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This investigation of the leech heartbeat neural network system led to the development of

a low resources, real-time, biomimetic digital hardware for use in hybrid experiments.

The leech heartbeat neural network is one of the simplest central pattern generators

(CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all

muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech

neural network system was previously investigated and this CPG formalized in the

Hodgkin–Huxley neural model (HH), the most complex devised to date. However, the

resources required for a neural model are proportional to its complexity. In response

to this issue, this article describes a biomimetic implementation of a network of 240

CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and

proposes a new synapse model: activity-dependent depression synapse. The network

implementation architecture operates on a single computation core. This digital system

works in real-time, requires few resources, and has the same bursting activity behavior

as the complex model. The implementation of this CPG was initially validated by

comparing it with a simulation of the complex model. Its activity was then matched

with pharmacological data from the rat spinal cord activity. This digital system opens the

way for future hybrid experiments and represents an important step toward hybridization

of biological tissue and artificial neural networks. This CPG network is also likely to be

useful for mimicking the locomotion activity of various animals and developing hybrid

experiments for neuroprosthesis development.
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INTRODUCTION

Millions of people worldwide are affected by neurological disor-

ders which disrupt connections between brain and body, causing

paralysis or affecting cognitive capabilities. The number is likely

to increase over the next few years and current assistive tech-

nology is still limited. In recent decades, extensive research has

been devoted to Brain-Machine Interfaces (BMIs) and neuro-

prosthesis in general (Hochberg et al., 2006, 2012; Nicolelis and

Lebedev, 2009), working toward effective treatment for these

disabilities. The development of these devices has had and, hope-

fully, will continue to have a profound social impact on these

patients’ quality of life. These prostheses are designed on the basis

of our knowledge of interactions with neuronal cell assemblies,

taking into account the intrinsic spontaneous activity of neu-

ronal networks and understanding how to stimulate them into

a desired state or produce a specific behavior. The long-term goal

of replacing damaged neural networks with artificial devices also

requires the development of neural network models that match

the recorded electrophysiological patterns and are capable of pro-

ducing the correct stimulation patterns to restore the desired

function. The hardware set-up used to interface the biological

component is a Spiking Neural Network (SNN) system imple-

menting biologically realistic neural network models, ranging

from the electrophysiological properties of a single neuron to

large-scale neural networks.

Our study describes the development of a neuromorphic hard-

ware device containing a network of real-time biomimetic Central

Pattern Generators (CPG). The main goal of this research is to

create artificial CPGs that will be connected to ex vivo spinal

cord of rats and guinea pigs, thus achieving one main objec-

tive of the Brainbow European project (Brainbow, 2012) toward

hybridization. Hardware-based SNN systems were developed for

hybrid experiments with biological neurons and the description

of those pioneer platforms was reported in the literature (Jung

et al., 2001; Le Masson et al., 2002; Vogelstein et al., 2006). The

Brainbow project will go further by using a large-scale neural

network instead of few neurons to substitute the functions of a

biological sub-network. The final goal is the development of a

new generation of neuro-prostheses capable to restore the lost

communication between neuronal circuitries.

Locomotion is one of the most basic abilities of animals.

Neurobiologists have established that locomotion results from

the activity of half-center oscillators that provides alternating

bursts. The first half-center oscillator was proposed by Brown

(1914). Pools of interneurons control flexor and extensor motor

neurons with reciprocal inhibitory connections. Most rhythmic
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movements are programmed by central pattern-generating net-

works consisting of neural oscillators (Marder and Bucher, 2001;

Ijspeert, 2008). CPGs are neural networks capable of producing

rhythmic patterned outputs without rhythmic sensory or central

input. CPGs underlie the production of most rhythmic motor

patterns and have been extensively studied as models of neural

network function (Hooper, 2000). Half-center oscillators con-

trol swimming in xenopus, salamander (Ijspeert et al., 2007),

and lamprey (Cohen et al., 1992), as well as leech heartbeat

(Cymbalyuk et al., 2002), as described in numerous publications.

One key article on modeling the leech heartbeat system is Hill

et al. (2001), where the Hodgkin–Huxley formalism is used to

reproduce the CPG.

The main novelty of this research was to implement the leech

heartbeat system neural network with minimum resources while

maintaining its biomimetic activity. Indeed, the final application

is a hybrid experiment that requires spike detection, spike sort-

ing, and micro-electrode stimulation. All of these modules are

implemented in the same digital board. To achieve this, the Hill

et al. (2001) model and results were reproduced using a sim-

pler model (Izhikevich, 2004), implemented in an FPGA (Field

Programmable Gate Array) board. This digital board made it pos-

sible to design a frugal, real-time network of several CPGs (in this

case, a network of 240 CPGs implemented on a Spartan6 FPGA

board). For instance, this CPG network is capable of mimicking

the activity of a salamander, which requires 40 CPGs (Ijspeert,

2001), or developing hybrid experiments (Le Masson et al., 2002)

for neuroprosthesis development (Brainbow, 2012).

The first part of this article describes the biological leech heart-

beat system, based on one segmental CPG. The next section

focuses on choosing a frugal neuron model to match the same

biological behavior. The following section explains the topol-

ogy of a single neuron and its implementation in the hardware,

followed by its extension to a neuron computation core for

increasing the size of the neural network. The next stage was to

develop a new synaptic model reproducing activity-dependent

depression phenomena to fit the biological activity of a leech

heartbeat. The architecture of this digital system is then described

in full, including the various blocks. Finally, the system was used

to design a CPG network, validated by comparing our measure-

ments with ex vivo rat spinal cord locomotion results following

pharmacological stimulation.

MATERIALS AND METHODS

DESCRIPTION OF THE LEECH BIOLOGICAL HEARTBEAT SYSTEM

All leech heartbeat studies agree that the CPG (Figure 1C)

responsible for this activity (Figure 1A) requires few neurons,

making it an ideal candidate system for elucidating the various

biomechanisms governing CPG behavior.

Modeling studies indicate that the burst duration of a leech

heart interneuron in an elemental oscillator is regulated by the

interneuron itself and by the opposite interneuron (see L3 and

R3 in Figure 1B) (Calabrese, 1995; Nadim et al., 1995; Olsen

et al., 1995; Hill et al., 2001; Jezzini et al., 2004; Norris et al.,

2007). Figure 1A shows the electrical activity in the leech heart-

beat system from extracellular recordings. The pair of neurons

is known as an elemental oscillator (Figure 1B), i.e., the smallest

FIGURE 1 | Electrical activity of the leech heartbeat system and

diagram of the CPG. Neuron cell bodies are represented by circles. Axons

and neurite processes are represented by lines. Inhibitory chemical

synapses are represented by small filled dots. (A) Electrical activity of two

heart interneurons recorded extracellularly from a chain of ganglia (Hill

et al., 2001). (B) A diagram of the elemental oscillator in the leech heartbeat

system. (C) A diagram of the segmental oscillator in the leech heartbeat

system, including two elemental oscillators, L3/R3 and L4/R4, and two

pairs of coordination neurons, L1/R1 and L2/R2.

unit that capable of producing robust oscillations under normal

conditions. These neurons oscillate in alternation with a period

of about 10–12 s (Krahl and Zerbst-Boroffka, 1983; Calabrese

et al., 1989; Olsen and Calabrese, 1996) demonstrated that the

synaptic connections among interneurons and from interneu-

rons to motor neurons were inhibitory. The synaptic interaction

between reciprocally inhibitory heart interneurons consists of a

graded component in addition to spike-mediated synaptic trans-

missions (Angstadt and Calabrese, 1991). This kind of synapse is

really difficult to implement in hardware as it contains sigmoid

functions, differential equations, memory of last spikes, and so

on. A description of our synapse model reproducing the same

behavior is included below.

Nadim et al. (1995) and Olsen et al. (1995) developed a bio-

physical model of a pair of reciprocally inhibitory interneurons in

the leech heartbeat system. This model included synaptic ionic

currents based on voltage-clamp data. Synaptic transmissions

between the interneurons consist of spike-mediated and graded

synaptic currents. The Hill et al. (2001) model was derived from

a previous two-cell, elemental oscillator model (Nadim et al.,

1995) by incorporating intrinsic and synaptic current modifica-

tions based on the results of a realistic waveform voltage-clamp
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study (Olsen and Calabrese, 1996). This new, segmental oscilla-

tor model behaves more similarly to biological systems. Figure 1C

shows a model of the system. The real-time digital segmental

oscillator model design will be based on this architecture. The

next part will describe the system modeling the leech heartbeat

with the goal of implementing it in hardware. The leech heartbeat

CPG was chosen for the long duration of the burst.

SYSTEM MODELING FOR HARDWARE IMPLEMENTATION

State of art

Some previous studies used silicon neurons (Indiveri et al., 2011)

to simulate the leech heartbeat system (Simoni et al., 2004; Simoni

and DeWeerth, 2007). Sorensen et al. (2004) created a hybrid

system of a heart interneuron and a silicon neuron. The silicon

neuron provides real-time operation and implements a version

of the Hodgkin–Huxley formalism (Hodgkin and Huxley, 1952).

However, due to the complexity of the model, it was only possi-

ble to use a small number of silicon neurons and, therefore, only

one CPG. This study describes the same results using a large CPG

network (240 CPGs on a Spartan6 FPGA board), in preparation

for future hybrid experiments with different CPGs. For instance,

in the salamander model (Ijspeert, 2001), the body CPG consists

of 40 interconnected segmental networks.

When a silicon neuron and heart interneuron are connected

with reciprocal inhibitory synapses of appropriate strength,

they form a hybrid elemental oscillator that produces oscilla-

tions remarkably similar to those seen in the living system.

Olypher et al. (2006) described the control of burst dura-

tion in heart interneurons using a hybrid system, where a liv-

ing, pharmacologically-isolated, heart interneuron was connected

with artificial synapses to a model heart interneuron running

in real-time (software). Using an FPGA board will make it pos-

sible to operate in real time using a large number of neurons,

together with customized systems for various applications (hybrid

experiments).

A few studies (Torres-Huitzil and Girau, 2008; Rice et al.,

2009; Serrano-Gotarredona et al., 2009; Barron-Zambrano et al.,

2010; Barron-Zambrano and Torres-Huitzil, 2013) reported on

CPG in FPGA for robotic applications. These studies used sim-

ple neuron-models and were more bio-inspired than biomimetic.

Guerrero-Riberas et al. (2006) implemented a network of LIF

neurons with synapses and plasticity, but not in biological time,

so it was impossible to perform hybrid experiments. While

multi-legged robots need CPG to move or coordinate their

movements, they implement an Amari–Hopfield CPG (Amari,

1972) or basic CPGs (Van Der Pol, 1928), modeled as non-

linear oscillators. Those models provide sinusoidal oscillations

that are not biorealistic. The ultimate goal of these studies is

to create a robot that mimics biological behavior but these

systems cannot be used for hybrid experiments. Analog hard-

ware has also been implemented (Linares-Barranco et al., 1993;

Still and Tilden, 1998; Lewis et al., 2001; Nakada, 2003; Still

et al., 2006; Lee et al., 2007; Wijekoon and Dudek, 2008).

However, it is very difficult to tune analog circuits due to param-

eter mismatch. For these works, they either design bio-inspired

oscillators for creating CPG or implement few biomimetic

neurons.

Choice and presentation of the Izhikevich model

In designing a SNN, the first step is the choice of a biologically

realistic model. Indeed, a mathematical model based differen-

tial equations is capable of reproducing a behavior quite similar

to that of a biological cell. The choice of model was based on

two criteria: the family of neurons able to be reproduced and

the number of equations. These criteria were used to compare

several models, including the Leaky Integrate and Fire model

(LIF) (Indiveri, 2007), the Hodgkin–Huxley model (HH), and the

Izhikevich model (IZH).

Hill et al. (2001) used the HH to reproduce the leech heart-

beat system with eight neurons (Figure 1C). From the equations

defined in this paper, it was established that the eight neurons

in the heartbeat leech behaved like regular spiking ones (RS).

Indeed, this model was composed of nine voltage-dependent

currents with different calcium conductances.

The HH model reproduces all types of neurons with good

accuracy (spike timing and shape). Its main drawbacks are the

large number of parameters and the equations required. In the

heartbeat network, the main focus is on excitatory neurons, like

RS. The HH model required 32 parameters for an RS and 26 for a

fast-spiking neuron (FS) (Grassia et al., 2011). Furthermore, sim-

ulating an RS neuron required four ionic channels (dynamics of

potassium and sodium ions, leak current, and slow potassium).

In contrast, LIF only involves two equations but is only capable of

simulating a few types of neurons.

The IZH represents a good solution, as it is based on two equa-

tions and is capable of reproducing many different families of

neurons by changing four parameters. Furthermore, according

to Izhikevich (2004), this model is resource-frugal, a key advan-

tage when the aim is to design a large CPG network embedded in

the same board as other modules required for hybrid experiments

(spike detection, spike sorting, stimulation, etc.).

The IZH model depends on four parameters, which make it

possible to reproduce the spiking and bursting behavior of spe-

cific types of cortical neurons. From a mathematical standpoint,

the model is described by a two-dimensional system of ordinary

differential equations (Izhikevich, 2003):

dv

dt
= 0.04v2

+ 5v + 140 − u + IIzh (1)

du

dt
= a(bv − u) (2)

with the after-spike resetting conditions:

if v ≥ 30 mV ⇒

{

v ← c

u ← u + d
(3)

In equation (3), v is the membrane potential of the neuron, u is a

membrane recovery variable, which takes into account the activa-

tion of potassium and inactivation of sodium channels, and IIzh

describes the input current from other neurons.

The IZH model was chosen to emulate the behavior of the

excitatory cells for its simplicity and its capacity to implement

various families of neurons. The next step was to determine the
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network system topology. The next section describes the design

of one neuron and its extension to a neuron computation core,

then the different synapse models implemented, and, finally, the

topology of the network.

SYSTEM TOPOLOGY

Topology of one neuron core: architecture and implementation

In order to make the Izhikevich neural network more biomimetic,

the IIzh current from equation (1) was split into three: Ibias, Iexc,

and Iinh. Ibias is the biasing current, Iexc is the positive con-

tribution due to excitatory synapses, and Iinh is the negative

contribution of inhibitory synapses. Those currents will be

detailed in Synapse Model. As suggested in Cassidy and Andreou

(2008), equation (1) was multiplied by 0.78125 to make it easier

to implement on a digital board. These modifications gave (4),

where the u coefficient is still 1 thanks to Ibias current.

dv

dt
= 1

/

32 v2
+ 4v + 109.375 − u + Ibias + Iexc + Iinh

du

dt
= a · (bv − u)

(4)

Moreover, dv
dt =

v[n+1]−v[n]
�t and, as the time step of the IZH

model is equal to one millisecond (�t = 1):

v [n + 1] = 1
/

32 v [n]2
+ 5v [n] + 109.375 − u [n]

+ Ibias [n] + Iexc [n] + Iinh [n] (5)

u [n + 1] = u [n] + a.(b.v [n] − u [n])

One neuron was implemented on the FPGA board according

to these equations and specifications. This neuron was then

extended into a neuron computation core that updated the u and

v values of all neurons in the network. Consequently, the neu-

ron implementation became a neuron computation core. For

instance, around 2000 independent neurons could be imple-

mented on our digital board. In this system, the type of neuron

is defined by the four Izhikevich parameters: a, b, c, and d from

equations (2) and (3). Moreover, the state of a neuron is defined

by values u and v, and the three current values. Those 9 val-

ues were saved in a RAM for use in the next millisecond in the

step computation. By extension, the same process can be used for

every neuron in the network.

Each u and v computation step is run in parallel, using two

pipelines based on the architecture presented in [9]. The topology

is presented in Figure 2. All parameters from equations (2), (3),

and (4), as well as the u and v values used in the computation are

synchronized in one cycle before going through the pipelines (not

shown in Figure 2).

To resume, each neuron is represented by one “v” and “u”

value, four Izhikevich coefficients (a, b, c, and d), and three

currents (Ibias, Iexc, and Iinh).

Iexc, Iinh, and Ibias are added in two cycles at the beginning of

the “v” pipeline, while the “u” pipeline is still inactive (steps 1

and 2). The current sum is added to the constant 109.375 and at

FIGURE 2 | Architecture of the “u” and “v” pipelines in the neural

computation core. The computation cycles are separated by dotted lines.

the same time as the first multiplication (step 3). By multiplexing

operands, the same multiplier is used for the following multipli-

cations in different computation cycles. In step 4, v2 is obtained

by another multiplication. A simple two-bit shift makes it possi-

ble to obtain 4v and add it to v. At the same time, u is used in two

subtractions. Step 5 consists of a 5-bit shift to obtain (1/32)v2, an

addition, and the last multiplication. In step 6, the computation

of both u and v is completed. In the next step, the v value is tested

against the threshold to determine whether the neuron has emit-

ted a spike or not. This test gives the next u and v values for this

neuron to be stored in the RAM.

An RS neuron with a = 0.002, b = 0.2, c = −65, and d = 8

was used to implement the CPG.

Once the neuron computation core was implemented, the

synaptic model was chosen and implemented.

Synapse model

A network is defined by a group of neurons and a group of

synapses. Once the neuron model had been chosen, it was obvi-

ously necessary to choose a synapse model. Like the neuron

model, this model had to be biomimetic but frugal in its use of

resources. In biology, synapses are described as links between neu-

rons that transmit different types of synaptic currents to each

other to either excite or inhibit neuron activity. In our imple-

mentation, a synaptic weight (Wsyn) was added to the synaptic

current. When Wsyn was positive, it was added to Iexc (excitatory

synaptic current) and when Wsyn was negative, it was added to

Iinh (inhibitory synaptic current).

Thanks to AMPA and GABA effects, all synaptic current exci-

tations or inhibitions, respectively decay exponentially (Ben-Ari

et al., 1997). AMPA is an excitatory neurotransmitter that depo-

larizes the neuron membrane whereas GABA is an inhibitory
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neurotransmitter with a hyperpolarizing effect. Depolarization

or hyperpolarization are represented by a positive or negative

contribution on the synaptic current.

The synaptic current Isyn was implemented with a time

constant τsyn for the exponential decay, as follows:

Isyn(t) = −τsyn · I′
syn(t) = −τsyn.

Isyn(t + T) − Isyn(t)

T
(6)

Isyn(t + T) =

(

1 −
T

τsyn

)

· Isyn(t) (7)

When computation step T equals one millisecond and τsyn is in

ms:

Isyn(t + 1) =

(

1 −
1

τsyn

)

· Isyn(t) (8)

Isyn [n + 1] = Isyn [n] −
1

τsyn
· Isyn [n] (9)

Adding the synaptic weight to the synaptic current, the new

equation is:

Isyn [n + 1] = Isyn [n] −
1

τsyn
· Isyn [n] + Wsyn [n] (10)

The synaptic computation core implementation is based on the

same principle as the neuron computation core. However, this

model is not adequate to fit biological data. It was, therefore,

decided to implement an activity-dependent depression, where

the new synaptic weight, Ws, was dependent on Wsyn.

Activity-dependent depression

As the synaptic behavior described in Hill et al. (2001) requires

too many resources to be implemented on FPGA, the method

chosen to fit overall biological behavior was activity-dependent

depression (Tabak et al., 2000). Activity-dependent depression of

synapses is another biological phenomenon consisting of reduc-

ing a synaptic weight after a spike. In biology, each synapse

contribution is provided by a synaptic vesicle. These vesicles

contain ions that empty out at each spike and then regenerate, fol-

lowing an exponential rule. According to Matsuoka (1987), four

methods provide a stable rhythm within a network (regulation

of stimulus intensity, change in input, alteration of stimuli, and

change in synaptic weight). The phenomenon, known as activity-

dependent depression changes the synaptic weight depending on

the activity of the network.

This phenomenon has been reported in neurobiology litera-

ture but no model had been devised. This paper proposes a model

of this activity-dependent depression that was implemented in

digital hardware to improving our CPG network.

As previously explained, each time a neuron emits a spike; the

synapse adds a synaptic weight (Wsyn) to the synaptic current.

At the same time, the factor (δsyn) indicating the level of depres-

sion on a synaptic weight increases. Furthermore, δsyn regulates

Wsyn. The value of δsyn is between 0 and 1. Consequently, when

δsyn equals zero there is no depression on Wsyn and when δsyn

equals one there is maximum depression on Wsyn and the synapse

is exhausted.

Ws was used instead of Wsyn as the synaptic weight for each

synapse. Then, according to the activity-dependent depression

effect, when there is a spike, Ws is added to the synaptic current:

Ws [n] = Wsyn − δsyn [n] · Wsyn (11)

The other effect of activity-dependent depression is to increase

δsyn after each spike, thanks to the percentage dissipation (P).

δsyn [n + 1] = δsyn [n] + P · (1 − δsyn [n]) (12)

The regeneration or reloading of synaptic vesicles is represented

by δsyn decreasing to zero. Thus, δsyn decays exponentially when

no spike is emitted. So, using the method described in Synapse

Model:

δsyn [n + 1] = δsyn [n] −
1

τreg
· δsyn [n] (13)

To summarize, all synapses are now represented by (12), (13), (14)

and:

Isyn [n + 1] = Isyn [n] −
1

τsyn
· Isyn [n] + Ws [n] (14)

The main parameters are: synaptic weight, Wsyn; level of depres-

sion, δsyn; and percentage dissipation, P. All these parameters are

stored in the RAM on the digital board. Furthermore, this com-

putation required greater precision due to the sensitivity of the

parameters. The 26-bit signed fixed representation chosen had

1-bit for the sign, 9-bits for the whole numbers, and 16 for the

decimals.

Once the neuron and synapse models had been designed, it

was possible to develop the neural network topology.

Network topology

Three elementary blocks. The architecture was based on three

main blocks: the neuron implemented (or neuron computation

core), a synapse, and the RAM. The connectivity between those

blocks is shown in Figure 3.

So far, the neuron computation core can update the state

(“u” and “v” variables) of each neuron. In the digital network,

the role of the synapse is to update all synaptic currents and

weights related to the activity of all neurons, so the synapse block

exhibits two behaviors (spiking or not). These two behaviors are

summarized in Table 1.

The IZH model has a time step of one millisecond, so the other

computation was synchronized with this time step. The new val-

ues of u and v, the exponential decay of Isyn, and the new values

of each synaptic current are computed in the same millisecond.

Moreover, a biological neural network is composed of Nn neu-

rons and Ns synapses. To define which neuron is connected to

which and with which kind of synapse (excitatory or inhibitory),

the network is described using two matrixes: connectivity and

synaptic weight (see Figure 3). To save RAM, both matrixes are

implemented as sparse matrixes with Nn lines. The ith line in the
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FIGURE 3 | Global architecture of the spiking neural network.

Table 1 | Description of the equations for synaptic currents and

activity-dependent depression.

When a spike is emitted When no spike is emitted

Synaptic current Synaptic current

Iexc [n + 1] = Iexc [n] + Ws [n]

or

Iinh [n + 1] = Iinh [n] + Ws [n]

Iexc [n + 1] = Iexc [n]

and

Iinh [n + 1] = Iinh [n]

Activity-dependent depression Activity-dependent depression

δsyn [n + 1] = δsyn [n] + P(1 − δsyn [n]) δsyn [n + 1] = δsyn [n] −
δsyn [n]

τreg

connectivity matrix corresponds to the connectivity of presynap-

tic neuron Ni to the other neurons. The synapses are identified by

the postsynaptic neuron addresses. For example, the connection

to neuron Nj is identified by the number j on the ith line. In the

worst case, each neuron is connected to itself and all the others,

giving Nn columns. Each matrix line ends with a virtual neuron

(address Nn + 1). This implementation is not optimum for the

worst case, but the gain is significant for biologically plausible net-

works, where the total number of synapses is at least four times

smaller. Marom and Shahaf (2002) and Garofalo et al. (2009)

estimated the average connectivity level of neural networks at

their mature phase each neuron is mono-synaptically connected

to 10–30% of all the other neurons.

There is a direct link between the matrixes: the synaptic weight

matrix is the same size as the connectivity matrix, i.e., the same

number of lines and columns, with the virtual neurons in the

same position (Figure 4). The connectivity between two neurons

described by the coordinates (k, l) in the connectivity matrix has

the weight shown in box (k, l) in the synaptic weight matrix.

A third matrix based on the same principle completes the system:

the percentage efficiency matrix, which gives the percentage dissi-

pation, P, of each synapse in a network, as defined in the previous

section on activity-dependent depression. We will describe now

the state machine of the neural network.

FIGURE 4 | Example of matrix design depending on the neural

network. Neuron 2 (N2) is connected by an inhibitory synapse to neuron 1

(N1) and by an excitatory synapse to neuron 3 (N3). Then, on line 2 in the

connectivity matrix, N2 is connected to N1, N3, and a virtual neuron (VN),

indicating the end of the connection. In the synaptic weight matrix, the

synapses for neuron 2 (S2) have a negative weight for the inhibitory

synapse and a positive weight for the excitatory synapse. Note the

correspondence of its position in both matrixes.

Network machine states. The synaptic current is computed in

three successive steps:

– EXT state: for closed-loop experiments, we implement this

state in which external feedback can interact with the artificial

neural network. This first state consists of using the synaptic

block to update the synaptic current. In this case, presynaptic

spikes are external events (see Figure 3), such as stimulation

from biological neurons in the case of neuroprosthesis. This

state makes it possible to stimulate each neuron.

– NEUR state: during this step, the neuron membrane (“u”

and “v” from Figure 2) and all exponential decay values are

computed in parallel.

– SYN state: the last step consists of updating the synaptic current

to reflect the presynaptic spikes computed in the NEUR state.

These updated current values are used in the EXT state during

the next cycle.

The EXT, NEUR, and SYN states must be completed within a

one millisecond time step. If the computation of all three states

is completed in less than 1 ms, an IDLE state is implemented

until the end of the cycle. Moreover, the blocks (neuron compu-

tation core and synapse computation core) described in Figure 3

are multiplexed in time to reduce the implementation area in

large-scale neural networks.

Our architecture has two main limits: the number of avail-

able cycles (Nc) in one millisecond and the size of the RAM

used to save all parameters. Two equations derived from these

limits determine the maximum size of the implementable

neural network, in terms of number of neuron (Nn) and

synapses (Ns).

In the EXT state, all synaptic currents are updated in 10 cycles

for each neuron, i.e., 10· Nn cycles. Each neuron requires 11 cycles

to compute the NEUR state, i.e., 11· Nn cycles. The synaptic cur-

rent update during state SYN requires 10 cycles per synapse, i.e.,
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10· Ns. Figure 2 describes 7 cycles for the neuron computation

core, but 4 more cycles are required to read and save the various

parameters in the RAM.

This leads to the following equation for computing the max-

imum number of neurons that may be implemented, depending

on the number of cycles available:

10 · Nn + 11 · Nn + 10 · Ns ≤ Nc (15)

Having built all the component parts of this real-time,

biomimetic digital system, it was possible to validate it by several

experiments, presented in the following section.

RESULTS

A CPG is defined by the number of neurons and the families of

neurons and synapses. The leech heartbeat neural network was

simulated by an appropriate CPG configuration.

Hill et al. (2001) presented an elemental oscillator, based on

two excitatory neurons linked by inhibitory synapses. A segmen-

tal oscillator may consist of 4–10 neurons. A two-neuron network

(elemental oscillator from Figure 1B) was chosen to validate our

topology, followed by an eight-neuron neural network (segmen-

tal oscillator from Figure 1C). The activity of our system was

then compared with that of an ex vivo rat spinal cord, stimu-

lated with pharmacological solutions. It was also demonstrated

that the period of bursting activity could be modified depending

on one parameter. This will be useful in future closed-loop hybrid

experiments.

Biological CPGs provide specifications concerning their

behavior. Indeed, their activity is characterized by periodic long

bursts (lasting many seconds). Each burst begins by a quick rise

in spike frequency to a maximum and ends with a low final spike

frequency.

COMPARISON OF BIOLOGICAL/DIGITAL ELEMENTAL OSCILLATOR

The first example of a CPG was the elemental oscillator (with only

two neurons). To reproduce activity accurately, it was necessary to

obtain the following values: τampa (time constant of the inhibitory

synaptic current exponential decay), τreg (time constant of the

recovery of synaptic vesicles), and P (percentage dissipation).

These values will be the same for each synapse. The following val-

ues were chosen to match biological behavior: τcurrent = 100 ms

and τreg = 4444 ms (so 1/τcurrent = 0.01 and 1/τreg = 0.0002).

The Ibias current was equal to 8 for both neurons. The synaptic

weights are −5.1 and the percentages of dissipation are 1.49.

This model was validated by comparing its implementation

with the complex model in Hill et al. (2001) (see Figure 5).

In this case, the activity of one neuron inhibits the sec-

ond neuron. Due to activity-dependent depression and the

GABA effect, the inhibition ends and lets the second neuron

fire again. In both cases (biological modeling system and digi-

tal system), the bursting activity was similar in terms of period

and duty cycle, thus validating the simplified elemental oscil-

lator with the complex one. The next step was to validate

the segmental oscillator and compare its implementation with

biological data.

FIGURE 5 | Comparison between elemental oscillator (Figure 1B)

bursting activity in the complex model simulated by scilab, as

described in Hill et al. (2001) and the elemental oscillator presented

above thanks to a logic analyzer. The time scale is the same.

FIGURE 6 | Logic analyzer measurements of the digital eight-neuron

CPG. L3 and R3 show the activity of the first oscillator. L4 and R4 show the

activity of the second oscillator. L1/R1 and L2/R2 are the coordination

neurons.

COMPARISON OF BIOLOGICAL/DIGITAL SEGMENTAL OSCILLATOR

Keeping the time constant, the biological behavior of the eight-

neuron network was duplicated using the following parameters.

This time, an eight-neuron CPG was implemented using the same

values for τcurrent and τreg than as those used for the elemen-

tal oscillator. The use of 8 neurons made it possible to maintain

the period without variation (see Table 2) by slowing down the

two pairs of oscillators with coordination neurons (De Schutter,

2000).

In Figures 1C, 6, L3/R3 and L4/R4 correspond to the two

elemental oscillators and are coupled to the L1/R1 and L2/R2

coordination neurons. The connectivity between each neuron

is following Figure 1C. The synaptic weights are −7 and the

percentage of dissipation is 2.65.

The mean period, duty cycle, and variations in spike fre-

quency depending on their position in the burst were mea-

sured to quantify the overlap of bursting activity (Table 2). The

mean period of this digital implementation was similar to bio-

logical values. Note that the segmental oscillator exhibited less

variation than the elemental system, thanks to its coordination

neurons.

Also, in general, the spike frequency of our implementation

was similar to that of the biological system. Due to our synapse
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Table 2 | Comparison of burst characteristics in the two digital

implementations and the biological system.

Biological

system

Elemental

oscillator

Segmental

oscillator

(Hill et al.,

2001)

(digital) (digital)

Mean period 10–12 s 12.6 ± 1.4 s 11.2 ± 1 s

Mean duty cycle 57.2 ± 2.9% 54.7 ± 6% 46.1 ± 6%

Mean spike

frequency

11.9 ± 2.1 Hz 12.1 ± 1 Hz 11.2 ± 1 Hz

Initial spike

frequency

4.3 ± 0.7 Hz 8.5 ± 0.2 Hz 8.6 ± 0.4 Hz

Peak spike

frequency

17.5 ± 3.2 Hz 13 ± 0 Hz 12.5 ± 0 Hz

Final spike

frequency

5.8 ± 1.0 Hz 8.1 ± 0.2 Hz 9.3 ± 3 Hz

model, the frequency reached a maximum in each spike burst

but remained on a plateau instead of decreasing to the minimum

frequency immediately. In the biological system, the behavior

described is due to the enhancement and attenuation of variations

in conductance. However, the IZH model does not include con-

ductance, so it cannot be as biomimetic as the HH model. This

highlights a weak point of the implementation presented here,

but even the HH model, Hill et al. (2001) was unable to mimic

this biological variation in spike frequency in a single burst. One

discrepancy between the model and the biological system is that

the initial and final spike frequencies of a burst were consis-

tently lower in the biological system. In both implementations,

the most inconvenient drawback was the variation in the duty

cycle, explained by the stability of the IZH model. One perspec-

tive of this work to ensure stability is described in the discussion

section.

These experiments validated the implementation of our ele-

mental and segmental oscillators. This table also confirms that

designing a biomimetic system was a good choice. Indeed, the

variations of the duty cycle and the period for the bursting

activity could not be reproduced by bio-inspired oscillators. The

next step was to identify one parameter that would modify the

bursting activity period, which would be useful in closed-loop

applications.

VARIATION IN THE MEAN PERIOD DEPENDING ON ONE PARAMETER

A CPG is defined here by the number of neurons and the type

synapses involved, the static currents of each neuron, the percent-

age dissipation, and the synaptic efficiency time constant.

Changing the synaptic efficiency time constant τreg modifies

the period of each spike burst (Table 3). The variation in τreg

affects the period and duration of each burst, as well as the

duty cycle and the variability of these parameters: the greater

the value of 1/τreg, the longer the mean period of bursting

activity.

The possibility of modifying the period using a single param-

eter is very useful and was applied in a closed-loop hybrid

experiment concerning locomotion behaviors.

Table 3 | Variation in the mean period depending on the τreg

parameter.

1/τreg(ms−1) Mean period (s)

0.09 4.4 ± 1.6

0.15 7.2 ± 1.2

0.20 11.2 ± 1

0.22 12.9 ± 1.1

Table 4 | Resources required for one CPG on a Spartan 6 digital board.

Resources Total Used for Used for

available one CPG 240 CPGs

Slice FF’s 184304 1,093 (0.6%) 1,459 (0.8%)

Slice LUT 92152 1,037 (1.2%) 1,756 (1.9%)

DSP48A1 180 10 (5.6%) 10 (5.6%)

RAMB16BWER 268 1 42 (756 kb)

Total RAM 4824 kb 9 kb (0.2%) 765 kb (16%)

FPGA RESOURCES

Originally, a CPG consisted of 8 neurons and 12 synapses but

2 additional synapses per CPG were required to create a net-

work of CPG, by connecting CPG to another one. Thus, each

CPG consisted of 8 neurons and 14 synapses. In terms of cycles

and available memory, this implementation was capable of run-

ning 240 CPGs on a Spartan 6 digital board [see equation (15)

and Table 4]. The power consumption of one CPG is 8 mW and

for CPGs is 20 mW. We could reduce it in the future by design-

ing a custom ASIC. For neuroprosthesis application, the power

consumption should be lower than 80 mW/cm2 chronic heat dis-

sipation level considered to prevent tissue damage (Zumsteg et al.,

2005).

COMPARISON WITH EX-VIVO RAT SPINAL CORD RESULTS USING

PHARMACOLOGICAL STIMULATION

The final validation of this system consisted of comparing the

CPG output with ex vivo physiological data obtained from the

spinal cord of newborn rat [postnatal day (P)1–2]. Bursting

locomotor-like activity was induced by bath-application of aCSF

(artificial cerebrospinal fluid) mixed with N-methyl-DL-aspartate

(NMA; 10 µM), serotonin (5HT; 5 µM), and dopamine (DA;

50 µm) (all purchased from Sigma-Aldrich, France).

For the elemental oscillator. Neuron N1 (corresponds to neu-

ron L3 in Figure 1B) is connected to neuron N2 (corresponds to

neuron R3 in Figure 1B) by an inhibitory synapse with a synap-

tic weight of −7 and a percentage dissipation of 12%. The Ibias

current is equal to 7 for both neurons.

Figure 7 shows that the digital system fits the biological

recordings of the newborn rat spinal cord. The period and duty

cycle of the bursting activity are the same, confirming that the dig-

ital system was suitable for hybrid experiments. Instead of using

pharmacological stimulation, the digital board will be used in the

near future to create a hybrid experiment involving the ex vivo

spinal cord and the digital CPGs. A closed-loop is also possible
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FIGURE 7 | Comparison of pharmacological in-vitro spinal cord with

digital CPG.

thanks to the possibility of changing the mean period of bursting

activity by modifying a single parameter (τreg).

DISCUSSION

One key step in designing a neuroprosthesis is to produce a

large, resource-frugal biomimetic SNN. A biologically realistic

CPG (i.e., the leech heartbeat system neural network) was imple-

mented with a minimum resource cost in terms of neuron model,

while maintaining its biomimetic activity, as shown in the Results.

The first step was to model the biological leech heartbeat system

using a single, segmental CPG. The next stage was to choose an

efficient neuron model that required few resources for its digital

implementation but remained biorealistic enough to match the

behavior of biological cells. The topology and hardware imple-

mentation of a single neuron were then extended to form a neu-

ron computation core built into a large-scale neural network: 240

CPGs on a Spartan6 FPGA board. Furthermore, the new synaptic

model proposed reproduced the activity-dependent depression

phenomenon, which had only previously been described in biol-

ogy literature. The architecture of the entire real-time systemwas

described in detail. Finally, the system was validated by several

experiments comparing both elemental and segmental oscilla-

tors with biological data, and comparing the segmental oscilla-

tor with ex vivo rat spinal cord stimulated by pharmacological

solutions.

The short-term prospect of this work is to improve the stabil-

ity of the system using another neuron model. Currently our work

is focused on the quartic model (Touboul, 2009), which is more

stable than the Izhikevich one and also requires few resources. As

described in Table 2, this system is subject to variations in duty

cycle and mean period, likely to be reduced by using the new

model. However, these variations also exist in biology, so it is

necessary to study the actual effect of these variations in the bio-

logical system to determine whether they should be eliminated or

not.

In the medium term, this system will be included in a hybrid

experiment using an ex vivo rat spinal cord. The experiment

board includes several modules, including an MEA (Micro-

Electrode Array) and spike detection block, to detect and

record neural activity in the spinal cord. All these modules,

together with the CPG network, will be implemented in the

same FPGA. Our neurophysiologist colleagues will identify the

best spinal cord sites to stimulate and record bursting activ-

ity. These sites will be hybridized to the output of the artifi-

cial CPG described in this paper and, in turn, its activity will

drive the various ventral root outputs of the spinal cord into

full locomotor-like activity. These future experiments aim to

demonstrate that hybrid artificial/biological networks provide

possible solutions for rehabilitating lost central nervous system

function.

Our CPG network could be also used to study the locomo-

tion of different animals. Indeed, according to Ijspeert (2001),

the locomotion activity of a salamander requires 40 CPGs, so the

240 CPGs implemented on the Spartan 6 digital board would

be suitable for studying more complex locomotion. Our system

will be used in a closed-loop system with different sensors and

actuators.
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