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We analyse dissipative boundary conditions for nonlinear hyperbolic systems in one space dimension. We show that a previous known sufficient condition for exponential stability with respect to the C 1 -norm is optimal. In particular a known weaker sufficient condition for exponential stability with respect to the H 2 -norm is not sufficient for the exponential stability with respect to the C 1 -norm. Hence, due to the nonlinearity, even in the case of classical solutions, the exponential stability depends strongly on the norm considered. We also give a new sufficient condition for the exponential stability with respect to the W 2,p -norm. The methods used are inspired from the theory of the linear time-delay systems and incorporate the characteristic method.

Introduction

Let n be a positive integer. We are concerned with the following nonlinear hyperbolic system: u t + F (u)u x = 0 for every (t, x) ∈ [0, +∞) × [0, 1], (

where u : [0, +∞) × [0, 1] → R n and F : R n → M n,n (R). Here, as usual, M n,n (R) denotes the set of n × n real matrices. We assume that F is of class C ∞ , F (0) has n distinct real nonzero eigenvalues. Then, replacing, if necessary, u by M u where M ∈ M n,n (R) is a suitable invertible matrix, we may assume that

F (0) = diag(Λ 1 , • • • , Λ n ) (1.2) with Λ i ∈ R, Λ i = Λ j for i = j, i ∈ {1, • • • , n}, j ∈ {1, • • • , n}. (1.3) 
For simple presentation, we assume that,

Λ i > 0 for i = 1, • • • , n. (1.4) 
The case where Λ i changes sign can be worked out similarly as in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF].

In this article, we consider the following boundary condition u(t, 0) = G u(t, 1) for every t ∈ [0, +∞), (1.5) where the map G : R n → R n is of class C ∞ and satisfies

G(0) = 0, (1.6) 
which implies that 0 is a solution of

u t + F (u)u x = 0 for every (t, x) ∈ [0, +∞) × [0, 1], u(t, 0) = G u(t, 1)
for every t ∈ [0, +∞).

(1.7)

In this paper, we are concerned about conditions on G for which this equilibrium solution 0 of (1.7) is exponentially stable for (1.7).

We first review known results in the linear case, i.e., when F and G are linear. In that case, (1.7) is equivalent to

φ i (t) = n j=1 K ij φ j (t -r j ) for i = 1, • • • , n, (1.8) 
where K = G ′ (0) ∈ M n×n (R) (1.9) and φ i (t) := u i (t, 0), r i := 1/Λ i for i = 1, • • • , n.

(1.10)

Hence (1.7) can be viewed as a linear time-delay system. It is known from the work of Hale and Verduyn Lunel [5, Theorem 3.5 on page 275] on delay equations that 0 is exponentially stable (in L 2 ((0, 1); R n )) for (1.8) if and only if there exists δ > 0 such that det Id n -diag(e -r 1 z , • • • , e -rnz ) K = 0, z ∈ C =⇒ ℜ(z) ≤ -δ.

(1.11)

For many applications it is interesting to have an exponential stability of (1.8) which is robust with respect to the small changes on the Λ i 's (or, equivalently, on the r i 's), i.e., the speeds of propagation. One says that the exponential stability of 0 for (1.8) is robust with respect to the small changes on the r ′ i s if there exists ε ∈ (0, Min{r 1 , r 2 , • • • , r n }) such that, for every (r 1 , r2 , • • • , rn ) ∈ R n such that

|r i -r i | ≤ ε for i = 1, • • • , n, (1.12) 
0 is exponentially stable (in L 2 ((0, 1); R n )) for

φ i (t) = n j=1 K ij φ j (t -rj ) for i = 1, • • • , n. (1.13) 
Silkowski (see, e.g., [START_REF] Hale | Introduction to functional-differential equations[END_REF]Theorem 6.1 on page 286]) proved that 0 is exponentially stable (in L 2 ((0, 1); R n )) for (1.8) with an exponential stability which is robust with respect to the small changes on the r i 's if and only if

ρ0 K < 1, (1.14) 
Here ρ0 (K) := max ρ diag(e iθ 1 , • • • , e iθn )K ;

θ i ∈ R , (1.15) 
where, for M ∈ M n×n (R), ρ(M ) denotes the spectral radius of M . In fact, Silkowski proved that, if the r i 's are rationally independent, i.e., if

n i=1 q i r i = 0 and q := (q 1 , • • • , q n ) T ∈ Q n =⇒ (q = 0) , (1.16) 
then 0 is exponentially stable (in L 2 ((0, 1); R n )) for (1.8) if and only if (1.14) holds. In (1.16) and in the following, Q denotes the set of rational numbers.

The nonlinear case has been considered in the literature for more than three decades. To our knowledge, the first results are due to Slemrod in [START_REF] Slemrod | Boundary feedback stabilization for a quasilinear wave equation[END_REF] and Greenberg and Li in [START_REF] Greenberg | The effect of boundary damping for the quasilinear wave equation[END_REF] in two dimensions, i.e., n = 2. These results were later generalized for the higher dimensions. All these results rely on a systematic use of direct estimates of the solutions and their derivatives along the characteristic curves. The weakest sufficient condition in this direction was obtained by Qin [START_REF] Hu | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF], Zhao [START_REF] Chun | Classical solutions for quasilinear hyperbolic systems[END_REF] and Li [7, Theorem 1.3 on page 173]. In these references, it is proved that 0 is exponentially stable for system (1.7) with respect to the C 1 -norm if ρ∞ K < 1.

(1.17)

Here and in the following

ρp (M ) := inf ∆M ∆ -1 p ; ∆ ∈ D n,+ for every M ∈ M n×n (R), (1.18) 
where D n,+ denotes the set of all n×n real diagonal matrices whose entries on the diagonal are strictly positive, with, for 1 ≤ p ≤ ∞,

x p := n i=1 |x i | p 1/p ∀x := (x 1 , • • • , x n ) T ∈ R n , ∀p ∈ [1, +∞), (1.19) x ∞ := max {|x i |; i ∈ {1, • • • , n}} ∀x := (x 1 , • • • , x n ) T ∈ R n , (1.20) 
M p := max

x p =1 M x p ∀M ∈ M n×n (R).
(1.21) (In fact, in [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF][START_REF] Hu | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF][START_REF] Chun | Classical solutions for quasilinear hyperbolic systems[END_REF], K is assumed to have a special structure; however it is was pointed out in [START_REF] De Halleux | Boundary feedback control in networks of open channels[END_REF] that the case of a general K can be reduced to the case of this special structure.)

We will see later that (1.17) is also a sufficient condition for the exponential stability with respect to the W 2,∞ -norm (see Theorem 3). Robustness issues of the exponential stability was studied by Prieur et al. in [START_REF] Prieur | Robust boundary control of systems of conservation laws[END_REF] using again direct estimates of the solutions and their derivatives along the characteristic curves.

Using a totally different approach, which is based on a Lyapunov stability analysis, a new criterion on the exponential stability is obtained in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]: it is proved in this paper that 0 is exponentially stable for system (1.7) with respect to the H 2 -norm if ρ2 K < 1.

(1.22)

This result extends a previous one obtained in [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] where the same result is established under the assumption that n = 2 and F is diagonal. See also the prior works [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF] by Rauch and Taylor, and [START_REF] Xu | Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems[END_REF] by Xu and Sallet in the case of linear hyperbolic systems. It is known (see [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]) that ρ0 (M ) ≤ ρ2 (M ) ≤ ρ∞ (M ) and that the second inequality is strict in general if n ≥ 2: for n ≥ 2 there exists The Lyapunov approach introduced in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] has been shown in [START_REF] Coron | Dissipative boundary conditions for onedimensional quasi-linear hyperbolic systems: Lyapunov stability for the C 1 -norm[END_REF] to be applicable to the study the exponential stability with respect to the C 1 -norm. It gives a new proof that (1.17) implies that 0 is exponentially stable for system (1.7) with respect to the C 1 -norm.

M ∈ M n,n (R) such that ρ2 (M ) < ρ∞ (M ). ( 1 
The result obtained in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] is sharp for n ≤ 5. In fact, they established in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] the following result: ρ0 = ρ2 for n = 1, 2, 3, 4, 5.

For n ≥ 6, they showed that there exists M ∈ M n,n (R) such that ρ0 (M ) < ρ2 (M ).

Taking into account these results, a natural question is the following: does ρ2 (K) < 1 implies that 0 is exponentially stable for (1.7) with respect to the C 1 -norm? We give a negative answer to this question and prove that the condition ρ∞ (K) < 1 is, in some sense, optimal for the exponential stability with respect to the C 1 -norm (Theorem 2). Hence, different norms require different criteria for the exponential stability with respect to them. Let us emphasize that this phenomenon is due to the nonlinearities: it does not appear when F is constant. We then show that the condition ρp (K) < 1 is sufficient to obtain the exponential stability with respect to the W 2,p -norm (Theorem 3). The method used in this paper is strongly inspired from the theory of the linear time-delay systems and incorporates the characteristic method.

In order to state precisely our first result, we need to recall the compatibility conditions in connection with the well-posedness for the Cauchy problem associated to (1.7). Let

m ∈ N. Let H : C 0 ([0, 1]; R n ) → C 0 ([0, 1]; R n ) be a map of class C m . For k ∈ {0, 1, . . . , m}, we define, by induction on k, D k H : C k ([0, 1]; R n ) → C 0 ([0, 1]; R n ) by (D 0 H)(u) := H(u) ∀u ∈ C 0 ([0, 1]; R n ), (1.24) (D k H)(u) := (D k-1 H ′ )(u) F (u)u x ∀ u ∈ C k ([0, 1]; R n ), ∀k ∈ {0, 1, . . . , m}. (1.25) For example, if m = 2, (D 1 H)(u) = H ′ (u)F (u)u x ∀u ∈ C 1 ([0, 1]; R n ), (1.26) 
(D 2 H)(u) = H ′′ (u) F (u)u x , F (u)u x + H ′ (u) F ′ (u)F (u)u x u x , + H ′ (u)F (u) (F ′ (u)u x )u x + F (u)u xx ∀u ∈ C 2 ([0, 1]; R n ). (1.27) Let I be the identity map from C 0 ([0, 1]; R n ) into C 0 ([0, 1]; R n ) and let G : C 0 ([0, 1]; R n ) → C 0 ([0, 1]; R n ) be defined by G(v) (x) = G v(x) for every v ∈ C 0 ([0, 1]; R n ) and for every x ∈ [0, 1]. (1.28) Let u 0 ∈ C m ([0, 1]; R n ).
We say that u 0 satisfies the compatibility conditions of order m if ((

D k I)(u 0 ))(0) = ((D k G)(u 0 ))(1)
for every k ∈ {0, 1, . . . , m}.

(1.29)

For example, for m = 1, u 0 ∈ C 1 ([0, 1]; R n ) satisfies the compatibility conditions of order 1 if and only if 

u 0 (0) = G u(1) , (1.30) 
F u 0 (0) u 0 x (0) = G ′ u(1) F u 0 (1) u 0 x (1). ( 1 
∈ C m ([0, T ] × [0, 1]; R n ) of (1.7) satisfying the initial condition u(0, •) = u 0 . Moreover, u C m ([0,T ]×[0,1];R n ) ≤ C u 0 C m ([0,1];R n ) . (1.32) Remark 1.
In fact [START_REF] Li | Boundary value problems for quasilinear hyperbolic systems[END_REF]Chapter 4] is dealing only with the case m = 1; however the proof given there can be adapted to treat the case m ≥ 2.

We can now define the notion of exponential stability with respect to the C m -norm.

Definition 1. The equilibrium solution u ≡ 0 is exponentially stable for system (1.7) with respect to the C m -norm if there exist ε > 0, ν > 0 and C > 0 such that, for every u 0 ∈ C m ([0, 1]; R n ) satisfying the compatibility conditions of order m (1.29) and such that

u 0 C m ([0,1];R n ) ≤ ε, there exists one and only one solution u ∈ C m ([0, +∞) × [0, 1]; R n ) of (1.7) satisfying the initial condition u(0, •) = u 0 and this solution satisfies u(t, •) C m ([0,1];R n ) ≤ Ce -νt u 0 C m ([0,1];R n ) ∀ t > 0.
With this definition, let us return to the results which are already known concerning the exponential stability with respect to the C m -norm.

(i) For linear F and G. Let m ∈ N. If ρ0 G ′ (0) < 1, then 0 is exponentially stable for system (1.7) with respect to the C m -norm and the converse holds if the r i 's are rationally independent. This result was proved for the L 2 -norm. But the proof can be adapted to treat the case of the C m -norm.

(ii) For general F and G. Let m ∈ N \ {0}. If ρ∞ G ′ (0) < 1, then 0 is exponentially stable for system (1.7) with respect to the C m -norm. This result was proved only for the case m = 1. However the proofs given in [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF][START_REF] Hu | Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems[END_REF][START_REF] Chun | Classical solutions for quasilinear hyperbolic systems[END_REF] for this case can be adapted to treat the case m ≥ 2.

(iii) For general F and G, and n = 1. Let m ∈ N \ {0}. Then 0 is exponentially stable for system (1.7) with respect to the C m -norm if and only if ρ0 G ′ (0) < 1. Note that, for n = 1, the ρp G ′ (0) 's do not depend on p ∈ [1, +∞]: they are all equal to

|G ′ (0)|.
The first result of this paper is the following one.

Theorem 2. Let m ∈ N \ {0}, n ≥ 2 and τ > 0. There exist F ∈ C ∞ (R n ; M n×n (R)) and a linear map G : R n → R n such that F is diagonal, F (0) has distinct positive eigenvalues, ρ∞ G ′ (0) < 1 + τ, ρ0 G ′ (0) = ρ2 G ′ (0) < 1 (1.33)
and 0 is not exponentially stable for system (1.7) with respect to the C m -norm.

The second result of this paper is on a sufficient condition for the exponential stability with respect to the W 2,p -norm. In order to state it, we use the following definition, adapted from Definition 1.

Definition 2. Let p ∈ [1, +∞].
The equilibrium solution u ≡ 0 is exponentially stable for (1.7) with respect to the W 2,p -norm if there exist ε > 0, ν > 0 and C > 0 such that, for every u 0 ∈ W 2,p ((0, 1); R n ) satisfying the compatibility conditions of order 1 (1.30)-(1.31) and such that

u 0 W 2,p ((0,1);R n ) ≤ ε, (1.34) 
there exists one and only one solution u ∈ C 1 ([0, +∞) × [0, 1]; R n ) of (1.7) satisfying the initial condition u(0, •) = u 0 and this solution satisfies

u(t, •) W 2,p ((0,1);R n ) ≤ Ce -νt u 0 W 2,p ((0,1);R n ) ∀ t > 0.
Again, for every T > 0, for every initial condition u 0 ∈ W 2,p ((0, 1); R n ) satisfying the compatibility conditions (1.30)-(1.31) and such that u 0 W 2,p ((0,1);R n ) is small enough, there exist a unique

C 1 solution u ∈ L ∞ ([0, T ]; W 2,p ((0, 1); R n )) of (1.7) satisfying the initial condition u(0, •) = u 0 (and this solution is in C 0 ([0, T ]; W 2,p ((0, 1); R n )) if p ∈ [1, +∞))
. The (sketchs of) proof given in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] of this result for p = 2 can be adapted to treat the other cases. Our next result is the following theorem.

Theorem 3. Let p ∈ [1, +∞]. Assume that ρp G ′ (0) < 1.
(1.35)

Then, the equilibrium solution u ≡ 0 of the system (1.7) is exponentially stable with respect to the W 2,p -norm.

Let us recall that the case p = 2 is proved in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]. Let us emphasize that, even in this case, our proof is completely different from the one given in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF].

Remark 2. The notations on various conditions on exponential stability used in this paper are different from the ones in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]. In fact, one has

ρ0 = ρ 0 , ρ2 = ρ 1 ,
and ρ∞ = ρ 2 .

Here ρ 0 , ρ 1 , and ρ 2 are the notations used in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF].

The paper is organized as follows. In Sections 2 and 3, we establish Theorems 2 and 3 respectively.

Proof of Theorem 2

We give the proof in the case n = 2. The general cas n ≥ 2 follows immediately from the case considered here.

Let F ∈ C ∞ (R 2 ; M 2×2 (R)) be such that

F (u) =   Λ 1 0 0 1 r 2 + u 2   ∀u = (u 1 , u 2 ) T ∈ R 2 with u 2 > - r 2 2 , (2.1) 
for some 0 < Λ 1 < Λ 2 . We recall that

r 1 = 1/Λ 1 and r 2 = 1/Λ 2 .
We assume that r 1 and r 2 are independent in Z, i.e.,

k 1 r 1 + k 2 r 2 = 0 and (k 1 , k 2 ) T ∈ Z 2 =⇒ (k 1 = k 2 = 0) . (2.2)
Define G : R 2 → R 2 as the following linear map

G(u) := a 1 ξ -1 η u for u ∈ R 2 . (2.3)
Here a > 0 and ξ, η are two positive numbers such that

if P k (ξ, η) = 0 then P k ≡ 0, (2.4) 
for every polynomial P k of degree k (k ≥ 0) with rational coefficients. Note that if a is close to 1/2 and ξ, η are close to 1, (2.5)

then ρ∞ (G) is close to 1 (2.6) and ρ0 (G) = ρ2 (G) are close to 1 √ 2 < 1. (2.7)
Here, and in the following, for the notational ease, we use the convention

G = K = G ′ (0).
Let τ 0 > 1 (which will defined below). We take a ∈ Q, a > 1/2 but close to 1/2 and choose ξ, η > 1 but close to 1 so that ρ∞ (G) < τ 0 , (2.8)

a(1 + ξ + η) ≤ 2, (2.9) 
and there exists c > 0 such that max{ξ, η} a(ξ + η) < c < 1.

(2.10)

We also impose that ξ, η satisfy (2.4).

We start with the case m = 1. We argue by contradiction. We assume that there exists τ 0 > 1 such that for all G with ρ∞ G ′ (0) < τ 0 , there exist ε 0 , C 0 , ν positive numbers such that

u(t, •) C 1 ([0,1];R 2 ) ≤ Ce -νt u 0 C 1 ([0,1];R 2 ) , (2.11) if u 0 ∈ C 1 ([0, 1]; R 2
) satisfies the compatibility conditions (1.30)-(1.31) and is such that

u 0 C 1 ([0,1];R 2 ) ≤ ε 0 .
Here u denotes the solution of (1.7) satisfying the initial condition u(0,

•) = u 0 . Assume that u ∈ C 1 ([0, +∞) × [0, 1]; R 2 ) is a solution to (1.7). Define v(t) = u(t, 0). Then v t + r 2 + v 2 (t) = v 1 t + r 2 + v 2 (t) -r 1 G 1 + v 2 (t)G 2 .
(2.12)

where G 1 and G 2 are the first and the second column of G. Equation (2.12) motivates our construction below.

Fix T > 0 (arbitrarily large) such that T -(kr 1 + lr 2 ) = 0 for every k, l ∈ N.

Let ε ∈ (0, 1) be (arbitrarily) small such that inf

k,l∈N |T -(kr 1 + lr 2 )| ≥ ε. (2.13) 
(Note that the smallness of ε in order to have (2.13) depends on T : It goes to 0 as T → +∞.) Let n be the integer part of T /r 2 plus 1. In particular nr 2 > T . Fix n rational points (s

0 i , t 0 i ) T ∈ Q 2 , i = 1, • • • , n
, such that their coordinates are distinct, i.e., s 0 i = s 0 j , t 0 i = t 0 j for i = j, and

(s 0 i , t 0 i ) ∞ ≤ ε 3 /4 n for every i ∈ {1, • • • , n}. (2.14) For 0 ≤ k ≤ n -1, we define (s k+1 i , t k+1 i ) T for i = 1, n -(k + 1) by recurrence as follows (s k+1 i , t k+1 i ) T = G(s k i , t k i+1 ) T = a s k i + ξt k i+1 -s k i + ηt k i+1 . (2.15) Set V (T ) := (s n 1 , t n 1 ), dV (T ) = ε(1, 0) T . (2.16) Define T 1 := T -r 1 , T 2 := T -r 2 -t n-1 2 ,
(2.17)

V (T 1 ) = (s n-1 1 , t n-1 1 ), V (T 2 ) = (s n-1 2 , t n-1 2 
), (2.18)

dV (T 1 ) = ε η a(ξ + η) , 0 , dV (T 2 ) = ε 0, 1 a(ξ + η) . (2.19) Assume that T γ 1 •••γ k is defined for γ i = 1, 2. Set T γ 1 •••γ k 1 = T γ 1 •••γ k -r 1 (2.20) and T γ 1 •••γ k 2 = T γ 1 •••γ k -r 2 -t n-(k+1) 1+l 
.

(2.21)

where

1 l = k j=1 (γ j -1). ( 2 

.22)

1 Roughly speaking, l describes the number of times which comes from r2 in the construction of γ1 

T γ 1 •••γ k -kr 1 -(r 2 -r 1 ) k j=1 (γ j -1) ≤ Cε 3 ∀k ∈ {1, • • • , n}, (2.23) 
for some C > 0 which is independent of T > r 1 and ε ∈ (0, +∞). We claim that the

T γ 1 •••γ k , k ∈ {1, • • • , n -1}, are distinct.
(2.24) (See fig. 1.) We admit this fact, which will be proved later on, and continue the proof.

Define

V (T γ 1 •••γ k γ k+1 ) and dV (T γ 1 •••γ k γ k+1 ) as follows V (T γ 1 •••γ k γ k+1 ) = (s n-(k+1) 1+l , t n-(k+1) 1+l ) T (2.25) and dV (T γ 1 •••γ k 1 ) = (x, 0) T dV (T γ 1 •••γ k 2 ) = (0, y) T , (2.26) 
where l is given by (2.22) and the real numbers x, y are chosen such that

G(x, y) T = dV (T γ 1 •••γ k ). (2.27) 
Let us also point that, by (2.19) and (2.26), at least one of the two components of dV (T

γ 1 •••γ k ) is 0. (2.28) From (2.
3), we have 

G -1 = 1 a(η + ξ) η -ξ 1 
dV (T γ 1 •••γ k γ k+1 ) ∞ ≤ c dV (T γ 1 •••γ k ) ∞ . (2.30) Using (2.24), we may construct v ∈ C 1 ([0, r 1 ]; R 2 ) such that v ′ (T α 1 •••α k ) = dV (T α 1 •••α k ), (2.31) and v(T α 1 •••α k ) = V (T α 1 •••α k ), (2.32) if T α 1 •••α k ∈ (0,
(T α 1 •••α k ) ∞ ≤ ε 3 if T α 1 •••α k ∈ (0, r 1 ). (2.33) t x = 1 x = 0 T T 2 T 1 T 12 T 21 T 22 T 221 T 212 T 122 Same V Same V Figure 1: V (T 122 ) = V (T 212 ) = V (T 221 ) = V (T 12 ) = V (T 21
) and the T γ 's are different.

The slope of the dashed lines is 

Λ 1 = r -1 1 . Let T α 1 •••α k ∈ (0, r 1 ) and T γ 1 •••γm ∈ (0, r 1 ) be such that v(T α 1 •••α k ) = v(T γ 1 •••γm ). ( 2 
k = m or card{i ∈ {1, • • • , k}; α i = 1} = card{i ∈ {1, • • • , m}; γ i = 1}. (2.35) 
See also Fig. 1. From (2.13), (2.17), (2.20), (2.21) and (2.35), we get that, at least if ε > 0 is small enough,

|T α 1 •••α k -T γ 1 •••γm | ≥ ε/2.
(2.36) Using (2.13), (2.33) and (2.36), we may also impose that

v = 0 in a neighborhood of 0 in [0, r 1 ], (2.37) v = 0 in a neighborhood of r 1 in [0, r 1 ], (2.38) v = 0 in a neighborhood of r 2 , (2.39) v C 1 ([0,r 1 ]) ≤ C max{ε 2 , A}, (2.40) 
where

A := max dV (T α 1 •••α k ) ∞ ; T α 1 •••α k ∈ (0, r 1 ) . (2.41)
In (2.40), C denotes a positive constant which does not depend on T > r 1 and on ε > 0 provided that ε > 0 is small enough, this smallness depending on T . We use this convention until the end of this section and the constants C may vary from one place to another. Note that if

T α 1 •••α k ∈ (0, r 1 ) then kr 1 > T /2.

It follows that

k > T /(2r 1 ), which, together with (2.16), (2.30) and c ∈ (0, 1), implies that

dV (T α 1 •••α k ) ∞ ≤ εc T /(2r 1 ) . (2.42)
From (2.40) and (2.42), one has

v C 1 ([0,r 1 ];R 2 ) ≤ C max ε 2 , εc T /(2r 1 ) ≤ Cεc T /(2r 1 ) . (2.43) Let ũ ∈ C 1 ([0, r 1 ] × [0, 1]; R 2
) be the solution to the backward Cauchy problem

   ũt + F (ũ)ũ x = 0 for every (t, x) ∈ [0, r 1 ] × [0, 1], ũ(t, 1) = G -1 v(t) for every t ∈ [0, r 1 ], ũ(r 1 , x) = 0 for every x ∈ [0, 1].
(2.44)

Note that, by (2.38), the boundary condition at x = 1 for the backward Cauchy problem (2.44) vanishes in a neighborhood of r 1 in [0, 1] and therefore the necessary compatibility conditions for the existence of ũ, namely Using (2.43), (2.10) and the definition of u 0 , we have

G -1 v(t 1 ) = 0 and G -1 v ′ (t 1 ) = 0, (2.45 
u 0 C 1 ([0,1];R 2 ) ≤ C v C 1 ([0,r 1 ];R 2 ) ≤ C max ε 2 , εc T /(2r 1 ) ≤ Cε.
(2.47)

Note that u 0 satisfies the the compatibility condition (1.30) and (1.31) since, by (2.38) and (2.39), u 0 vanishes in a neighborhood of 0 in [0, 1] and, by (2.37), u 0 vanishes in a neighborhood of 1 in [0, 1]. Let u ∈ C 1 ([0, +∞) × [0, 1]; R 2 ) be the solution of (1.7) satisfying the initial condition

u(0, x) = u 0 (x) for every x ∈ [0, 1].
Since 0 is assumed to be exponentially stable for (1.7) with respect to the C 1 -norm, u exists for all positive time if ε is small enough. Let us define v ∈ C 1 ([0, +∞); R 2 ) by v(t) := u(t, 0) for every t ∈ [0, +∞).

(2.48)

Then, by the constructions of u and ũ, one has

v(t) = v(t) for every t ∈ [0, r 1 ]. (2.49)
Then, using (2.12) together with the definition of

T γ 1 •••γ k and V (T γ 1 •••γ k ), one has v(T γ 1 •••γ k ) = V (T γ 1 •••γ k ) if T γ 1 •••γ k ∈ [0, T ], (2.50) with the convention that, if k = 0, T γ 1 •••γ k = T .
Differentiating (2.12) with respect to t, we get

1 + v ′ 2 (t) v ′ t + r 2 + v 2 (t) = 1 + v ′ 2 (t) v ′ 1 t + r 2 + v 2 (t) -r 1 G 1 + v ′ 2 (t)G 2 . (2.51)
It follows that

v ′ t + r 2 + v 2 (t) = v ′ 1 t + r 2 + v 2 (t) -r 1 G 1 + v ′ 2 (t)G 2 - v ′ 2 (t) 2 1 + v ′ 2 (t) G 2 . (2.52)
From the definition of dV , (2.31), (2.42), (2.49) and ( 2.52), one gets, for every T > r 1 , the existence of C(T ) > 0 such that

|v ′ (T ) -dV (T )| ≤ C(T )ε 2 . (2.53)
provided that ε is small enough (the smallness depending on T ). In (2.53) and in the following we use the notation 2.55), one gets the existence of C 1 > 0 such that, for every T > 0, there exist C(T ) > 0 and ε(T ) > 0 such that 1 ≤ C 1 e -νT + C(T )ε for every T > 0, for every ǫ ∈ (0, ε(T )].

|x| := x 2 ∀x ∈ R n . ( 2 
(2.56)

We choose T > 0 large enough so that C 1 e -νT ≤ (1/2). Then letting ε → 0 + in (2.56) we get a contradiction.

It remains to prove (2.24) in order to conclude the proof of Theorem 2 if m = 1. Let us assume

T γ 1 •••γ k = T α 1 •••αm with k, m ∈ {1, . . . , n -1} (2.57) (γ i , α i = 1, 2). Using (2.
2) and (2.23), we derive that

m = k, card i; γ i = 2 = card i; α i = 2 =: ℓ (2.58) for some 0 ≤ ℓ ≤ m. Let k 1 < • • • < k ℓ and m 1 < • • • < m ℓ be such that γ k l = α m l = 2 for 1 ≤ l ≤ ℓ. Define i l := k l i=1 (γ i -1) and j l := k l i=1 (α i -1).
It follows from (2.21), (2.22), and (2.57) that

ℓ l=1 t n-k l i l = ℓ l=1 t n-m l j l .
(2.59)

Hence γ i = α i for i = 1, • • • , k = m (2.60)
is proved if one can verify that 

i l = j l and k l = m l ∀ l = 1, • • • ℓ. ( 2 
(s 0 i , t 0 i ) ∞ ≤ ε 2+m /4 n for every i, j ∈ {1, • • • , n}. (2.64) 
Then, instead of (2.33), one gets

v(T α 1 •••α k ) ∞ ≤ ε 2+m if T α 1 •••α k ∈ (0, r 1 ). (2.65)
Instead of (2.31), one requires

v (m) (T α 1 •••α k ) = dV (T α 1 •••α k ), (2.66) 
and instead of (2.40), one has

v C m ([0,r 1 ]) ≤ C max{ε 2 , A}, (2.67) 
where A is still given by (2.41). Then (2.47) is now

u 0 C m ([0,1];R 2 ) ≤ C v C m ([0,r 1 ];R 2 ) ≤ Cεc T /(2r 1 ) . (2.68) 
In the case m = 1 we differentiated once (2.12) with respect to t in order to get (2.52). Now we differentiate (2.12) m times with respect to t in order to get

v (m) t + r 2 + v 2 (t) -v (m) 1 t + r 2 + v 2 (t) -r 1 G 1 + v (m) 2 (t)G 2 ≤ C m i=0 v (i) (t) 2 ,
which allows us to get, instead of (2.53),

|v (m) (T ) -dV (T )| ≤ C(T )ε 2 . (2.69)
We then get a contradiction as in the case m = 1. This concludes the proof of Theorem 2.

Remark 3. Property (2.24) is a key point. It explains why the condition ρ0 (K) < 1 is not sufficient for exponential stability in the case of nonlinear systems. Indeed ρ0 (K) < 1 gives an exponential stability which is robust with respect to perturbations on the delays which are constant: these perturbations are not allowed to depend on time. However with these type of perturbations (2.24) does not hold: with constant perturbations on the delays, one has

T 12 = T 21 , T 122 = T 212 = T 221
and, more generally,

T γ 1 •••γ k = T α 1 •••α k if card{i ∈ {1, • • • , k}; γ i = 1} = card{i ∈ {1, • • • , k}; α i = 1}.
3 Proof of Theorem 3

This section containing two subsections is devoted to the proof of Theorem 3. In the first subsection, we present some lemmas which will be used in the proof. In the second subsection, we give the proof of Theorem 3.

Some useful lemmas

The first lemma is standard one on the well-posedness of (1.1) and (1.5).

Lemma 1. Let p ∈ [1, +∞].

There exist C > 0 and γ > 0 such that, for every T > 0, there exists ε 0 > 0 such that, for every u 0 ∈ W 2,p ((0, 1); R n ) with u 0 W 2,p ((0,1);R n ) < ε 0 satisfying the compatibility conditions (1.30)-(1.31), there exists one and only one solution

u ∈ C 1 ([0, T ] × [0, 1]; R n ) of (1.7) satisfying the initial condition u(0, •) = u 0 . Moreover u(t, •) W 2,p ((0,1);R n ) ≤ Ce γt u 0 W 2,p ((0,1);R n ) .
We next present two lemmas dealing with the system

v t + A(t, x)v x = 0,
and its perturbation where A is diagonal. The first lemma is the following one.

Lemma 2. Let p ∈ [1, +∞], m be a positive integer, λ 1 ≥ • • • ≥ λ m > 0 and K ∈ (0, 1).
Then there exist three constants ε 0 > 0, γ > 0 and C > 0 such that, for every T > 0,

every A ∈ C 1 ([0, T ]×[0, 1]; D m,+ ), every K ∈ C 1 ([0, T ]; M m,m (R)), every v ∈ W 1,p ([0, T ]× [0, 1]; R m ) such that v t + A(t, x)v x = 0 for (t, x) ∈ (0, T ) × (0, 1), (3.1) 
v(t, 0) = K(t)v(t, 1) for t ∈ [0, T ], (3.2) 
sup

t∈[0,T ] K(t) p ≤ K < 1, (3.3) 
A -diag(λ 1 , • • • , λ m ) C 1 ([0,T ]×[0,1];Mm,m(R)) + sup t∈[0,T ] K ′ (t) p ≤ ε 0 , (3.4 
)

one has v(t, •) W 1,p ((0,1);R m ) ≤ Ce -γt v(0, •) W 1,p ((0,1);R m ) for t ∈ [0, T ].
Proof of Lemma 2. We only consider the case 1 ≤ p < +∞, the case p = +∞ follows similarly (the proof is even easier) and is left to the reader. For t ≥ 0, let ϕ i (t, s) be such that

∂ s ϕ i (t, s) = A ii (s, ϕ i (t, s)) and ϕ i (t, t) = 0. Then v i (s, ϕ i (t, s)) = v i (t, 0).
We define s i as a function of t by ϕ i (t, s i (t)) = 1. Note that A ii (s, ϕ i (t, s)) > λ m /2 > 0, at least if ε 0 > 0 is small enough, a property which is always assumed in this proof. Hence s i is well-defined. It follows from the definition of s i that v i (s i (t), 1) = v i (t, 0). (3.5) Using classical results on the dependence of solutions of ordinary differential equations on the initial conditions together with the inverse mapping theorem, one gets

|s ′ i (t) -1| ≤ Cε 0 . (3.6) 
Here and in what follows in this proof ′ denotes the derivative with respect to t, e.g., s ′ i (t) = ds i /dt and v ′ (t, x) = ∂ t v(t, x) and C denotes a positive constant which changes from one place to another and may depend on p, m, λ 1 ≥ • • • ≥ λ m > 0 and K ∈ (0, 1) but is independent of ε 0 > 0, which is always assumed to be small enough, T > 0, A and v which are always assumed to satisfy (3.1) to (3.4).

Define, for t ≥ 2λ 1 , ri (t) := t -s -1 i (t).

(3.7)

From (3.6), we have sup

t∈[2λ 1 ,T ] |r ′ i | ≤ Cε 0 . (3.8) Set V (t) = v(t, 0).
We derive from (3.2), (3.5) and (3.7) that

V (t) = K(t) V 1 t -r1 (t) , • • • , V i t -ri (t) , • • • , V m t -rm (t)
T , for t ≥ 2r m . (3.9)

In (3.9) and in the following r i := 1/λ i for every i ∈ {1, • • • , m}. From (3.3) and (3.9), we obtain

T 2rm V (t) p p dt ≤ Kp n i=1 T 2rm |V i t -ri (t) | p dt. (3.10) Since T 2rm |V i t -ri (t) | p dt = T -λi (T ) 2rm-r i (2rm) |V i (t)| p s ′ i (t) dt, it follows from (3.6) that T 2rm |V i (t -ri )| p ≤ T 0 (1 + Cε 0 )|V i (t)| p dt. (3.11) 
A combination of (3.10) and (3.11) yields

T 2rm V (t) p p dt ≤ T 0 Kp (1 + Cε 0 ) V (t) p p dt.
By taking ε 0 small enough so that Kp (1

+ Cε 0 ) ≤ [(1 + K)/2] p , we have T 0 V (t) p p dt ≤ C 2rm 0 V (t) p p dt. (3.12) 
We next establish similar estimates for the derivatives of V . Let us define

W (t) := (W 1 (t), • • • , W m (t)) T := V ′ (t). (3.13) 
Differentiating (3.9) with respect to t, we have

W (t) = K(t) W 1 t-r1 (t) , • • • , W i t-ri (t) , • • • , W m t-rm (t) T +g 1 (t)+f 1 (t), (3.14) 
where As a consequence of Lemma 2, we obtain the following lemma, where B(R m ) denotes the set of bilinear forms on R m . Lemma 3. Let p ≥ 1, m be a positive integer, λ 1 ≥ • • • ≥ λ m > 0, K ∈ (0, 1) and M ∈ (0, +∞). Then there exist three constants ε 0 > 0, γ > 0 and C > 0 such that, for every T > 0, every

g 1 (t) := -K(t) W 1 t -r1 (t) r′ 1 (t), • • • , W i t -ri (t) r′ i (t), • • • , W m t -rm (t) r′ m (t) T (3.15) and f 1 (t) := K ′ (t) V 1 t -r1 (t) , • • • , V i t -ri (t) , • • • , V m t -rm (t) T . ( 3 
A ∈ C 1 ([0, T ] × [0, 1]; D m,+ ), every K ∈ C 1 ([0, T ]; M m,m (R)), every Q ∈ C 1 ([0, T ] × [0, 1]; B(R m )) and every v ∈ W 1,p ([0, T ] × [0, 1]; R m ) such that v t + A(t, x)v x = Q(t, x)(v, v) for (t, x) ∈ (0, T ) × (0, 1), (3.20) v(t, 0) = K(t)v(t, 1) for t ∈ (0, T ), (3.21) 
sup

t∈[0,T ] K(t) p ≤ K < 1, (3.22) 
A -diag(λ 1 , • • • , λ m ) C 1 ([0,T ]×[0,1]) + sup t∈[0,T ] K ′ (t) p ≤ ε 0 , (3.23) Q C 1 ([0,T ]×[0,1];B(R m )) ≤ M, (3.24) v(0, •) W 1,p ((0,1);R m ) ≤ ε 0 , (3.25) one has v(t, •) W 1,p ((0,1);R m ) ≤ Ce -γt v(0, •) W 1,p ((0,1);R m ) for t ∈ (0, T ).
Proof of Lemma 3. Let ṽ ∈ W 1,p ([0, T ] × [0, 1]; R m ) be the solution of the linear Cauchy problem ṽt + A(t, x)ṽ x = 0 for (t, x) ∈ (0, T ) × (0, 1), (3.26) ṽ(t, 0) = K(t)ṽ(t, 1) for t ∈ (0, T ), (3.27) ṽ(0, x) = v(0, x) for x ∈ (0, 1).

(3.28) (Note that v(0, 0) = K(0)v(0, 1); hence such a ṽ exists.) From Lemma 2, (3.26), (3.27) and (3.28), one has 

ṽ(t, •) W 1,p ((0,1);R m ) ≤ Ce -γt v(0, •) W 1,p ((0,1);R m ) for t ∈ [0, T ]. (3.29) Let v := v -ṽ. ( 3 
A ∈ C 1 ([0, T ] × [0, 1]; D m,+ ), every K ∈ C 1 ([0, T ]; M m,m (R)), every Q ∈ C 1 ([0, T ] × [0, 1]; B(R m )) and every v ∈ W 1,p ([0, T ] × [0, 1]; R m ) satisfying (3.20) to (3.25), v(0, •) W 1,p ((0,1);R m ) ≤ ε(T ) =⇒ v(t,
•) L ∞ ((0,1);R m ) ≤ C(T ) v(0, •) 2 W 1,p ((0,1);R m ) for t ∈ (0, T ) , (3.36)

Let w := vx . Differentiating (3.31) with respect to x, we get wt + A(t, x) wx + A x (t, x) w = Q x (t, x)(ṽ + v, ṽ + v) + Q(t, x)(ṽ x + w, ṽ + v) + Q(t, x)(ṽ + v, ṽx + w) for (t, x) ∈ (0, T ) × (0, 1). (3.37) Differentiating (3.32) with respect to t and using (3.31), we get, for t ∈ [0, T ],

A(t, 0) w(t, 0) -Q(t, 0)(ṽ(t, 0) + v(t, 0), ṽ(t, 0) + v(t, 0)) = K(t) A(t, 1) w(t, 1) -Q(t, 1)(ṽ(t, 1) + v(t, 1), ṽ(t, 1) + v(t, 1)) -K ′ (t)v(t, 1). (3.38) Differentiating (3.33) with respect to x, one gets w(0, x) = 0 for x ∈ (0, 1).

(3.39)

We consider (3.37), (3.38) and (3.39) as a nonhomogeneous linear hyperbolic system where the unknown is w and the data are A, K, Q, ṽ, and v. Then, from straightforward estimates on the solutions of linear hyperbolic equations, one gets that, for every t ∈ [0, T ], w(t, •) L p ((0,1);R m ) ≤ e CT (1+ ṽ L ∞ ((0,T )×(0,1);R m ) + v L ∞ ((0,T )×(0,1);R m ))

× ṽ 2 L ∞ ((0,T );W 1,p ((0,1);R m )) + v 2 L ∞ ((0,T )×(0,1);R m ) . 

Proof of Theorem 3

Replacing, if necessary, u by Du where D (depending only on K) is a diagonal matrix with positive entries, we may assume that G ′ (0) p < 1.

(3.42)

For a ∈ R n , let λ i (a) be the i-th eigenvalue of F (a) and l i (a) be a left eigenvector of F (a) for this eigenvalue. The functions λ i are of class C ∞ in a neighborhood of 0 ∈ R n . We may also impose on the l i to be of class C ∞ in a neighborhood of 0 ∈ R n and that l i (0) T is the i-th vector of the canonical basis of R n . Set 

v i = l i (u)u w i = l i (u)∂ t u for i = 1, • • • , n.
u i = v i + n j,k b ijk (v)v j v k ∂ t u i = w i + ijk bijk (v)v j w k , ( 3 

  implies (1.23) in the case n = 2. The case n ≥ 3 follows similarly by considering the matrices M 0 0 0 ∈ M n,n (R).

Theorem 1 .

 1 .31) With this definition of the compatibility conditions of order m, we can recall the following classical theorem due to Li and Yu [8, Chapter 4] on the well-posedness of the Cauchy problem associated to (1.7). Let m ∈ N \ {0}. Let T > 0. There exist ε > 0 and C > 0 such that, for every u 0 ∈ C m ([0, 1]; R n ) satisfying the compatibility conditions of order m (1.29) and such that u 0 C m ([0,1];R n ) ≤ ε, there exists one and only one solution u

  ) are satisfied. Moreover, if ε > 0 is small enough this solutions indeed exists by[8, pp. 96-107]. Let u 0 ∈ C 1 ([0, 1]; R 2 ) be defined by u 0 (x) := ũ(0, x) for every x ∈ [0, 1].(2.46)

From ( 3 .

 3 29),(3.36) and(3.40), one gets the existence of ε 0 , of an increasing function T ∈ [0, +∞) → C(T ) ∈ (0, +∞) and of a decreasing function T ∈ [0, +∞) → ε(T ) ∈ (0, +∞), such that, for every T ∈ [0, +∞), everyA ∈ C 1 ([0, T ] × [0, 1]; D m,+ ), every K ∈ C 1 ([0, T ]; M m,m (R)), every Q ∈ C 1 ([0, T ]× [0, 1]; B(R m )) and every v ∈ W 1,p ([0, T ]× [0, 1]; R m ) satisfying (3.20) to (3.25), v(0, •) W 1,p ((0,1);R m ) ≤ ε(T ) =⇒ v(t, •) W 1,p ((0,1);R m ) ≤ C(T ) v(0, •) 2 W 1,p ((0,1);R m ) for t ∈ (0, T ) , (3.41)which, together with (3.29) and (3.30), concludes the proof of Lemma 3.

From [ 7 ,

 7 (3.5) and (3.6) on page 187], we have, for i = 1, • • • , n,

∂

  .43) where b ijk and bijk are of class C ∞ . From [7, (3.7) and (3.8)], we obtain, fori = 1, • • • , n, t v i + λ i (u)∂ x v i = n ijk c ijk (u)v j v k + n ijk d ijk (u)v j w k , ∂ t w i + λ i (u)∂ x w i = n ijk cijk (u)w j w k + n ijk dijk (u)v j w k , (3.44)where c ijk , cijk , d ijk , dijk are of class C ∞ in a neighborhood of 0 ∈ R n . We also have, for some Ĝ : R 2n → R 2n of class C ∞ in a neighborhood of 0 ∈ R 2n , v(t, 0) w(t, 0) = Ĝ v(t, 1) w(t, 1)

  • • • γ k .

	Note that, by (2.14), (2.15), (2.17), (2.20), (2.21) and (2.22)
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  .61) By a recurrence argument on ℓ, it suffices to prove that i ℓ = j ℓ and k ℓ = m ℓ .

		(2.62)
	Note that, by (2.15),	
	t k j = a k η k t 0 j+k + P k-1 (ξ, η),	(2.63)

where P k-1 is a polynomial of degree k -1 with rational coefficients. Since ξ, η satisfy

(2.4)

, it follows from (2.59) and (2.63) that k ℓ = m ℓ , and i ℓ = j ℓ . Thus claim (2.62) is proved and so are claims (2.61), (2.60), and (2.24). This concludes the proof of Theorem 2 if m = 1. Let us show how to modify the above proof to treat the case m ≥ 2. Instead of (2.14), one requires

  C is as in the proof of Lemma 2 except that it may now depend on M . From (3.33), (3.34) and (3.35), one gets the existence of ε

	From (3.20), (3.21), (3.26), (3.27), (3.28) and (3.30), one has	
	vt + A(t, x)v x = Q(t, x)(ṽ + v, ṽ + v) for (t, x) ∈ (0, T ) × (0, 1), v(t, 0) = K(t)v(t, 1) for t ∈ (0, T ), v(0, x) = 0 for x ∈ (0, 1).	(3.31) (3.32) (3.33)
	Let, for t ∈ [0, T ],	e(t) := v(t, •) L ∞ ((0,1);R m ) .	(3.34)
	Following the characteristics and using (3.29), (3.31), (3.32) and the Sobolev imbedding
	W 1,p ((0, 1); R m ) ⊂ L ∞ ((0, 1); R m ), one gets, in the sense of distribution in (0, T ),	
		e ′ (t) C( v(0, •) 2 W 1,p ((0,1);R m ) + e(t) + e(t) 2 ).	(3.35)
	In (3.35),		
			.30)

0 , of an increasing function T ∈ [0, +∞) → C(T ) ∈ (0, +∞) and of a decreasing function T ∈ [0, +∞) → ε(T ) ∈ (0, +∞), such that, for every T ∈ [0, +∞), for every

JMC was supported by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7). HMN was supported by NSF grant DMS-1201370, by the Alfred P. Sloan Foundation and by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7).

and, by (1.5)

which, together with (3.42), implies that Ĝ′ (0) p < 1.

Applying Lemma 3 for (3.44), we obtain the exponential stability for (v, w) with respect to the W 1,p -norm, from which, noticing that u x = -F (u) -1 u t , Theorem 3 readily follows.