive
predicate symbols:

case distinctions (Case Pi)
Γ, Pi(t

′
) ⊢ ∆

where, for each production of the form (1), we define the case distinction

Γ, t
′
= t, Q1(u1), . . . , Qh(uh), Pj1(t1), . . . , Pjm(tm) ⊢ ∆ (2)

such that, for any variable y from (1), we have y 6∈ FV (Γ ∪ ∆ ∪ Pi(t
′
))

(the variable y can be renamed to a fresh one, otherwise). The formulas

Pj1(t1), . . . , Pjm(tm) are said to be case-descendants of the active formula Pi(t
′
).

CLKIDω also includes the substitution rule:

Γ ⊢ ∆ (Subst)
Γ [δ] ⊢ ∆[δ]

The CLKIDω proofs can be represented as finite graphs. Special nodes are the
leaves and buds, representing terminal nodes, and some internal nodes referred
to as companions.

Definition 2.1 (Leaf, Bud). Given a derivation tree, by leaf we understand
any sequent that is the conclusion of a 0-premise inference rule, for example
(Ax) or (= R). A bud is a sequent that is not the conclusion of any rule.

Definition 2.2 (Companion). Any internal node C in a derivation tree is
said to be a companion for a bud B if C and B have the same sequent labelling.

Definition 2.3 (CLKIDω pre-proof tree, Induction function). A
CLKIDω pre-proof tree of a sequent S is a pair (D, R), where D is a finite
derivation constructed with CLKIDω-rules and whose root is S. R is a defined
induction function assigning a companion to every bud node in D.

4

Definition 2.4 (Path in a pre-proof tree). A (finite or infinite) path in
a pre-proof tree (D, R) is a sequence (Si)0≤i<α of sequents from D, for some
α ∈ N∪{∞}, such that Si+1 is a premise of the rule applied on Si (resp. R(Si))
if Si is a non-bud (resp. bud) node.

A pre-proof is a proof if any infinite path satisfies some trace condition.

Definition 2.5 (Trace, Progress point). Let (D, R) be a CLKIDω pre-proof
tree and let (Γi ⊢ ∆i)i≥0 be an infinite path from its graph. A trace following
(Γi ⊢ ∆i)i≥0 is a sequence (τi)i≥0 such that, for all i, we have:

1. τi = Pji(ti) ∈ Γi;
2. if Γi ⊢ ∆i is the conclusion of (Subst) then τi = τi+1[δ], where δ is the

substitution associated with the rule instance;
3. if Γi, t = u ⊢ ∆i is the conclusion of (=L), there is a formula F and variables

x, y such that τi = F [{x 7→ t; y 7→ u}] and τi+1 = F [{x 7→ u; y 7→ t}];
4. if Γi ⊢ ∆i is the conclusion of a case-split rule then either a) τi+1 = τi or b)

τi is the active formula of the rule instance and τi+1 is a case descendant of
τi. In the latter case, i is said to be a progress point of the trace;

5. if Γi ⊢ ∆i is the conclusion of any other rule then τi+1 = τi.

An infinitely progressing trace is a trace with infinitely many progress points.

Definition 2.6 (CLKIDω proof tree). A CLKIDω proof tree is any CLKIDω

pre-proof tree (D, R) that satisfies the following global trace condition: for every
infinite path (Γi ⊢ ∆i)i≥0 in D, there is an infinitely progressing trace following
some tail of the path (Γi ⊢ ∆i)i≥k, for some k ≥ 0.

The soundness of CLKIDω is defined as in [5]. Let I be a non-empty set of
interpretations of sequents. If I ∈ I, we write I |= S to mean that S is true
under I. S is valid iff I |= S, for any I ∈ I. An ordinal trace function can be
defined for a CLKIDω proof in order to interpret as ordinals the τ -values from
the traces following paths from the CLKIDω proof. If I 6|= Si, there is I ′ ∈ I
such that I ′ 6|= Si+1 and α ≤ α′, where α (resp. α′) is the ordinal assigned to
τi under I (resp. τi+1 under I ′). We have α < α′ if i is a progress point. The
ordinals are issued from the usual semantics of inductive predicates, which can
be generated by sequences of approximants (P γ)γ≥0. The interpretation of the
τ -value for ⊢ P (t) under I is the minimal γ such that ⊢ P γ(t) is true under I.

Theorem 2.7 (Soundness [5]). Let us assume an ordinal trace function for a
CLKIDω proof tree and I. If S is the root sequent, then S is valid.

The LKID system. It consists of the rules from Fig. 1 and Fig. 2 as well as
the (Subst) and induction rules. The induction rules are left-introduction rules
for predicate symbols. Compared to case-split rules, a formula Fj is associated
to some inductive symbol Pj , then is instantiated following the schema:

minor premises Γ, Fj(t) ⊢ ∆
(Ind Pj)

Γ, Pj(t) ⊢ ∆

5

A minor premise is built from each production defining a predicate Pi that
is Pj or mutually dependent with Pj . The minor premise corresponding to (1) is

Γ,Q1(u1), . . . Qh(uh), Gj1(t1), . . . , Gjm(tm) ⊢ Fi(t), ∆ (3)

if (1) and Γ, Pj(t) ⊢ ∆ do not share variables (otherwise, the variables from
(1) can be renamed accordingly), and Gj1 , . . . , Gjm , Fi are predicates associated
to Pj1 , . . . , Pjm , Pi, respectively. Γ, Fj(t) ⊢ ∆ is called major premise.

Definition 2.8 (LKID-proof). A finite LKID derivation tree is a proof if all
branches end in an axiom.

Theorem 2.9 ([3]). Any LKID proof can be converted to a CLKIDω proof.

3 Structuring cyclic proofs

Any CLKIDω proof can be structured by transforming it into a (Subst)-free for-
est, then defining a well-founded ordering on its strongly connected components.

Converting proof trees to forests. A proof forest can be built from any
CLKIDω proof tree by deleting its (Subst) steps. Before doing this, any bud S

that is not the premise of a (Subst) step will become one by the following ‘stut-
tering’ transformation, where σid is the identity substitution that instantiates
the free variables from S:

. . . S . . . (rule) becomes
S′

. . .

S (Subst)
S[σid] . . .

(rule)
S′

Then, the subtree rooted by the premise S of any (Subst) rule that is not a
bud node is detached from the proof tree to represent a new derivation tree; a
copy of S is kept as a bud node and premise of the (Subst) rule, as below:

...
S (Subst) becomes
S[δ]

...
S

(new tree)

(bud)

S (Subst)
S[δ]

The premise of any (Subst) rule can now be deleted and a new induction
function R′ is defined. The conclusion S[δ] of (Subst) becomes a bud node for
which R′(S[δ]) = (S′, δ), where S′ is the companion referred to by R(S) in the
CLKIDω tree if S is a bud node; otherwise, S′ is the root of the new CLKIDω

tree and labelled as S. S′ is referred to as the (forest) companion of S[δ].

Definition 3.1 (CLKIDω pre-proof forest). A CLKIDω pre-proof forest of
a sequent S is a pair (F , R′), where R′ is the new induction function and F
is a set of finite derivation trees resulted by deleting the (Subst) rules from the
CLKIDω proof tree of S.

Example 3.2 (The ‘P and Q’ example [12]). Let us consider the productions for
the inductive predicate N , as well as the mutually defined predicates P and Q:

→N(0)

N(x) →N(s(x))

→P (0)

P (x), Q(x, s(x)) →P (s(x))

→Q(x, 0)

Q(x, y), P (x) →Q(x, s(y))

6

The sequent N(x) ⊢ P (x) is the root of the annotated CLKIDω pre-proof,
where R((∗1)) = R((∗2)) = (∗) and R((†1)) = (†).

(PR1)
⊢ P (0)

(= L)
x = 0 ⊢ P (x)

N(x) ⊢ P (x) (*1)
(Subst)

N(x′) ⊢ P (x′) (**)
(PR2),(Wk)

N(s(x′)), N(x′) ⊢ P (s(x′))
(= L)

N(x), x = s(x′), N(x′) ⊢ P (x)
(Case N),(Wk)

N(x), N(x) ⊢ P (x)
(ContrL)

N(x) ⊢ P (x) (*)

For lack of horizontal space, the rightmost branch of the pre-proof tree, an-
notated by (**), is developed separately below.

(QR1)
N(u) ⊢ Q(u, 0)

(= L)
N(u), v = 0 ⊢ Q(u, v)

N(x) ⊢ P (x) (*2)
(Subst)

N(u) ⊢ P (u)

N(u), N(v) ⊢ Q(u, v) (†1)
(Subst)

N(u), N(v′) ⊢ Q(u, v′)
(QR2),(Wk)

N(u), N(v′) ⊢ Q(x, s(v′))
(= L)

N(u), v = s(v′), N(v′) ⊢ Q(u, v)
(Case Q)

N(u), N(v) ⊢ Q(u, v) (†)
(Subst)

N(x′), N(s(x′)) ⊢ Q(x′, s(x′)) (**)

The premise of the (Subst) rule applied on (**) is not a bud and a new tree
is generated. Finally, the pre-proof forest F is made of two trees:

(PR1)
⊢ P (0)

(= L)
x = 0 ⊢ P (x)

((*), {x 7→ x′})

N(x′) ⊢ P (x′)

((†), {u 7→ x′; v 7→ s(x′)})

N(v′), N(s(x′)) ⊢ Q(x′, s(x′))
(PR2),(Wk)

N(s(x′)), N(x′) ⊢ P (s(x′))
(= L)

N(x), x = s(x′), N(x′) ⊢ P (x)
(Case N),(Wk)

N(x), N(x) ⊢ P (x)
(ContrL)

N(x) ⊢ P (x) (*)

(QR1)
N(u) ⊢ Q(u, 0)

(= L)
N(u), v = 0 ⊢ Q(u, v)

((*), {x 7→ u})

N(u) ⊢ P (u)

((†),{v 7→ v′})

N(u), N(v′) ⊢ Q(u, v′)
(QR2),(Wk)

N(u), N(v′) ⊢ Q(u, s(v′))
(= L)

N(u), v = s(v′), N(v′) ⊢ Q(u, v)
(Case Q)

N(u), N(v) ⊢ Q(u, v) (†)

For each bud, the pair value computed by R′ is displayed above the bud. △

Definition 3.3 (Path in a pre-proof forest). A (finite or infinite) path in
the pre-proof forest (F , R′) is a sequence (Si)0≤i<α of sequents from F , for some
α ∈ N ∪ {∞}, such that Si+1 is a premise of the inference rule applied on Si

(resp. S satisfying R′(Si) = (S, δ)) in a non-bud (resp. bud) node.

A finite path (Si)0≤i≤n is bud-free (resp. companion-free) if no Sj with j ∈
[0..n− 1] is a bud (resp. companion).

The traces in pre-proof forests are defined similarly as for pre-proof trees.
Let (F , R′) be a CLKIDω pre-proof forest and (Γi ⊢ ∆i)i≥0 a path in it. A
(forest) trace following (Γi ⊢ ∆i)i≥0 is a sequence (τi)i≥0 such that, for all i, the
conditions from Definition 2.5 are satisfied. In addition, when Γi ⊢ ∆i is a bud
node for which R′(Γi ⊢ ∆i) = (S, δ), we have τi = τi+1[δ].

7

Lemma 3.4. G is a path (resp. trace, progress point) in a pre-proof tree iff it is
also a path (resp. trace, progress point) in the corresponding pre-proof forest.

Proof. By the construction of pre-proof forests. ⊓⊔

Definition 3.5 (CLKIDω proof forest). A CLKIDω proof forest is any
CLKIDω pre-proof forest (F , R′) that satisfies the following global trace condi-
tion: for every infinite path (Γi ⊢ ∆i)i≥0 in F , there is an infinitely progressing
trace following some tail of the path (Γi ⊢ ∆i)i≥k, for some k ≥ 0.

Theorem 3.6. Let us assume a CLKIDω proof tree based on an ordinal trace
function and I. The corresponding CLKIDω pre-proof forest is a proof.

Proof. By Lemma 3.4 and the fact that the CLKIDω proof tree satisfies the
global trace condition. ⊓⊔

Building the partition with ordered parts. Given a pre-proof forest F built
from a proof tree T , we say that a node A is connected to a node B if there is a
path from A to B. The companions found in each strongly connected component
of the graph represented by F and identifying maximal cycles in the graph, will
build a part for the partition P. P will also integrate the singleton containing
the root sequent of T if it is not a companion, as well as the singletons built from
the companions that are not included in any strongly connected component.

Example 3.7. The partition generated for the pre-proof forest built by Exam-
ple 3.2 consists of only one part made of the two companions N(x) ⊢ P (x) and
N(u), N(v) ⊢ Q(u, v). △

Definition 3.8 (dependency relation). Let π1 and π2 be two parts from a
partition P. We say that π2 depends on π1 and write π1 <P π2 if, for any
S1 ∈ π1 and S2 ∈ π2, there is a path from S2 to S1 but no path from S1 to S2.

Lemma 3.9. <P is a terminating ordering relation.

Proof. We show that <P is irreflexive, asymmetric and transitive.

– irreflexivity. For any part π ∈ P and any two distinct sequents S1, S2 ∈ π,
there is a path from S1 to S2 but also a path from S2 to S1. So, π 6<P π.

– asymmetry. If π1 <P π2 then π2 6<P π1, for any distinct π1, π2 ∈ P. Other-
wise, the elements of π1 and π2 are in the same strongly connected compo-
nent.

– transitivity. Assume that π1, π2, π3 ∈ P such that π1 <P π2 and π2 <P π3.
Then there exist S1 ∈ π1, S2 ∈ π2 and S3 ∈ π3 such that there are two paths
leading S1 to S2, and S2 to S3, respectively. Their concatenation is a path
leading S1 to S3. On the other hand, there is no sequence followed by a trace
leading S3 to S1. Otherwise, S1, S2 and S3 would be in the same strongly
connected component, hence in the same part. We conclude that π1 <P π3.

<P is also terminating (well-founded) since P has a finite number of parts. ⊓⊔

8

4 The LKID∼ system

We define LKID∼ as the extension of LKID with the (PInd)-rule:

companions axioms
S ∈ π (PInd π)

S

The rule requires that S be a sequent from the part π included in a partition
P computed for some CLKIDω forest proof. For each terminal node or companion
N for which there exists a bud- and companion-free path leading a π-sequent to
N , we will consider as premise for (PInd):

– N if it is an axiom, or
– the axiom C(N) ⊢ C(N) if N is a companion ∈ π, or
– the axiom C(N ′) ⊢ C(N ′) if N is a bud and R′(N) = (N ′, δ), N ′ ∈ π, or
– N if it is a companion 6∈ π, or
– N ′ if N is a bud, R′(N) = (N ′, δ) and N ′ 6∈ π.

Any LKID∼ derivation is a proof if all branches end in an axiom.

Example 4.1. The LKID∼ proof of N(x) ⊢ P (x) starts with the application
of (PInd), issued from the structural analysis of the proof forest F from Ex-
ample 3.2. According to Example 3.7, there is only one partition for F . The
premises of (PInd) are built only from the axioms ⊢ P (0), N(u) ⊢ Q(u, 0), and
C ⊢ C, where C is the clause interpreting each of the sequents N(x′) ⊢ P (x′),
N(v′), N(s(x′)) ⊢ Q(x′, s(x′)), N(u) ⊢ P (u), and N(u), N(v′) ⊢ Q(u, v′). △

Theorem 4.2. LKID∼ and CLKIDω are equivalent.

Proof. The ‘⇒’ part. We follow similar arguments as in [4]. The transformation
of the (Ind) rule is described by Lemma 7.3.1. The (PInd π) rule is translated
into the strongly connected component corresponding to the part π computed for
a previous CLKIDω forest. As in the proof of Theorem 7.3.2, the set of strongly
connected components of the resulted CLKIDω forest F is the disjoint union of
the strongly connected components introduced by the (Ind) and (PInd) rules.
Hence, Proposition 7.2.3 can be applied for F and conclude that it is a proof.

The ‘⇐’ part. Given a CLKIDω proof D, it is firstly transformed into a
proof forest F , then into a successive applications of (PInd) rules using parts
from F and starting with the root sequent of D. The resulted LKID∼ derivation,
denoted by E , is finite because i) for any application of a (PInd π) rule, the part
π′ of any companion from its premises is smaller (w.r.t. <P) than π, and ii) <P

is a terminating ordering, by Lemma 3.9. ⊓⊔

5 The LKIDe system

Given the partition P for a CLKIDω proof, the LKIDe system extends LKID
to deal with a new predicate symbol Pπ defined for each part π ∈ P. The set
ΦPπ

has a unique production of the form F (x) → Pπ(x), where F (x) is the

9

conjunction formula
∧

S∈π C(S) and x is its vector of free variables. The other
productions of ΦPπ

are of the form Pπ(sj) → Pπ(ti) or → Pπ(tk). Productions
using non-atomic premises have already been proposed by Martin-Löf [7] for
iterated inductive definitions.

The conclusion of the (Ind) rule extended for Pπ is the sequent Pπ(x) ⊢ F (x)
and the two rightmost premises are axioms (they are further omitted), the first
derived from the production F (x) → Pπ(x) and the second as the major premise:

F (sj) ⊢ F (ti) ... ⊢ F (tk) ... F (x) ⊢ F (x) F (x) ⊢ F (x)
(Ind Pπ)

Pπ(x) ⊢ F (x)

The LKIDe system also integrates an axiom rule for Pπ:

(Ax Pπ)
⊢ Pπ(x)

The (NInd Pπ) rule encodes the Noetherian induction. Defined below on the left
of ≡, it is the abbreviation of the LKIDe derivation on the right of ≡:

F (sj) ⊢ F (ti)... ⊢ F (tk)...
(NInd Pπ) ≡

⊢ F (x)

F (sj) ⊢ F (ti)... ⊢ F (tk))...
(Ind Pπ)

Pπ(x) ⊢ F (x)
(Ax Pπ)

⊢ Pπ(x)
(Cut)

⊢ F (x)

Definition 5.1 (LKIDe-proof). A finite LKIDe derivation tree is a proof if
all branches end in an axiom.

Generating the productions for Pπ. Each production for Pπ corresponds
to an induction case of the induction schema built for ⊢ F (x), which is a com-
position of individual induction schemas built for the sequents ⊢ C(S), S ∈ π.

Building the individual induction schemas. Each node from the pre-proof forest
will be decorated by a substitution. Any premise from a case-split rule, of the
form (2), will be decorated by {x 7→ t|(x 7→ t) ∈ µ and x is a variable from t

′
},

where µ is the mgu of t
′
and t such that t

′
µ = tµ. In the following, we assume

that t and t
′
are constructor terms built only from variables and free constructor

symbols, i.e. there is no equality relation between two distinct constructor sym-
bols. In this case, the mgu relation can be computed using syntactic unification
algorithms [2]. The other nodes will be decorated with identity substitutions
that instantiate their free variables.

Given the sequents S from π and B from a bud-free path starting with S,
called cumulative path, we can build a unique cumulative substitution.

Definition 5.2 (Cumulative substitution). Given a cumulative path (Γi ⊢
∆i)i∈[0..n], its cumulative substitution θ is

{σ0 . . . σn−1 | σi is the substitution decorating (Γi ⊢ ∆i), ∀i ∈ [0..n− 1]}

Example 5.3. 0 and s are the free constructor symbols for naturals. The substi-
tutions associated to the left and right premises of the (Case N) rule are {x 7→ 0}
and {x 7→ s(x′)}, and for (Case Q) are {v 7→ 0} and {v 7→ s(v′)}, respectively.

10

The cumulative substitutions computed for the cumulative paths leading
the root sequents to the terminal nodes of the pre-proof forest built in Ex-
ample 3.2 are: i) {x 7→ 0} for ⊢ P (0), ii) {x 7→ s(x′)} for N(x′) ⊢ P (x′)
and N(x′), N(s(x′)) ⊢ Q(x′, s(x′)), iii) {v 7→ 0} for N(u) ⊢ Q(u, 0), and iv)
{v 7→ s(v′)} for N(u) ⊢ P (u) and N(u), N(v′) ⊢ Q(u, v′). △

Lemma 5.4. If θB is the cumulative substitution of the cumulative path
(Si)0≤i≤n leading S to B (i.e., S0 ≡ S and Sn ≡ B) i) the rules applied at
each step i ∈ [0..n− 1] can be reapplied to build a new path (S′

i)0≤i≤n such that
S′
0 ≡ S0[θB], S

′
n ≡ B, ii) for any i ∈ [1..n − 1], there is a substitution θi such

that S′
i[θi] ≡ Si, and iii) the (case-split) rules do not instantiate free variables.

Proof. We will perform by induction on the length of the path leading S0 to B.
If n = 0, then B ≡ S0 and θB is the identity substitution.

If n > 0, let us assume that the path p of length n and leading S0 to B

has the form S0, . . . , Sn−1, B. Also, let θSn−1
be the cumulative substitution for

S0, . . . , Sn−1. By induction hypothesis, we assume that any path of length n− 1
satisfies the property, in particular S0, . . . , Sn−1. So, the steps from S0, . . . , Sn−1

can be reapplied to build the path S′′
0 , . . . , S

′′
n−1 such that S′′

0 ≡ S0[θSn−1
],

S′′
n−1 ≡ Sn−1 and for i ∈ [1..n−2], there is a substitution θi such that S′′

i [θ
′
i] ≡ Si.

Let σ be the substitution decorating Sn and θB the cumulative substitution
for p. σ can be either an identity substitution, or an mgu substitution instan-
tiating free variables from Sn−1. For the first case, θB equals θSn−1

and the
re-execution of the rule applied at the step n− 1 of p on S′′

n−1 generates B. In
the second case, θB is the substitution composition θSn−1

σ. The path (S′
i)0≤i≤n

is defined as S′
i ≡ S′′

i [σ], for any i ∈ [0..n− 1], and S′
n ≡ B. No instantiation of

free variables is performed when the case-split rule is applied on S′′
n−1. ⊓⊔

Example 5.5. Let us assume the cumulative path pre-proof forest given in Ex-
ample 3.2, for which the sequents are decorated with substitutions (except-
ing the last sequent): (N(x) ⊢ P (x), {x 7→ x}), (N(x), N(x) ⊢ P (x), {x 7→
s(x′)}), (N(x), x = s(x′), N(x) ⊢ P (x), {x 7→ x;x′ 7→ x′}), (N(s(x′)), N(x′) ⊢
P (s(x′)), {x′ 7→ x′}), (N(x′) ⊢ P (x′)).

The cumulative substitution is {x 7→ s(x′)} and the new path is:
(N(s(x′)) ⊢ P (s(x′))), (N(s(x′)), N(s(x′)) ⊢ P (s(x′))), (N(s(x′)), s(x′) =
s(x′), N(s(x′)) ⊢ P (s(x′))), (N(s(x′)), N(x′) ⊢ P (s(x′))), (N(x′) ⊢ P (x′)). △

An induction schema for a sequent S is a collection of induction cases that
attach a (potentially empty) set of sequents, called induction hypotheses, to an
instance of S, called induction conclusion.

Definition 5.6 (individual induction schema). Let S ∈ π (π ∈ P). For each
companion-free cumulative path leading S to (a terminal node or companion) N ,
we build an induction case of the individual induction schema for ⊢ C(S) having:

– ⊢ C(S)[θN] as induction conclusion built with the cumulative substitution θN ,
– ⊢ C(SN)[δ] as induction hypothesis if N is a bud node for which R′(N) =

(SN , δ) and SN ∈ π, or ⊢ C(N) if N is a companion from π.

11

Example 5.7. Considering the part from Example 3.7, let us denote by C1(x)
(resp. C2(u, v)) the clause C(N(x) ⊢ P (x)) (resp. C(N(u), N(v) ⊢ Q(u, v))). By
using the cumulative substitutions from Example 5.3, the induction cases of the
individual induction schema for

– ⊢ C1(x) are: i) ⊢ C1(0), and ii) ⊢ C1(s(x
′)) with the induction hypotheses

⊢ C1(x
′) and ⊢ C2(x

′, s(x′));
– ⊢ C2(u, v) are: i) ⊢ C2(u, 0), and ii) ⊢ C2(u, s(v

′)) with the induction hy-
potheses ⊢ C1(u) and ⊢ C2(u, v

′). △

Generating productions for new predicate symbols. Let πi1...ik be a part built
on k(> 0) sequents Si1 , . . . , Sik , where i1, . . . , ik ∈ [1..k] is a permutation of the
values from [1..k]. Let also Cip(xip) be C(Sip) (p ∈ [1..k]) with xip the vector

of free variables from C(Sip) and D1
ip
× . . . ×D

jip
ip

the domain of Cip . The new

inductive predicate symbol Pπi1...ik
with the domain D1

i1
× . . . × D

ji1
i1

× . . . ×

D1
ik
× . . .×D

jik
ik

is defined by the smallest set of productions of the form

premises → Pπi1...ik
(t1i1 , . . . , t

ji1
i1
, . . . , t1ik , . . . , t

jik
ik

) (4)

Each of the sequents ⊢ Cip(t
1
i1
, . . . , t

ji1
i1
, . . . , t1ip , . . . , t

jip
ip

) (p ∈ [1..k]) defined

on every (sub)vector given as argument to the conclusion of (4) is the conclusion
of an individual induction case defined for ⊢ Cip(xip). For each of its attached
induction hypotheses, there is a premise of (4) defined as follows. If the induction
hypothesis is the sequent ⊢ Cir (tir) (r ∈ [1..k]), the premise is the induction
conclusion of (4) for which the rth (sub)vector is replaced by tir . The premises
that replace distinct (sub)vectors are factorized into a single premise.

Example 5.8. Pπ12
is defined by the productions issued from the individ-

ual induction schemas for ⊢ C1(x) and ⊢ C2(u, v), computed at Exam-
ple 5.7: → Pπ12

(0, u, 0), Pπ12
(x′, x′, s(x′)) → Pπ12

(s(x′), u, 0), Pπ12
(u, u, v′) →

Pπ12
(0, u, s(v′)), and Pπ12

(x′, x′, s(x′)), Pπ12
(u, u, v′) → Pπ12

(s(x′), u, s(v′)). △

Applying the (NInd) rule on a part sequent. The proof of Γ ⊢ ∆ ∈ πi1...ik
starts by applying a (Cut) using the conjunction formula of πi1...ik :

(∨L),(¬L),(Ax)
Γ, C(Γ ⊢ ∆) ⊢ ∆

(∧L),(Wk)∧
S∈πi1...ik

C(S), Γ ⊢ ∆

(the induction cases)
(NInd Pπi1...ik

)
⊢
∧

S∈πi1...ik

C(S)
(Wk)

Γ ⊢
∧

S∈πi1...ik

C(S), ∆
(Cut)

Γ ⊢ ∆

Each induction case is further transformed into the individual induction cases
that built it, by firstly deleting the conjunction symbols from the antecedent us-
ing successive applications of (∧L) rules, then the conjunction symbols from the
succedent using the (∧R) rule. The antecedent formulas from each new sequent,
that are not induction hypotheses attached to the induction conclusion from the
succedent, are deleted by the (Wk) rule. The induction step is summarized as:

12

{C1 . . . Cp ⊢ C | ‘⊢ C attaches ⊢ C1 . . . ⊢ Cp’ is an individual case} (NInd Pπi1...ik
),

(∧L),(∧R),(Wk)
⊢ Ci1(x

1

i1
, . . . , x

ji1
i1

) ∧ . . . ∧ Cik (x
1

ik
, . . . , x

jik
ik

)

Example 5.9. The LKID derivation of N(x) ⊢ P (x) from Example 3.2 starts as

(Ax)
N(x), P (x) ⊢ P (x)

(Ax)
N(x) ⊢ N(x), P (x)

(¬L)
N(x),¬N(x) ⊢ P (x)

(∨L)
N(x), C1(x)(≡ ¬N(x) ∨ P (x)) ⊢ P (x)

(Wk)
N(x), C1(x), C2(u, v) ⊢ P (x)

(∧L)
N(x), C1(x) ∧ C2(u, v) ⊢ P (x)

(†)
(Wk)

N(x) ⊢ C1(x) ∧ C2(u, v), P (x)
(Cut)

N(x) ⊢ P (x)

(NInd Pπ12
) is applied on (†) using the productions from Example 5.8:

⊢ C1(0) ∧ C2(u, 0) C1(x
′) ∧ C2(x

′, s(x′)) ⊢ C1(s(x
′)) ∧ C2(u, 0) (*) (**)

(NInd Pπ12
)

⊢ C1(x) ∧ C2(u, v) (†)

The derivations of its premises are

⊢ C1(0) ⊢ C2(u, 0)
(∧R)

⊢ C1(0) ∧ C2(u, 0)

C1(x
′), C2(x

′, s(x′)) ⊢ C1(s(x
′))

⊢ C2(u, 0)
(Wk)

C1(x
′), C2(x

′, s(x′)) ⊢ C2(u, 0)
(∧R)

C1(x
′), C2(x

′, s(x′)) ⊢ C1(s(x
′)) ∧ C2(u, 0)

(∧L)
C1(x

′) ∧ C2(x
′, s(x′)) ⊢ C1(s(x

′)) ∧ C2(u, 0)

⊢ C1(0)
(Wk)

C1(u), C2(u, v
′) ⊢ C1(0) C1(u), C2(u, v

′) ⊢ C2(u, s(v
′))

(∧R)
C1(u), C2(u, v

′) ⊢ C1(0) ∧ C2(u, s(v
′))

(∧L)
C1(u) ∧ C2(u, v

′) ⊢ C1(0) ∧ C2(u, s(v
′)) (*)

C1(x
′), C2(x

′, s(x′)) ⊢ C1(s(x
′)) C1(u), C2(u, v

′) ⊢ C2(u, s(v
′))

(∧R),(Wk)
C1(x

′), C2(x
′, s(x′)), C1(u), C2(u, v

′) ⊢ C1(s(x
′)) ∧ C2(u, s(v

′))
(∧L)

C1(x
′) ∧ C2(x

′, s(x′)), C1(u) ∧ C2(u, v
′) ⊢ C1(s(x

′)) ∧ C2(u, s(v
′)) (**)

Proving the individual induction cases. The derivation of the individual
case C1, . . . , Cp ⊢ C(Γ ⊢ ∆)[θ] for Γ ⊢ ∆ using the cumulative substitution θ is

(∨L),(¬L),(Ax)
Γj , Cj [δ] ⊢ ∆j

(∀L)
Γj , Cj ⊢ ∆j

(Wk)
C1, . . . , Cj , . . . , Cp, Γj ⊢ ∆j

comp./bud with comp. in πi1...ik

proof of comp.

Γj ⊢ ∆j
(Subst)

Γj [δ] ⊢ ∆j [δ]
(Wk)

other bud

proof of comp.

Γj ⊢ ∆j
(Wk)

other comp.
(Ax)

leaf

.

.

.
(following the companion (comp.)-free cumulative paths with θ as cumulative substitution)

C1, . . . , Cp, Γ [θ] ⊢ ∆[θ]
(∨R),(¬R)

C1, . . . , Cp ⊢ C(Γ ⊢ ∆)[θ]

13

The derivation of C1, . . . , Cp, Γ [θ] ⊢ ∆[θ] starts by executing the rules from
the companion-free cumulative paths of the CLKIDω pre-proof forest leading Γ ⊢
∆ to the terminal nodes and companions for which the cumulative substitution
is θ, as shown in the proof of Lemma 5.4. We perform a case analysis on them.

The LKIDe derivation for a leaf is (Ax). For any companion Γj ⊢ ∆j or bud
whose companion Γj ⊢ ∆j is not in πi1...ik , the derivation is developed as for
Γ ⊢ ∆. The sequent corresponding to any other node has in the antecedent a
clause C that interprets the node; it is proved by decomposing C, as previously.

Example 5.10. The derivations of the individual induction cases ⊢ C1(0) and
⊢ C2(u, 0) from Example 5.9, after expansion to their clausal definition, are:

(Ax)
⊢ P (0)

(∨R),(Wk)
⊢ ¬N(0) ∨ P (0)

(Ax)
⊢ Q(u, 0)

(∨R),(Wk)
⊢ ¬N(u) ∨ ¬N(0) ∨Q(u, 0)

The derivation of the case C1(u), C2(u, v
′) ⊢ C2(u, s(v

′)) is:

(**)

(Ax)
P (u) ⊢ ¬N(u), P (u)

(Ax)
¬N(u) ⊢ ¬N(u), P (u)

(∨L)
¬N(u) ∨ P (u) ⊢ ¬N(u), P (u)

(QR2),(Wk)
¬N(u) ∨ P (u),¬N(u) ∨ ¬N(v′) ∨Q(u, v′) ⊢ ¬N(u),¬N(v′), Q(u, s(v′))

(∨R)
¬N(u) ∨ P (u),¬N(u) ∨ ¬N(v′) ∨Q(u, v′) ⊢ ¬N(u) ∨ ¬N(v′) ∨Q(u, s(v′))

where the derivation of the leftmost sequent, denoted by (**), is

(∨L), (Ax)
¬N(u) ∨ ¬N(v′) ∨Q(u, v′) ⊢ ¬N(u),¬N(v′), Q(u, v′) (**)

The derivation of C1(x
′), C2(x

′, s(x′)), N(x′) ⊢ C1(s(x
′)) is done similarly. △

Lemma 5.11. (NInd) is locally sound and implements Noetherian induction.

Theorem 5.12. LKIDe and CLKIDω are equivalent.

Proof. The ‘ ⇒′ part. (Ind) using new predicate symbols is an instance of
LKID’s (Ind), hence translatable into CLKIDω. The application of (Ax Pπ)
on ⊢ Pπ(x) is translated to the application of (PπR) using the production∧

S∈π C(S) → Pπ(x) which yields the sequent ⊢
∧

S∈π C(S). By decomposing
it using conveniently the (∧R), (∨R) and (¬R) rules, we get the sequents ⊢ S,
S ∈ π. Each of them is proved by the CLKIDω (forest) proof of π.
The ‘ ⇐′ part. By generating the partition P from the CLKIDω proof T , then
applying recursively the procedure for developing the derivation of a part sequent
starting with the root of T . The process terminates as <P is terminating. ⊓⊔

Corollary 5.13. Noetherian induction can represent structural and cyclic in-
duction reasoning performed by LK extended with new inductive predicates.

Proof. By Theorems 4.2 and 5.12 since our procedure converts any CLKIDω

proof to an LKIDe proof using only (NInd)-based induction reasoning. ⊓⊔

14

6 Conclusions and perspectives

We have shown that structural and cyclic induction reasoning in FOLID are
convertible and are subsumed by Noetherian induction. Compared to LKID,
LKIDe can generate proofs that combine the advantages of structural and cyclic
reasoning by the dynamic definition of new induction schemas. Our procedure
transforms effectively cyclic to structural proofs and does not require unfolding
operations as in [8] or as suggested in [3,4].

These results open the perspective for validating CLKIDω-like proofs by
(higher-order) certification environments integrating the Noetherian induction
principle, like Coq [11], by using similar certification methodologies as for im-
plicit induction [10]. Also, it would be interesting to extend CLKIDω for inte-
grating reductive-free cycles [9].

References

1. P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook
of Mathematical Logic, pages 739–782. North Holland, 1977.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. J. Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Pro-
ceedings of TABLEAUX-14, volume 3702 of LNAI, pages 78–92. Springer-Verlag,
2005.

4. J. Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD
thesis, University of Edinburgh, November 2006.

5. J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem
prover. In R. Jhala and A. Igarashi, editors, Proceedings of Programming Languages
and Systems - 10th Asian Symposium (APLAS-10), volume 7705 of LNCS, pages
350–367. Springer, 2012.

6. G. Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39:176–210, 1935.

7. P. Martin-Löf. Haupstatz for the intuitionistic theory of iterated inductive defini-
tions. In Proceedings of the Second Scandinavian Logic Symposium, pages 179–216.
North-Holland, 1971.

8. C. Sprenger and M. Dam. On the structure of inductive reasoning: Circular and
tree-shaped proofs in the µ calculus. In A. Gordon, editor, Foundations of Software
Science and Computation Structures, volume 2620 of Lecture Notes in Computer
Science, pages 425–440. Springer Berlin / Heidelberg, 2003.

9. S. Stratulat. A unified view of induction reasoning for first-order logic. In
A. Voronkov, editor, Turing-100 (The Alan Turing Centenary Conference), vol-
ume 10 of EPiC Series, pages 326–352. EasyChair, 2012.

10. S. Stratulat and V. Demange. Automated certification of implicit induction proofs.
In CPP’2011 (First International Conference on Certified Programs and Proofs),
volume 7086 of Lecture Notes Computer Science, pages 37–53. Springer Verlag,
2011.

11. The Coq Development Team. The Coq Reference Manual - version 8.4. INRIA,
2013.

12. C.-P. Wirth. Descente infinie + Deduction. Logic Journal of the IGPL, 12(1):1–96,
2004.

15

A The proof of Lemma 5.11

Let π be a part of the partition P from a proof forest F built from a CLKIDω

proof tree T , based on the ordinal trace function f and the non-empty set of
interpretations I.

By absurd, assume that (NInd Pπ) is applied in some CLKIDe derivation D
with valid premises but false conclusion. The conclusion is ⊢ F (x)(≡

∧
S∈π C(S)),

hence there is a sequent S ∈ π that is false. By Definition 3.5, the definition of
ordinal trace functions and Lemma 3.4, there is an infinite path Si≥0 of false
sequents in F starting with S, and an infinitely progressing trace following some
tail of Si≥k, for some k ≥ 0. Since F has a finite number of nodes, there is a
companion S′ that is infinitely often visited in the path. Since any companion
from F is in a part of P, we consider π′ ∈ P such that S′ ∈ π′.

The rule (NInd Pπ′) should be also applied in D, otherwise S′ cannot occur
infinitely in Si≥k. Its conclusion ⊢ F ′(x′)(≡

∧
S∈π′ C(S)) is false. Let Sk1

be the
first occurence of S′ in Si≥k and Sk2

, with k1 < k2, the occurence of the next
visited companion S′′ ∈ π′ in Si≥k. Let also assume that the τ -value of Sk1

and Sk2
in the trace is αk1

and αk2
, respectively. There should be a premise of

(NInd Pπ′), built from a companion-free cumulative path ∈ F leading a false
cumulative instance of S′ to a false instance of S′′ or some bud node whose
companion is S′′, by Lemma 5.4. We denote by F ′(tk2

) ⊢ F ′(tk1
) the instance

of the premise leading Sk1
to Sk2

and notice that both F ′(tk2
) and F ′(tk1

) are
false. We associate to the term vectors tk1

and tk2
the weights αk1

and αk2
,

respectively. We proceed similarly for Sk2
as for Sk1

, as well as for any future
occurrence of companions from π′ in Si≥k.

Let us define E ′ = {tp| Sp is an occurrence of S′ in Si≥k1
and F ′(tp) has

C(Sp) as one of its conjuncts}. We have that

(∀tp ∈ E ′,¬F ′(tp) ⇒ (∃tj ∈ E ′, tj < tp ∧ ¬F ′(tj))) (5)

i) by taking, for an arbitrary tp, the vector tj such that Sj is the next occur-
rence of S′ in Si≥k1

that follows Sp for which there is a progress point between
Sj and Sp, ii) by successively considering the companions from π′ in Sj≤i≤p,
and iii) by using the definition of ordinal trace functions and the transitivity
property of <. The Noetherian induction principle

∀φ, (∀m ∈ E , (∀k ∈ E , k < m⇒ φ(k)) ⇒ φ(m)) ⇒ ∀p ∈ E , φ(p)

can be applied on the contrapositive version of (5) when instantiating E by
E ′ and φ by F ′, to conclude that ∀p ∈ E ′, F ′(p). Contradiction since F ′(p) is
false, for any p ∈ E ′. ⊓⊔

16

