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Brain-machine interfaces (BMI) were born to control “actions from thoughts” in order to

recover motor capability of patients with impaired functional connectivity between the

central and peripheral nervous system. The final goal of our studies is the development
of a new proof-of-concept BMI—a neuromorphic chip for brain repair—to reproduce the

functional organization of a damaged part of the central nervous system. To reach this

ambitious goal, we implemented a multidisciplinary “bottom-up” approach in which in vitro

networks are the paradigm for the development of an in silico model to be incorporated

into a neuromorphic device. In this paper we present the overall strategy and focus on the
different building blocks of our studies: (i) the experimental characterization and modeling

of “finite size networks” which represent the smallest and most general self-organized

circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions
in neuronal networks and the whole brain preparation with special attention on the impact

on the functional organization of the circuits; (iii) the first production of a neuromorphic chip

able to implement a real-time model of neuronal networks. A dynamical characterization of
the finite size circuits with single cell resolution is provided. A neural network model based

on Izhikevich neurons was able to replicate the experimental observations. Changes in the
dynamics of the neuronal circuits induced by optical and ischemic lesions are presented

respectively for in vitro neuronal networks and for a whole brain preparation. Finally the

implementation of a neuromorphic chip reproducing the network dynamics in quasi-real
time (10 ns precision) is presented.

Keywords: In vitro modular networks, whole brain, lesioned circuits, in silico neuronal circuit, hardware spiking

neural network

INTRODUCTION

Millions of people worldwide are affected by neurological disor-

ders that disrupt connections between brain and body, causing

paralysis, or impair cognitive capabilities. This number is likely

to increase in coming years, yet current assistive technology

is still limited. Over the last decade Brain-Machine Interfaces

(BMIs) and neuro-prostheses (Nicolelis, 2003; Hochberg et al.,

2006, 2012; Nicolelis and Lebedev, 2009) have been the object

of extensive research and offer the promise of treatment for such

disabilities. These devices could profoundly improve the quality

of life for affected individuals, and could have a more widespread

impact on society.

Neural interfaces have mainly been devoted to restoring motor

function that is lost due to injuries at the level of the spinal cord

(Collinger et al., 2013), or to recover sensorial capacities, e.g., arti-

ficial retinal or cochlear implants (Chader et al., 2009). However,

recent interest has also focused on neural prostheses for restor-

ing cognitive functions. For example, a hippocampal prosthesis

for improving memory function in behaving rats was recently

presented (Berger et al., 2011, 2012), and the same group has also

tested a device in primate prefrontal cortex aimed at restoring

impaired cognitive functions (Hampson et al., 2012; Opris et al.,

2012).

The realization of such prostheses implies that we know

how to interact with neuronal cell assemblies, taking into

account the intrinsic spontaneous activation of neuronal net-

works and understanding how to drive them into a desired

state in order to produce a specific behavior. The long-

term goal of replacing damaged brain areas with artificial

devices requires neural network-like prosthetics or models

that could be fed with recorded electrophysiological patterns

and that could provide a substitute output to recover the

desired functions. While ultimately this approach must be

tested and applied in vivo, important insights could be gained

using in vitro systems of increasing architectural complexity,

which can be more easily and thoroughly accessed, monitored,
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manipulated, and modeled than in vivo systems (at least at

present).

The final goal of the studies presented in this paper is to

develop a test-bed for the development of a new generation

of neuro-prostheses capable of restoring lost communication

between neuronal circuits. These studies constitute the object of

the European project BRAIN BOW (www.brainbowproject.eu).

Healthy and lesioned in vitro neuronal circuits are characterized

in parallel to the development of in silico neuronal networks, with

the goal of establishing bi-directional communication to mimic

or bypass an injured neuronal network. In order to develop an

experimental and computational platform for the prototyping

of neuro-prostheses, we followed a bottom-up approach using

in vitro biological neuronal systems with increasing structural

complexity. Our approach takes advantage of the unique features

of in vitro neuronal cultures, which represent a powerful experi-

mental model to investigate the inherent properties of neuronal

cell assemblies as a complement to artificial computational mod-

els. We use engineered networks of increasing structural complex-

ity, from isolated finite-size networks up to interacting assemblies,

as a model of intercommunicating neuronal circuitries. Moreover,

we scaled our studies up to the isolated whole guinea-pig brain

(IWB), to translate to an in vivo model.

In this paper we present the overall multidisciplinary strat-

egy and preliminary results on the different building blocks of

the project. The structure-function relationship of “finite size

circuits” was characterized with single cell resolution by com-

bining calcium imaging and immunocytochemistry. Similarly to

what previously observed in isolated neuronal clusters (Shein-

Idelson et al., 2010), we found that the frequency of synchronous

network events increased with circuit size. This result was repro-

duced by in silico neural network models based on Izhikevich

neurons with scale-free connectivity. The feasibility of con-

trolled network lesions was explored by optically transecting cell

processes and monitoring the subsequent change in functional

network connectivity. In addition, in a whole brain prepara-

tion, a focal ischemic lesion in the hippocampus was demon-

strated to cause an interruption of the limbic olfactory pathway.

Finally, a neural network hardware model with arbitrary con-

nectivity based on Izhikevich neurons, working at nanosecond

time scale, is presented. These experimental and computational

platforms represent a starting point for restoring functional

closed-loop communication in a neuronal network with lesioned

circuitries.

MATERIALS AND METHODS

EXPERIMENTAL MODELS

The repertoire of activity patterns exhibited by an in vitro neural

network is strongly dependent on the complexity of its geom-

etry (Shein-Idelson et al., 2011). While homogeneous networks

(Figure 1A) tend to display highly stereotyped bursts which

spread to most of the connected cells (Kamioka et al., 1996; Van

Pelt et al., 2004; Chiappalone et al., 2006; Eytan and Marom,

2006), networks composed of smaller sub-networks with sparse

connections (Figure 1C) usually present non-repetitive patterns

of sparse spiking and local bursts (Macis et al., 2007; Shein-

Idelson et al., 2010). The first cellular model proposed in this

FIGURE 1 | From finite size networks up to the whole brain: a

bottom-up approach. (A) Sketch of a homogeneous network composed

of about 1000 neurons (left panel) and the typical raster plot of its

electrophysiological activity, recorded by using 60 electrodes of a Micro

Electrode Array (MEA) chip (right panel). The black box highlights a

sub-region of the homogeneous network, which can be described as a

finite size network (black arrow pointing to panel B). (B) Sketch of a finite

size network used in the framework of this paper, composed of about 100

neurons (left panel), and its raster plot, obtained by calcium imaging

recording (right panel). (C) Scheme of interconnected finite size networks,

each composed of about 100 neurons (left panel), and the raster plot of the

electrophysiological activity recorded by a MEA (right panel). (D) Sketch of

the in-vitro whole brain of a guinea pig composed by interconnected

functional networks (left panel), and raster plot of the spontaneous periodic

events recorded by an array of 16 electrodes (right panel).

work is that of finite size network (Figure 1B), namely an isolated

neuronal circuit consisting of a small number of neurons (dozens

to a few hundreds) that is still able to spontaneously produce

bursts similar to those observed in larger homogeneous networks

(cf. section “Results”). Characterization of activity within these

assemblies could allow their use as building blocks for larger,

more complex structures of interconnecting sub-networks. At

the other end of the complexity spectrum we set the isolated

whole brain of a guinea pig (Figure 1D). This model is used to

investigate the properties of one complex functional neuronal
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assembly (the olfactory tract, see below) embedded in an intact

brain (cf. section “Results”).

Finite size networks: patterning, cell culture, and calcium imaging

The procedure adopted for the preparation of “finite size net-

works” is in accordance with the NIH standards for care and

use of laboratory animals and was approved by the Tel-Aviv

University Animal Care and Use Committee.

Cultures were prepared as described in Herzog et al. (2011).

After the fourth day in vitro, the growth medium was enriched

with 0.5% Pen-Strep (Biological Industries Beit Haemek), 2%

B-27 (Gibco), and 0.75% glutamax (Biological Industries Beit

Haemek). Cells were plated at a density of 750 cells/mm2 on a

23 mm square glass coverslip previously glued on a 35 mm petri

dish. Coverslips were coated with spots of poly-D-lysine (PDL,

Sigma), and petri dishes were homogenously coated with PDL.

The cells attaching homogeneously on the free surface of the

petri dish (i.e., not covered by the glass coverslip) functioned as a

“supporting network” (Kleinfeld et al., 1988). PDL spots were cre-

ated using either manual drop deposition or polydimethylsilox-

ane (PDMS) stencils. For manual drop deposition, an Eppendorf

pipette with a tip of 10 µl capacity was used. The spots were cre-

ated by touching the tip filled with 2 µl PDL on the coverslip

surface and then drying the coverslips at 37◦C for 30 min.

When PDMS stencils were used, the procedure to create PDL

spots was based on a soft lithography process, as described in

Sorkin et al. (2006). Briefly, an SU8-2075 (Micro Chem) mould

on a silicon wafer with a feature thickness of approximately

200 µm was used to shape the PDMS. The feature was composed

of squares of 700 µm × 700 µm separated by at least 1 mm, in

order to obtain isolated neuronal islands. The size of the square

was chosen to fit the field of view of a 10× objective in the cal-

cium imaging setup described in detail below and in Herzog et al.

(2011). Once the PDMS substrate was shaped and dried on the sil-

icon wafer, the PDMS stencils were detached and placed directly

on the glass coverslips. Drops of the PDL solution were dripped

onto the PDMS stencil until the features were completely covered.

After mild vacuum degassing for 15 min, the excess PDL solution

was removed and the sample was dried at 37◦C for 30 min. The

PDMS stencil was removed before cell plating.

Calcium imaging of the patterned neuronal networks grown

on coverslips was performed in buffered-ACSF solution (con-

taining, in mM, 10 HEPES, 4 KCl, 1.5 CaCl2, 0.75 MgCl2, 139

NaCl, 10 D-glucose, adjusted with sucrose to an osmolarity of

325 mOsm, and with NaOH to a pH of 7.4). In order to load the

cells with the calcium-sensitive dye, cultures were incubated for

30 min in 1 ml ACSF supplemented with 1 µl of 10% pluronic

acid F-127 (Biotium 59000) and 1 µl Oregon-Green BAPTA-I

AM (Invitrogen 06807) previously diluted with 7.6 µl anhydrous-

DMSO. Following incubation, cultures were washed with ACSF

and recorded at 37◦C. In order to avoid artifacts due to evapora-

tion and pH change, the ACSF was replaced every 20 min during

the recording session.

Calcium-fluorescence images were acquired with an EMCCD

camera (Andor Ixon-885) mounted on an upright Olympus

microscope (BX51WI) using a 10× water-immersion objective

(Olympus, NA 0.4). Fluorescent excitation was provided via a

120 W mercury lamp (EXFO X-Cite 120PC) coupled to the

microscope optical axis with a dichroic mirror, and equipped

with an emission filter matching the dye spectrum (Chroma

T495LP). Images were acquired at 59 fps in 2 × 2 binning mode

using Andor software data-acquisition card (SOLIS) installed on

a personal computer.

Immunocytochemical staining

At the end of calcium-imaging experiments, cultures were washed

twice with PBS, then fixed with 4% PFA (15 min) and left in PBS

for not more than 5 days before staining. For immunocytochem-

ical staining, fixed cultures were washed three times with PBS

(10 min each) and then incubated with 1% Triton ×100 in PBS

for 30 min. Cultures were blocked with 2% BSA, 10% normal

serum and 0.5% Triton × 100 in PBS for 2 h at room tempera-

ture. The cultures were incubated overnight with the first primary

antibody (GAD67, 1:250, Millipore, MAB5406) in blocking solu-

tion at 4◦C. The next day cultures were incubated with the second

primary antibody (MAP2, 1:500, Chemicon, AB5622) overnight

at 4◦C. Cultures were then washed three times with TBS and incu-

bated with the secondary antibodies in 2% BSA, 2 mM CaCl2 in

TBS for 1 h at room temperature. After being washed three times

with TBS the cultures were mounted with aqueous mounting

medium containing DAPI (vector).

In vitro whole brain

Young adult Hartley guinea pigs (150–300 g, Charles River) were

used for IWB recordings. All procedures were approved by the

Italian Department of Health and were conducted in accor-

dance to FELASA guidelines and Italian and European directives

(DL 116/92 and 2010/63/EU). Animals were anesthetized with

sodium thiopental (125 mg/kg, i.p.) and transcardially perfused

with a cold (4◦C), oxygenated (95% O2, 5% CO2) saline solu-

tion composed of 126 mM NaCl, 3 mM KCl, 1.2 mM KH2PO4,

1.3 mM MgSO4, 2.4 mM CaCl2, 26 mM NaHCO3, 15 mM glu-

cose, 2.1 mM HEPES, and 3% dextran (MW 70,000). The pH of

the solution was corrected to 7.1 with 1N HCl. After assessing the

absence of nociceptive and ocular reflexes, the brain was gently

dissected out of the skull, transferred to a recording chamber, and

perfused at 7 ml/min with the above solution (pH = 7.3, 15◦C)

via a peristaltic pump (Minipulse II, Gilson, France) through a

cannula inserted in the basilar artery (Figure 5). Prior to record-

ing, the temperature of the preparation was gradually increased

to 32◦C (0.2◦C/min) (Llinas et al., 1981; Muhlethaler et al., 1993;

De Curtis et al., 1998). In order to induce an ischemic insult in

the hippocampal formation, a silk thread was positioned under

the left rostral and caudal posterior cerebral arteries [r- and

c-PCA, see Librizzi et al. (1999)] and a loose knot was pre-

pared around the vessels. The flow was interrupted by pulling

the thread ends to tighten the knot (Figure 5) (Pastori et al.,

2007).

READ-OUT SYSTEMS

Optical manipulation and recording system for in vitro neural

networks

The optical system combined a laser dissector with a micro-

scope for simultaneous fluorescence and bright field imaging
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during electrophysiological recording of neural network activity,

as previously described (Difato et al., 2011a).

The light source used to perform calcium fluorescence imag-

ing was composed of TTL modulable laser diodes (TECBL-15

G-473-TTL-FC, World Star Tech. Inc., USA) coupled to the

microscope (BX51, Olympus, Italy) through a circle top-hat

engineered diffuser (ED1-C20-MD, Thorlabs, Optoprim, Italy)

to remove laser speckles. A pair of UV doublets (Thorlabs,

Optoprim, Italy) coupled the laser light to the microscope objec-

tive (60×, 0.9 NA water dipping). The laser light was focused

on the back focal plane of the microscope objective to produce

a homogenous wide field illumination on the sample. A light

emitting diode at 590 nm wavelength served as the bright field

illumination source (M590L2, Thorlabs, Optoprim, Italy). The

wavelength of the diode was chosen to avoid interference with

the emission spectra of the fluorochrome (Fluo4-AM, Invitrogen)

used to label the sample. A dichroic mirror separated the light

coming from the sample (green and red portion of light spec-

tra) onto two cameras. Green emission light was deviated on

CCD1 (V887ECSUVB EMCCD, Andor, Lot Oriel, Italy) acquir-

ing the calcium fluctuations due to network activity, and the

red portion of the light spectra was deviated on CCD2 (Pilot

PIA1000-48GM, Basler, Advanced Technologies, Italy) to per-

form bright-field imaging. The CCDs image acquisitions and

light sources were synchronized with a TTL signal coming from

a D/A board (PCI-6529, National Instruments, Italy). The use

of TTL-modulable light sources for fluorescence and bright field

imaging allowed a precisely timed illumination of the sample,

thereby reducing phototoxicity and facilitating long term calcium

imaging of neural networks. Bright-field images were acquired at

1 Hz to detect network topography before and after laser dissec-

tion of network connections. Cells were previously incubated for

10 min with 5 µm Fluo-4 AM (Invitrogen, Italy). To monitor the

neural network activity before and after laser induced network

lesions, calcium imaging was performed at 60 Hz (light expo-

sure of 3 ms each frame, at an average power at the sample of

60 µW).

Cells were kept under the microscope at 35◦C using a

Peltier device (QE1 resistive heating with TC-344B dual

channel heater controller, Warner Instruments, Italy). For

neuronal cultures plated on Petri dishes, pH and humidity were

controlled by aerating a custom-designed polydimethyl-

siloxane (PDMS) sleeve, which integrated the objective

for optical access, with humidified carbogen (95% O2,

5% CO2).

A pulsed, sub-nanosecond UV Nd:YAG laser at 355 nm

(PowerChip nano-Pulse UV laser PNV-001525-040, Teem

Photonics, Italy) served as the source for performing laser micro-

dissection experiments. The diaphragm of the epi-illuminator

was substituted by a narrow-band laser mirror, which reflects

355 nm laser light while passing all other wavelengths com-

ing from the laser diodes used for fluorescence microscopy

(DM6, TLM1-350-45-P, CVI, Italy), thus allowing fluorescence

imaging and laser dissection to be performed simultaneously.

Damage to neural network was inflicted with laser pulse repeti-

tion rate settled at 100 Hz, and an average power at the sample of

about 4 µW.

Electrophysiological system for the in vitro whole brain

Extra- and intracellular recordings were performed simultane-

ously in piriform and medial entorhinal cortex (PC and m-ERC).

To test the viability of the preparation throughout the experiment,

we monitored evoked local field potentials (LFPs) in PC and m-

ERC in response to the electrical stimulation (0.5–3 mA, 0.3 ms)

of the lateral olfactory tract (LOT) using custom-made bipolar

electrodes made of twisted, insulated silver wires. Intracellular

recordings were performed with sharp micropipettes filled

with 3M potassium acetate (input resistance 70–110 M�) and

attached to an electronically controlled micromanipulator (Sutter

Instruments, Novato, CA, USA). Signals were amplified by an

intracellular amplifier (IR-283A Cygnus Technology, PA, USA).

Field potentials were recorded using glass pipette filled with 0.9%

NaCl (resistance 2–5 m�) or microwire arrays (Tucker-Davis

Technologies, Alachua, FL, USA) featuring 16 tungsten planar

recording wires (filament diameter 50 µm, tip angle 45◦), each

separated by 250 µm (impedance 30–40 K�). The extracellular

signals were acquired using a PBX3 preamplifier (Plexon, Dallas,

TX, USA) configured to separately process spikes (150 Hz–8 KHz

bandwidth) and local field potentials (0.7–300 Hz).

Data were digitized at 25 kHz using a PCI-6071E A/D board

(National Instruments, Austin, TX, USA) and stored on the hard

drive of a personal computer. Recordings were performed using

ELPHO software developed by Dr. Vadym Gnatkovsky at the C.

Besta Neurological Institute (Milan, Italy).

COMPUTATIONAL MODEL

In the following sections we will present the computational model

used to mimic the dynamics expressed by finite size networks (cf.

section “Experimental Models”).

Neuron model

The neuron model used for the finite size networks is based on

the Izhikevich equations (Izhikevich, 2003). The dynamics of

this model depend on four parameters that, correctly chosen,

reproduce the spiking behavior and voltage traces of specific

types of cortical neurons. From a mathematical point of view,

the model is described by a two-dimensional system of ordinary

differential equations.

dv

dt
= 0.04v2 + 5v + 140 − u + Isyn + Inoise (1)

du

dt
= a(bv − u) (2)

with the after-spike resetting conditions:

if v ≥ 40 mV →

{

v ← c

u ← u + d
(3)

In Equations (1–3), v is the membrane potential of the neuron,

u is a membrane recovery variable which takes into account the

activation of K+ and inactivation of Na+ channels; Isyn describes

the synaptic input from other neurons; Inoise is a current source
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generator introduced to model the spontaneous subthreshold

electrophysiological activity of the neurons. Practically, we intro-

duced a stochastic source of noise (modeled according to

an Ornstein-Uhlenbeck process) to each neuron described as

follows:

dInoise = −
Inoise

τI
dt +

mI

τI
dt + s1

√

2dt

τI
ξt (4)

In Equation (4) the quantity ξt is a white noise with zero mean

and unitary variance. In this way, Inoise is Gauss-distributed at any

time t and, after a transient of magnitude τI (correlation length),

converges to a process with a mean equals to mI and standard

deviation sI . For the simulation, we set τI = 1 ms, mI = 25 pA,

and sI = 9 pA.

Among the possible firing patterns generated by the neuron

model of Equations (1, 2), we implemented the family of regular

spiking (RS) and the family of fast spiking neurons (FS) in

percentage of 75% and 25%, respectively, in agreement with

the experimental findings (cf. section “Finite Size Network

Dynamics”). Mathematically, the four aforementioned parame-

ters were set as follows:

a =

[

0.02

0.02 + 0.08ri

]

b =

[

0.2

0.25 − 0.05ri

]

c =

[

−65 + 15r2
i

−65

]

d =

[

8 − 6r2
i

2

]

(5)

In Equation (5), the first row is relative to the excitatory, while

the second one to the inhibitory neurons. ri is a random variable

which spans from 0 to 1, and i the neuron index. ri was added in

order to introduce a further variability in the neuron dynamics:

for example, a neuron exhibits classic RS behavior if ri = 0, and

bursting behavior if ri = 1.

Finite size network model

Graph theory was used to represent the network connectivity. All

graphs are defined by nodes which represent the neurons, and

edges which model the morphological connections among the

neurons. The structure of the graph is described by the adja-

cency matrix, a square matrix of size equal to the number of

nodes N with binary entries. If the element aij = 1, a connection

between the node j to i is present, otherwise aij = 0 means no

connection. All the auto-connections are avoided (aii = 0, ∀ i).

Then, the value 1 of the non-zero aij elements has been replaced

to mimic different synaptic strengths. Synaptic weights were cho-

sen randomly from a normal distribution with a mean value and

standard deviation equal to 10 and 3.5, respectively.

To model the synaptic transmission we chose the approach of

the pulse-coupled neural networks: practically, the firing of the

j-th neuron causes an instantaneous change in the membrane

potential of the neuron i-th by means of the weight sij.

Among the possible graphs, following the experimental find-

ings regarding the functional connectivity of such confined neu-

ronal assemblies (cf. section “Finite Size Network Dynamics”),

we implemented neuronal networks with a scale-free (SF)

connectivity (Barabasi and Albert, 1999). Briefly, in SF networks

the degree distribution follows a power law: if m is the num-

ber of edges incident to a node, i.e., the degree, the power law

distribution is given by Dorogovtsev and Mendes (2002):

P(m) = m−γ (6)

where γ is the characteristic exponent. This law suggests that most

nodes have just a few connections and other, named hubs, have

a very high number of links. To build a SF network, we made

use of the algorithm described in Batagelj and Brandes (2005),

particularly efficient in terms of computation when dealing with

large-scale networks. Nodes are added successively. For each node,

m edges are generated. The endpoints are selected from the nodes

whose edges have already been created, with a bias toward high

degree nodes.

In order to mimic the experimental conditions of the confined

assemblies described in section “Finite Size Network Dynamics,”

in section “Simulation Results” we presented the results regarding

the ongoing activity of networks made up of 90, 100, 120, 150,

240, 320, and 520 neurons.

DATA ANALYSIS AND STATISTICS

Analysis of network dynamics based on calcium fluorescence

imaging

Custom software running in MATLAB (Crépel et al., 2007;

Bonifazi et al., 2009) was used for the automatic identification of

the cells loaded with the calcium indicator and for the extraction

of their fluorescence signals as a function of time (time resolu-

tion 59 Hz). To detect the calcium events (i.e., the onset and offset

of neuronal firing) from the fluorescent trace Fij of the neurons

(1 ≤ i ≤ M, M number of neurons; 1 ≤ j ≤ N, N number of

frames) we calculated the first derivative of the fluorescent signal

(�Fij = Fij+1 − Fij) and we integrated �Fij in overlapping sliding

time windows of 1 s (Iij′ = �j′≤n≤j′+59 �Fnj; 1 ≤ j′ ≤ N − 59).

A Gaussian fit centered at zero was used to extract the standard

deviation σi of the noise of the processed signal Iij. Signal tran-

sients exceeding the threshold of 3σi for at least 5 consecutive

points were considered as calcium events. The onset and the offset

of these calcium events were determined using a four-parameter

sigmoidal equation as described in Takano et al. (2012). The esti-

mated onset and offset times were fixed respectively to the 5% and

the 95% of the sigmoidal plateau.

The reconstruction of the functional connectivity of the net-

work was based on pair-wise correlation analysis of the onset time

series extracted from the calcium imaging data, as described in

Bonifazi et al. (2009). Briefly, when the firing onset of cell j pre-

ceded in a repetitive way the firing onset of cell k, a functional

connection directed from j to k was established. In order to reveal

these temporal correlations, the post-stimulus time histogram of

cell k centered on the firing onsets of cell j was calculated within

a maximal time lag of 500 ms. Both the Student’s t-test and the

Kolmogorov-Smirnov test with a level of confidence of 5% were

used to exclude the possibility that the poststimulus time dis-

tribution could be a Gaussian distribution with zero mean or a

uniform distribution, respectively. In this way, we excluded cases

where the activation of two neurons was completely uncorrelated
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(uniform distribution) or synchronous (Gaussian centered at

zero).

The cross correlation between firing onsets time series of indi-

vidual neurons was used to estimate the average correlation and

average time of activation of each neuron relative to all others,

similarly to what described in Bonifazi et al. (2009) and Marissal

et al. (2012). Briefly, the cross correlation between the time series

of neurons a and b was calculated as follows:

CCab(τ) =

∑

0 < t < T

(at + τ− <a>) · (bt − <b>)

σa · σb
(7)

where σa and σb are the standard deviation of the time series,

t is the sampling time, T the duration of the entire movie and

|τ| ≤ 1 s.

The maximum cross-correlation value (CCmax
ab ) and the time

lag of its occurrence (τmax
ab ) were used to calculate, respectively,

the average correlation and average time of activation of neuron i

to the following formulas
〈

CCmax
i

〉

= 1
n

∑

j	=i CCmax
ij and

〈

τmax
i

〉

=

1
n

∑

j	=i τ
max
ij where n is the number of neurons displaying a

positive cross-correlation with neuron I.

Processing of electrophysiological signals from the IWB

Raw data acquired by the ELPHO software were loaded into

MATLAB (Mathworks Inc., Natick, MA, USA) for off-line pro-

cessing. First, raw traces were band-pass filtered to select either

multi-unit activity (MUA, 800 Hz–3 KHz) or local field poten-

tials (LFP, 1–300 Hz). Stimulation artifacts were suppressed using

an off-line MATLAB implementation of the SALPA algorithm

(Wagenaar and Potter, 2002). Highly noisy channels were visually

excluded from the analysis. Then, MUA raw data were spike-

detected by means of the PTSD algorithm (Maccione et al.,

2009) (peak lifetime period = 2 ms; refractory period = 1 ms;

threshold = ±8 times the estimated noise standard deviation).

The result of the spike-detection procedure consists of a series of

point processes (i.e., spike trains), one for each recording channel

(Bologna et al., 2010).

We evaluated the network-wide evoked response by comput-

ing the Peri Stimulus Time Histogram (PSTH; Perkel et al., 1967)

for each recording channel of the array and for the full array

[time bin = 4 ms, time window = (−100 ms, +400 ms) relative

to the stimulus onset]. We also measured the intensity of the

response as the average number of evoked spikes in a 200-ms

time window following each stimulus. The final dataset com-

prised 4 recordings in control brains (duration ∼300 s, 10–20

paired pulses delivered to the LOT at 0.05 Hz, inter-pulse interval

200 ms) and 3 recordings before and after the induction of focal

ischemia (same stimulation protocol).

RESULTS

FINITE SIZE NETWORK DYNAMICS

Spontaneous synchronizations in finite size networks

To build an experimental model for the study of physiological

and impaired communications between neuronal assemblies we

grew finite size neuronal networks, i.e., networks composed of

neuronal assemblies spatially separated by hundreds of microme-

ters and interconnected through long neuritis. As a first step, we

focused on the properties of single modules, i.e., the structural

and dynamical properties of isolated and spatially confined neu-

ronal circuits (Figure 2). Isolated neuronal circuits located within

an 800 × 800 µ m spot were obtained by plating the cells on glass

cover slips previously coated with a geometrically defined molec-

ular adhesive layer (PDL). The individual cell populations varied

between a few dozen up to a few hundred neurons. Similar to

homogenous and clustered cultures (Chiappalone et al., 2006;

Shein-Idelson et al., 2010), finite size circuits displayed sponta-

neous synchronized events after 2 weeks in culture (Figure 2,

panel B1) occurring with a frequency linearly correlated with

the number of cells present in the circuit (Pearson correlation

0.88, Figure 2C1). Likewise, depending on the density of the

plating and on the vicinity to the supporting network, finite

size circuits organized into monolayers or in three-dimensional

clusters, with a higher propensity of clustering at increased plat-

ing density or at larger distances from the supporting network

(data not shown). We used calcium imaging of monolayer neu-

ronal circuits (performed with a 10× objective) in combination

with immunocytochemical staining to map the functional and

structural properties of all the neurons in the circuits with single-

cell resolution. GABAergic cells could be specifically identified

(Figure 2A3), allowing us to investigate their specific involvement

in spontaneous synchronization processes, similar to the work of

Bonifazi et al. (2009) in developing hippocampal networks.

A pair-wise analysis based on the cross-correlation between the

firing onsets time series of pairs of neurons (see section “Materials

and Methods”) was used to estimate the average correlation and

average time of activation of each neuron relative to all others

(Bonifazi et al., 2009; Marissal et al., 2012). In all the circuits

analyzed (n = 4) the time correlation graph presented a bimodal

distribution (Figure 2C2), indicating that network events syn-

chronized first the population of neurons plotted on the left side

of the graph (i.e., with a time lag < 0), whereas neurons on the

right (i.e., with a time lag > 0) were activated next. In addi-

tion, the presence of highly correlated early activated GABAergic

neurons was observed (red points within the violet circle in

Figure 2C2). Interestingly, the existence of a characteristic, early-

activated neuronal population within the network synchroniza-

tions has been already documented in developing hippocampal

circuits (Bonifazi et al., 2009) even in absence of GABAergic

transmission (Marissal et al., 2012). Notably, in the presence of

GABAergic transmission it has been shown that early-activated

GABAergic neurons can play the role of hub cells in orchestrating

network dynamics (Bonifazi et al., 2009). The similarity between

these previous observations and the results presented here sug-

gest that cortical circuits share common innate features in their

functional organization.

Effect of laser ablation on functional connectivity

To monitor the synaptic re-organization of lesioned neuronal

circuits with single cell resolution, we reconstructed the func-

tional connectivity of a neuronal subset of a larger neuronal net-

work 20 min before and after laser-induced ablations (see section

“Materials and Methods”).

Two micro-lesions (lesion 1 and lesion 2) were induced next

to the center of the field of view, using an average laser power
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FIGURE 2 | Structure vs. function relations in neocortical finite circuits.

(A) Immunocytochemical staining revealing cellular nuclei (blue, DAPI, A1),

neuronal cells (green, MAPs, A2), GABAergic neurons (red, GAD67, A3). In

panel (A4), the contours of the cells monitored through calcium imaging

(white) are superimposed to the merged immunocytochemical pictures.

(B) Monitoring the dynamics of the neuronal circuit through calcium imaging.

Raster plot (B1 left plot) of the activity of the circuit (shown in panel A)

displaying stereotyped spontaneous network synchronizations (broken

vertical lines). The activity of a representative network synchronization

(marked in orange) is shown with higher temporal resolution on the right

orange plot (bottom scale bar 0.5 s). The cells loaded with the calcium

indicator OGB are shown in the panel (B2) (objective magnification 10×, field

of view 800 × 800 µm). (C1) Frequency of spontaneous synchronizations as a

function of circuits’ population size (blue dots, n = 9). The cell number was

estimated by counting the cellular nuclei stained with DAPI. The result of the

linear fit with least-squares regression (Pearson correlation coefficient 0.88) is

represented by the red line and by the equation. (C2) Time lag—correlation

graph for the circuit shown in (A) plotting for each imaged neuron the average

correlation and average time of activation relative to all other cells (see

section “Materials and Methods”). Red dots indicate GABAergic cells. The

violet circle highlight GABAergic cells reliably activated at the synchronization

build up possibly playing a key role in the orchestration of network synchrony

similarly to what previously documented for the developing hippocampal

circuits (Bonifazi et al., 2009).

at the sample of 4 µW and 5 µW, respectively. The second lesion

was performed at higher power to obtain a more pronounced

alteration of the network. Indeed, this lesion produced a strong

intracellular calcium increase in several cells, and a calcium

“shockwave” started to propagate through the network. After

a few minutes, only directly ablated cells displayed a saturated

calcium fluorescence signal, while the other neurons recovered

a relatively low basal calcium level and presented spontaneous
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activity (cf. Figure A1). The frequency of occurrence of sponta-

neous network synchronizations was not affected by the lesions

(Figure 3, 4th and 5th rows) with no significantly statistical

difference between the inter-burst interval distribution before and

after lesion (student t-test, p > 0.05). However, the number of

cells recruited within the network events in the imaged field (i.e.,

close to the location of the lesion) decreased by 31 ± 10% (student

t-test, p < 0.05).

Based on the calcium dynamics of the cells imaged in a cir-

cular field of 244 µm diameter (Figure 3), we reconstructed the

functional connectivity of the neuronal population through a

pair-wise analysis of the onset of firing (see section “Materials

and Methods”). Briefly, if the activation of cell i reliably preceded

the activation of cell j (i.e., over several repetitions with sta-

tistical significance, see section “Materials and Methods”), we

inferred a functional connection directed from i to j. Cell pairs

that were synchronously activated or not displaying any activation

order were not included in the directed functional connectivity

reconstruction (see section “Materials and Methods”). Figure 3

(1st row) shows the location of ten neurons with the highest

number of functional INPUT (violet) and OUTPUT (yellow)

connections before and after the lesions. Interestingly, after the

lesions, top rank INPUT and OUTPUT neurons segregated into

spatially distinct regions. Top rank OUTPUT neurons relocated in

the bottom right region while top rank INPUT neurons remained

in the rest of the circuit. In addition, just one out of the ten

neurons for each group belonged to the top rank group before

and after the lesion. The relocation of the functional connec-

tions (drawn for clarity just for the five best ranked neurons) can

additionally be observed in Figure 3 (2nd and 3rd row).

In vitro WHOLE BRAIN

We also characterized the activity of an ex vivo experimental

model (i.e., the isolated brain of a guinea pig, Figure 4) before

and after a lesion induced by a focal ischemia.

Network response to LOT stimulation in the m-ERC

Electrical stimulation of the LOT induced a polysynaptic response

in the m-ERC mediated by the interposed activation of the

hippocampus (Biella and De Curtis, 2000; Gnatkovsky and De

Curtis, 2006) (Figure 4). The intracellular correlate of the LOT-

evoked delayed response in neurons of m-ERC superficial lay-

ers was characterized by an early GABAA receptor- mediated

inhibitory postsynaptic potential (IPSP; latency from LOT stimu-

lation: 51 ± 1 ms, n = 12), followed by a relatively slow (duration

409 ± 36 ms) NMDA-dependent depolarizing component which

often reached threshold for spike firing. Conversely, pyramidal

cells in deeper layers responded to LOT stimulation with an

early excitatory postsynaptic potential (EPSP) occurring 15 ±

1 ms after the population spike recorded in the dentate gyrus

(DG, Figure 4). The EPSP often crossed the threshold for action

potential firing and was followed by a relatively slow inhibitory

potential mediated by GABAB receptors (Gnatkovsky and De

Curtis, 2006). The early inhibition of the superficial principal

cells is presumably due to a feed-forward mechanism sustained by

interneurons recorded in layers II/III (i.e., basket and chandelier

cells; Canto et al., 2008). In Figure 4 the firing of an interneuron

FIGURE 3 | Directed functional connectivity before (left) and after

(right) lesion. The number of OUTPUT and INPUT functional

connections has been calculated for all the imaged neurons based on

the temporal correlation between the firing onsets of the neurons (see

section “Materials and Methods”). The ten top ranked cells, i.e., the

cells with the largest number of functional OUTPUT (yellow) and INPUT

connections (pink), are represented in the top row. For graphic clarity,

the connectivity graphs shown in the 2nd and 3rd rows (respectively

INPUT and OUTPUT connections) include only the five top ranked cells.

The data refers to a homogenous neuronal network where functional

hub cells (i.e., neurons with a very large number of functional

connections) were not identified. The fluorescent images show the

cells loaded with the calcium indicator Fluo4 (see section “Materials

and Methods”). The locations of the two lesions (L1 and L2) are

marked by the white arrows. The green rectangle highlights the region

shown in Figure A1. The field of view is a circular region of 244 µm

diameter. The raster plot (representing the firing onsets) and the

fraction of activated cells are shown respectively in the 4th and

5th row.
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FIGURE 4 | The guinea pig isolated whole brain (IWB). (A) Schematic

view of IWB observed from its ventral surface. The circle of Willis with its

principal branching arteries is highlighted in black. The whole brain is

perfused by means of a peristaltic pump that delivers ACSF to the brain

through a polyethylene cannula inserted into the basilar artery. The two

vessels that are occluded to induce the hippocampal ischemia are marked by

red crosses. In the same hemisphere a microelectrode array (MEA) is

positioned in the center of the m-ERC (delimited by dotted line). S,

stimulating electrode; LOT, lateral olfactory tract; PC, piriform cortex; l-ERC,

lateral entorhinal cortex; DG, dentate gyrus; m-ERC, medial entorhinal cortex.

(B) Stereomicroscope photograph of the isolated brain positioned in the

perfusion chamber. (C) Electrical responses to LOT stimulation recorded in

the m-ERC. Left, intracellularly recorded voltage traces from a superficial

pyramidal cell lying at 200–300 µm from pial surface (black trace), a

GABAergic interneuron (400–500 µm, red trace), and a deep pyramidal cell

(600–1000 µm, green trace). Note the correspondence between the early

firing of an action potential in the interneuron and an IPSP (asterisk) recorded

in the superficial pyramidal cell. The bottom trace is an extracellularly

recorded field potential (LFP) characterized by a volume conducted

component propagating from the rostral part of the LOT-activated synaptic

pathway (PC and l-ERC) and subsequently invading the hippocampal structure

(DG and CA1, dark and light gray spots, respectively). The left margin of the

gray area is aligned to the first component of the m-ERC LFP. Right,

simplified scheme of the polysynaptic neuronal circuitry within the m-ERC,

based on the evoked response pattern and delay analysis of the neuronal

response to LOT stimulation. The gray cell represents a putative interneuron

mediating a feedback GABAergic inhibition onto a deep pyramidal cell and a

feed-forward inhibition onto another interneuron.

corresponds to the early IPSP measured in the pyramidal cells in

the same layer.

Spiking responses to paired-pulse LOT stimulation (inter-

pulse interval 200 ms) were recorded by 16-channel MEAs

implanted in the superficial layers of the m-ERC (200–500 µm

from pial surface; Figure 5A). Figure 5B shows the peri-stimulus

raster plots of two selected channels (19 and 24, experiment #1)

in response to each of the two LOT stimulations for a selected
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FIGURE 5 | LOT-evoked m-ERC network activity is abolished after

ischemic lesioning of the hippocampus. (A) Local field potentials (LFP) and

multi-unit activity (MUA) raw traces from two selected electrodes (19 and 24,

experiment #1) recorded in response to an individual paired-pulse stimulus

(ISI 200 ms) delivered to the LOT. The volume-conducted components

originating in DG and CA1 are indicated by the dark gray and light gray dots,

respectively. (B) Peri-stimulus raster plots for the same two representative

(Continued)
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FIGURE 5 | Continued

electrodes. The corresponding PSTHs are superimposed (bin size = 4 ms). (C)

Summary plot of mean number of evoked spikes (mean ± S.E.M.) after 1st

and 2nd pulse for all four experiments. ∗p < 0.05, Mann–Whitney U-test.

(D) LFP and MUA raw traces of one selected electrode recorded in response

to a paired-pulse stimulus either before (black trace) or after (gray trace) an

ischemic lesion of the hippocampus. (E) Peri-stimulus raster plot for the same

representative electrode, before and after the lesion. The corresponding

PSTHs are superimposed (bin size = 4 ms). (F) Summary plot of mean

number of evoked spikes by a paired pulse stimulus delivered to the LOT

(mean ± S.E.M.) either before or after the ischemic lesion of the hippocampus

for all analyzed experiments. ∗p < 0.05, Mann–Whitney U-test.

experiment. An earlier phase, which we observed in almost all

active recording channels, was characterized by two relatively

sharp peaks: the first corresponding to the far-field response orig-

inating in the hippocampus and the other corresponding to the

initial phase of the m-ERC response (Figure 4). This was followed

by a late, long-lasting but less reliable component (cf. channels

19 and 24). The histogram in Figure 5C displays the number

of spikes (mean ± S.E.M.) evoked by the 1st and the 2nd pulse

for all experiments (control condition) as a measure of response

intensity. In 2 out of 4 experiments (#1, #4) we observed a

stronger activation after the 1st rather than 2nd pulse, whereas in

the other 2 experiments (#2, #3) responses to the 2nd pulse were

slightly stronger than to the 1st pulse (no significant statistical dif-

ference). However, one must consider that first evoked responses

in experiments #1 and #4 were on average more intense, probably

reflecting a relatively high probability of excitatory neurotrans-

mitter release upon the first pulse. This would nearly deplete

the available pool of synaptic glutamatergic vesicles, leading to a

paired-pulse depression of the postsynaptic response.

Cutting the olfactory pathway: hippocampal focal ischemia

Occlusion of the posterior left cerebral arteries abruptly reduced

ACSF perfusion of the hippocampus, resulting in a block of the

propagation of the synaptic activity toward the entorhinal cortex

(Figure 4). About 5 min after the ischemic insult, LOT stimula-

tion failed to evoke any response (Figure 5). Stimulus-triggered

raster plots and the corresponding pre- and post-lesion PSTH

are shown in Figure 5E. The bar graph in Figure 5F summa-

rizes the total number of spikes evoked by a paired-pulse stimulus

before and after the ischemic lesion. A significant reduction of the

response intensity caused by the lesion was observed in all three

analyzed experiments.

SIMULATION RESULTS

In this section, we report the results of simulations in which we

modeled the effects changing the number of neurons in confined

networks. Each simulation lasted 10 min, sampled at 10 kHz.

Networks were simulated in MATLAB (The Mathworks, Natik,

US). Peak trains were stored and then processed by using SpyCode

software (Bologna et al., 2010), conveniently adapted to manage

large-scale networks.

Dynamics of finite size networks

We simulated the ongoing activity of neuronal networks made

up a 90, 100, 120, 150, 240, 320, and 520 neurons. The choice

of these networks sizes followed from the experimental findings

described in section “Finite Size Network Dynamics” (assuming

a neuron/glia ratio equal to 2:1). In addition, 25% of such neu-

rons were considered inhibitory (Isaacson and Scanziani, 2011)

and were modeled as FS neurons (cf. section “Computational

Model”).

Model neurons were connected following a scale-free (SF)

topology. Figure 6A shows the degree distribution of the simu-

lated SF networks. For all SF networks, the degree distribution

was fitted by a power law and the corresponding exponent lay

between −1.04 (network made up of 90 neurons) and −1.34

(networks made up of 520 neurons).

The simulated networks displayed spontaneous synchronized

events (network bursts) independently of their size (Figure 6B).

However, the frequency of occurrence of those synchronized

events varied in a linear manner with respect to the num-

ber of cells present in the circuit (Pearson correlation 0.96,

Figure 6C). To facilitate comparison with Figure 2C1, the x-

axis of Figure 6C reports the total cell number (neurons + glia),

although the number of neurons effectively simulated is indicated

near the blue dots. The results of the simulation were fit well with

the experimental data, as confirmed by the slope of the linear fit

(0.00015 vs. 0.00016). An interesting finding was that the sim-

ulated networks tended to show a higher proportion of random

spiking activity and less bursting than normally observed in actual

finite-size neuronal networks. This is consistent with other exper-

imental results of interconnected finite-size networks previously

reported in the literature (Macis et al., 2007).

HARDWARE SET-UP FOR A BRAIN PROSTHESIS

The hardware set-up that will be used to interface the bio-

logical component (either the neuronal culture or the in vitro

whole brain) is a Spiking Neural Network (SNN) system. This

SNN implements biologically realistic neural network models,

spanning from the electrophysiological properties of one single

neuron up to network plasticity rules. As already discussed in the

modeling section, the choice of Izhikevich neuron model is rel-

evant because (1) it is biologically realistic, and (2) it operates

in biological real time. By real-time, we mean that computa-

tion results are provided within a firmly controlled delay (10 ns

precision), which is lower than the sampling period (100 µs to

1 ms). Among these modules, the computation-critical task is the

implementation of a SNN model, which represents the prosthesis

itself, and the analysis of biological signals to produce events from

the recorded activity.

The digital Izhikevich neurons and detection system are

implemented as a configurable digital integrated circuit (field-

programmable gate array, FPGA) using the VHDL language. We

implement Regular Spiking (RS) neurons (excitatory) and Fast

Spiking (FS) interneurons (inhibitory) similar to those found in

cell culture (Figures 2, 3 and 6). The hardware models follow

the Izhikevich equations with parameters corresponding to RS

activity (a = 0.02, b = 0.2, c = −65, and d = 8). In Figure 7A1
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FIGURE 6 | Simulation results. (A) Degree distribution of the 7 scale-free

networks. (B) Raster plots showing 300 s of spontaneous activity of

simulated confined networks. Each raster is relative to a different network

size. From top to bottom networks with 100, 120, 150, 240, 520 neurons

can be observed.. IFR profiles was evaluated over simulations lasting 600 s

(bin size = 100 ms). (C) Bursting rate frequency as a function of network

population size. The number of neurons of the simulated networks was

reported near the blue dots. The x-axis reports the total number of cells

(glia + neurons) in order to make easier a comparison with Figure 2C1.

The result of the linear fit with least-squares regression (Pearson

correlation coefficient 0.96) is represented by the red-dotted line and by

the fitting equation.

we describe the choice of the topology (Cassidy and Andreou,

2008) to implement the Izhikevich equations. We implement a

neuron on FPGA board Xilinx Virtex 5 XC5VLX50. This neu-

ron uses really few resources (only 2% of the FPGA) and works

in real-time. In Figure 7A2 we compare the behavior f(I) of bio-

logical RS neurons and one RS neuron implemented into the

FPGA.

Concerning the SNN, our goal was to implement a model

using 80 neurons (FS and RS) with high connectivity capacity

(e.g., 6400 synapses). Network structure is fully configurable, and

synapses are excitatory or inhibitory conductances which provide

current depending on the postsynaptic membrane voltage. Delays

are also implemented to provide good accuracy on timing. The

network is defined into the RAM of the digital board where lie

all characteristics of all neurons and synaptic connections in the

network. A synaptic connection is defined by a synaptic weight

and the address of the neuron linked by this synapse. Added with

complementary functions like loopback stimulation and moni-

toring, this system will be able to perform cross-platform neural

computation.

The detection of neural electrophysiological activity is done by

a reconfigurable acquisition based on wavelet detection circuit for

in vitro biological signals. Our strategy for real-time spike detec-

tion is to implement a pre-processor, which emphasizes spikes

shapes and attenuates out-of-band noise. This pre-processor

provides two outputs corresponding to different wavelet detail

levels. The first one is essentially composed of out-of-band

noise used to determine a threshold level adapted to the sig-

nal amplitude. The second output is compared to the threshold

to discriminate spike events. The pre-processing algorithm is

the Stationary Wavelet Transform (SWT). The detection system

computes in real-time the SWT, the adaptive threshold and the
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FIGURE 7 | Hardware elements for the neuro-prosthesis. (A1) Choice of

the topology. To implement the two equations of Izhikevich model, two

topology of pipeline are chosen (Cassidy and Andreou, 2008). There are five

stages of computing for each equation. The I(stat), I(exc), and I(inh) currents

describe the synaptic contribution. (A2) Hw-based model. Comparison of f(I)

curves between biological Regular Spiking (RS) neuron and digital one. The

biological curves are intracellular recordings of regular-spiking neurons in

ferret visual cortex in vitro. The neuromorphic board gives the same results in

term of frequency of the neuron vs. the stimulation current. (B) Outputs of

the detection system to be implemented in the closed-loop set-up of the

brain prosthesis. First row—(a). Raw electrophysiological signal. Second

row—(b). The same signal with added Gaussian white noise to reduce Signal

to Noise Ratio. This step was added to stress the capability of the system to

detect action potentials in difficult conditions. Third row—(c). Output of the

stationary wavelet decomposition preprocessing module. We used a Haar

mother wavelet with 16 bits fixed point computation. The output signal is the

sixth level detail output of the decomposition tree. Fourth row—(d). Binary

output of the detection module. This output is the result of a threshold

applied to the signal in (c). The threshold is computed from the standard

deviation of the first level detail output of the wavelet decomposition tree.

The emphasized detected spike is a false positive. This shows that the signal

(b) represents the limit of signals that can be reliably processed by our

system. These signals were first recorded then input to the system with a

waveform generator.

comparison. This method proved to be very efficient to extract

action potential of excitable cells from very noisy signals (Raoux

et al., 2012). Figure 7B shows the performance of the method

on a single channel setup. Action potentials are emphasized by

arrows on the signal A. We added significant noise [signal (b)]

and then sent the signal to the detector that provides outputs

(c) and (d).

To summarize, all modules (i.e., Izhikevich neuron, neural net-

work specifications, detection and stimulation modules) will be

implemented into the FPGA. This modular system will be used as

a cross-platform neural computation unit. Microelectrode arrays

will be used to record and electrically stimulate living neural

networks, with a specific emphasis on stimulation localization.

Dedicated integrated electronics will be designed to implement

the communication channels between the living and the artifi-

cial networks. The biological signals (from living to artificial) will

be processed by using on-line spike detection algorithms and a

rate-based decoding (Rieke et al., 1997; Novellino et al., 2007;

Tessadori et al., 2012), while the firing rate of an artificial neuronal

sub-network will be translated into the stimulation frequency for

the biological network (from artificial to living), thus following a

similar rate-based strategy. The system including the artificial and

living neural networks will form a closed loop with a regulated

feedback (cf. next Section).

A BI-DIRECTIONAL NEURO-PROSTHESIS

The knowledge that we gained through the various studies

presented here will contribute to the final realization of a bi-

directional communication between in vitro and in silico models

of interconnected cell assemblies. By studying the dynamics of

in vitro networks (see Figures 2, 3), we will create a compu-

tational model (see Figure 6) exhibiting the same I/O function

of its biological counterpart (Figure 8, panel A). Through this

approach we also plan to further our knowledge about the
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FIGURE 8 | In vitro neuro-prostheses. Sketch illustrating the main approach

of the BRAIN BOW project. First, we will characterize the I/O function of

simple finite-size networks and reproduce it by means of a computational

model (A, left). Second, we will use more complex modular networks and

replace one sub-network module with our computational model of the

finite-size network, in order to replicate the function of the intact system (A,

right). Finally, the same conceptual approach will be adopted to recover the

function of the olfactory-limbic circuit after an ischemic lesion of the

hippocampus (B). The bidirectional interaction with a model reproducing the

function of the damaged area will allow restoring the original I/O pattern. s(t):

stimulus function; ylive(t): response function of a healthy preparation; ysim(t):

response function of the neuronal network model; ydamaged(t): response

function after lesion in the IWB; yhybrid(t): response function of the hybrid

system resulting from the combination of biological and artificial

components. In panel (B), the hippocampal areas targeted by the ischemic

lesion are marked in red.

interplay between structural connectivity and dynamics in neu-

ronal networks. Once we have realized and tested our model,

we will bi-directionally integrate it into a biological network

made up of few interconnected sub-networks in replacement of

one of these that has been previously lesioned (Figure 8A, right

panel).

The same conceptual approach will be applied to the olfactory-

limbic pathway in the IWB (Figure 8, panel B). After a thorough
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characterization of spontaneous activity patterns (e.g., sponta-

neous periodic events, which strikingly resemble the ones shown

by primary cortical cultures; see Figure 1) and LOT-evoked

responses generated in the m-ERC (see Figure 8), we will include

such information into a realistic computational model. We will

then induce an ischemic lesion of the hippocampus and realize

a functional model able to reproduce the same transfer function

of the damaged part in order to restore the original pathway.

Figure 8 summarizes this approach, both for in vitro intercon-

nected finite-size networks and for the guinea pig IWB.

The final step foreseen in the BRAIN BOW project is the hard-

ware implementation of the signal processing algorithms and

computational models to achieve our proof-of-concept neuro-

prosthesis based on a neuromorphic chip. Figure 9 illustrates

the closed-loop architecture that we plan to develop. Raw traces

recorded by means of either planar or implanted MEAs (depend-

ing on the biological sample) will be fed into the artificial element

and pre-processed online to extract multi-unit activity patterns

(MUA). Spatio-temporal spiking patterns will then be translated

by the “decoding” block into signals delivered to the neuronal

network model. After elaboration, output patterns produced by

the model will be finally translated by the “coding” block into a

stimulation delivered to the neural element (Figure 9).

DISCUSSION

This paper presents a bottom-up, multidisciplinary approach

toward the realization of a neural prosthesis capable of replacing

lesioned neuronal circuitries. The final goal of the studies consists

of developing a neuromorphic chip reproducing the function of

a lesioned circuit without replicating its specific architecture or

structural organization.

As a general model of a self-organized neuronal circuit, finite

size neuronal circuits in culture are produced and studied in an

isolated configuration to reveal innate (and therefore most gen-

eral) features of intra-circuit organization (cf. Figure 1). Since

finite size networks can spontaneously interconnect in a “multi-

modular” network organization, they also represent an optimal

experimental model to reveal innate inter-circuit communica-

tion properties (cf. Figure 1), as shown in previous studies (Macis

et al., 2007; Raichman and Ben-Jacob, 2008; Shein-Idelson et al.,

2010, 2011). The structural—functional configuration of the

finite size circuits can be replicated by an in silico neuronal

FIGURE 9 | Schematic representation of the closed-loop system to

be implemented as a proof-of-concept neuro-prosthesis. Different

in vitro neural models with increasing degrees of architectural

complexity (“Neural element”) will be interfaced to a hardware

neuromorphic chip (“Artificial element—Hardware”), implementing both

signal processing (“MUA detection”) and modeling (“Neuronal network

model”) algorithms previously tested in software (“Artificial element—

Software”). The communication between the neuronal network model

and its biological counterpart is accomplished by the “Coding” and

“Decoding” blocks.
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network and then implemented on a neuromorphic prosthetic

chip. The capability of the neuromorphic chip to replace the func-

tion of a lesioned circuit will be tested at increasing levels of

network complexity from an in vitro modular network to an iso-

lated whole brain system (IWB). In the attempt to present the

overall scientific approach of the BRAIN BOW project (cf. section

“Introduction” and “A Bi-Directional Neuro-Prosthesis”), this

paper shows first results from the different level of investigation

grounding the overall strategy.

FINITE SIZE CIRCUITS AND INNATE FUNCTIONAL ORGANIZATION OF

CORTICAL CIRCUITS

As previously shown by Shein-Idelson et al. (2010), cultured

cortical neuronal networks composed of at least a few dozen

neurons are able to produce spontaneous collective dynamics

known as network bursts, characterized by oscillatory activity

in the gamma-theta range, and with the frequency of the bursts

increasing with the number of neurons in the network. We

confirmed these findings here using optical measurements on

monolayer circuits (cf. Figure 2). By combining calcium imaging

with immunocytochemistry, we have found that network events

first recruit a characteristic population of neurons which includes

GABAergic neurons. In particular, the time-lag correlation of the

finite size cortical circuits is similar to what observed in devel-

oping hippocampal circuits (Bonifazi et al., 2009), in which a

scale-free functional connectivity distribution was accompanied

by the existence of GABAergic hub cells able to play a key role in

the orchestration of the spontaneous network events. All together,

these observations suggest that cortical neuronal circuits share a

common innate functional organization which might include the

existence of GABAergic hub cells.

MONITORING EFFECTS OF LESIONED NEURONAL CIRCUITS IN FINITE

SIZE NETWORKS

After characterizing the spontaneous dynamics of the finite size

networks we monitored how a focalized lesion can trigger func-

tional reorganization in the neuronal circuit. We made con-

trolled laser ablations of different intensities on our networks

(e.g., targeting single modules, inter-connections between mod-

ules, single neuritis/cell bodies/cell assembly). After the lesions,

the neuronal circuits continued to produce spontaneous net-

works events with no significant changes in the frequency of

occurrence (Figures 3 and A1). These were presumably gener-

ated out of the imaged field where the lesions were performed.

The number of cells recruited during network events decreased

either because they were directly lesioned by the laser ablation

or because of a change in the local functional organization of

the circuits (see the functional connectivity graphs of Figure 4).

In a previous study by Maeda et al. (1995) the authors made

a lesion in a homogeneous network over a MEA to study the

origin of spontaneous network bursting. More recently, Difato

et al. (2011a) reported controlled sequential ablation of single

connections in a neuronal network, causing modulation of its

activity without irreversibly damaging it. By combining MEA

recording and calcium imaging the authors found changes in

electrophysiological patterns in the network and identified the

contribution of neuronal sub-populations to the network activity

(Difato et al., 2011b). To the best of our knowledge, our study

is the first to make a spatially defined micro-lesion at the single

cell scale and to analyze the neuronal dynamics and connec-

tivity by means of optical-only tools. This methodology, which

can be extended to the use of genetically encoded calcium sen-

sors, allows a more detailed and prolonged monitoring of the

functional reorganization of the circuit over hours or days with

the advantage, when compared to electrophysiological recordings,

that the high spatial resolution (i.e., single cell) can be linked

to morphological/structural cellular properties through post-hoc

immunocytochemical characterizations. This could also facilitate

testing of methods to promote functional circuit repair, such as

pharmacological approaches.

SIMULATION RESULTS (SOFTWARE AND HARDWARE)

Given the similarity between the synchronization dynamics

observed in developing hippocampal networks (Bonifazi et al.,

2009) and in the finite circuits (Figure 2) with early activated

GABAergic cells forecasting synchrony, we hypothesized a com-

mon innate structural-functional organization in neocortical

and paleocortical circuits. Therefore, we used a scale-free topol-

ogy (Barabasi and Albert, 1999) to model a neuronal network

based on Izhikevich neurons (Izhikevich, 2003) (Figure 6). The

proposed model was able to reproduce the empirical depen-

dence between bursting rate and circuit size. However, the

model predicted a richer repertoire of firing patterns (e.g.,

Figure 6B). Indeed, such patterns can be found in biologi-

cal networks (Segev et al., 2002; Macis et al., 2007; Marconi

et al., 2012). Thus our synthetic models (conveniently tuned

and adapted) are able to reproduce the dynamics found in

in vitro networks. Our results also demonstrate that the hard-

ware element of the prosthesis (cf. section “Hardware Set-up

for a Brain Prosthesis” and “A Bi-Directional Neuro-Prosthesis”)

can be constituted by a neuromorphic model (SNN) built on

the same equations as the computational model (Izhikevich,

2003), since it reproduces similar firing rate distributions

(Figure 7). Thus, the computational (software) model serves

as a bridge between the biological networks and the hardware

implementation.

COMPARISON TO PREVIOUS WORK AND PROSPECTIVE RESULTS

In the last decades, great efforts have been made to develop neuro-

prostheses to restore lost sensory or motor functions (Taylor

et al., 2002; Chader et al., 2009; Collinger et al., 2013), but

very few groups have focused on neuro-prostheses targeting

lesions at the level of the CNS and aimed at recovering lost

cognitive capabilities (Berger et al., 2011; Prueckl et al., 2011;

Bamford et al., 2012; Hampson et al., 2012; Opris et al., 2012).

Although our studies are limited to simplified in vitro models

of cell assemblies, their final aim is to provide useful insights

for the design of future cognitive prostheses. We believe that our

approach would help us understand how we can influence/drive

the dynamics of a neuronal assembly by interfacing it to an

artificial network, implemented either in software or hardware.

This is not the first attempt to realize an in vitro closed-loop

system: previous studies have used a robotic actuator or a con-

trol algorithm aimed at clamping network activity to a desired
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level (Demarse et al., 2001; Martinoia et al., 2004; Wagenaar

et al., 2005; Wallach et al., 2011). However, we seek to extend

these approaches by replacing a real biological network with a

simulated network, and hence by implementing bi-directional

communication between biological and simulated networks. This

research project builds on previously published results in the field

of in vitro closed-loop electrophysiology (Arsiero et al., 2007).

It can also be generalized to a more structured experimental

model like the in vitro whole brain of a guinea pig, which lies

between in vivo (as it retains the original tridimensional archi-

tecture) and in vitro (as it is disconnected from any sensory

input/motor output). In contrast to other groups which have

exclusively investigated in vivo brain prostheses (Prueckl et al.,

2011; Bamford et al., 2012; Berger et al., 2012; Hampson et al.,

2012; Opris et al., 2012), we are trying to exploit the unique

advantages of in vitro electrophysiology—accessibility, visibility

and control of physical and chemical conditions—to study neural

information processing in neuronal assemblies, and to under-

stand which parameters are relevant for effectively interfacing

biological and artificial networks. In addition to informing the

design of future in vivo approaches, our approach could also

illuminate how network structure constrains and drives network

dynamics.
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APPENDIX

FIGURE A1 | Subpopulation of a neuronal network before and after

laser induced lesions. The first panel, starting from the left upper

corner, shows a subpopulation of a neuronal network loaded with

Fuo4-AM. White arrows, depicted with L1 and L2, indicate the

positions of the lesions inflicted to the network. The red arrows

indicate the position of the UV laser focus spot. The average power

delivered at the sample, during lesion one, is 4 µW, and during Lesion

2, is 5 µW. We delivered 300 UV light pulse for each lesion, at

pulse-repetition rate of 100 Hz. At 25 s, after Lesion 1, the L2 position

is centered onto the UV focus spot. The last panel shows the same

field of view of the first one, after laser inflicted damages. The cells

directly affected by the UV laser presented saturated calcium signal.

Numbers indicate seconds. The field of view is 150 × 150 µm. Calcium

imaging was acquired at 60 Hz.
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