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Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes

 for the 1D case. In 2D, the proof is performed using a new diffusion scheme.

Introduction

We address the convergence analysis on unstructured meshes of diffusion asymptotic preserving schemes for the discretization of a problem with a stiff parameter denoted as 0 < ε ≤ 1. The model problem considered in this work is the hyperbolic heat equation in the domain t ≥ 0 and x ∈ Ω ⊂ R n P ε :

       ∂ t p ε + 1 ε div(u ε ) = 0, p ε ∈ R, ∂ t u ε + 1 ε ∇p ε = - σ ε 2 u ε , u ε ∈ R n (1)
discretized with first order finite volume schemes. This problem is representative of many transport problem such as transfer and neutron transport, for which the small parameter ε is the ratio of two very different sound velocities and σ is the absorption or the opacity. For simplicity both ε and σ > 0 are kept constant in space in this study. The system (1) can also be introduced as a specific linearization of a pressure-velocity system of partial differential equations in the acoustic regime.

In this work we will need the following well known energy estimates concerning the solution V ε of the Cauchy problem for the partial differential equation [START_REF] Aregba | Time Asymptotic High Order Schemes for Dissipative BGK Hyperbolic Systems[END_REF].

Proposition 1.1. If Ω = R n or Ω = T n , then ||V ε || H p (Ω) ≤ ||V ε (0)|| H p (Ω) (2) 
and moreover

σ ε 2 ||u ε || 2 L 2 ([0,T ];H p (Ω)) ≤ ||V ε (0)|| 2 H p (Ω) . ( 3 
)
We will consider well prepared data in the sense that: p ε (t = 0) is independent of ε and is sufficiently smooth; the initial velocity satisfies the equality in the second equation of (1) at leading order. It writes p ε (t = 0) = p 0 and u ε (0

) = - ε σ ∇p 0 . ( 4 
)
For such well prepared data, it can be easily shown that the formal limit of P ε for small ε is

P 0 : ∂ t p - 1 σ ∆p = 0. ( 5 
)
Remark 1.2. We do not consider the regime σ → 0, since it introduces a singularity both in the initial data of the hyperbolic heat equation and in the limit parabolic equation.

Precision of AP discretizations

Before addressing the main difficulty of this work which is the discretization on unstructured meshes, we briefly recall the now well known notion of an asymptotic preserving technique [START_REF] Jin | Efficient Asymptotic-Preserving (AP) Schemes for Some Multiscale Kinetic Equations[END_REF]- [START_REF] Jin | Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review[END_REF] which is illustrated in the figure 1. For the simplicity of the presentation, we will consider mainly semi-discrete numerical methods, this is why the time step does not show up in the graphic.

The parameter h designs a numerical method with characteristic length h ≤ 1: that is we assume a numerical method P ε h for the discretization of P ε . Definition 1.1 (Uniform AP). If P ε h is consistent with P ε uniformly with respect to ε, then we say that the scheme P ε h is uniformly AP (uniformly asymptotic preserving).

However the design of such methods and the numerical proof of this property is difficult. This is why it has been proposed in [START_REF] Jin | Efficient Asymptotic-Preserving (AP) Schemes for Some Multiscale Kinetic Equations[END_REF] to rely on the simpler necessary condition, where the limit as ε → 0 of P ε h is called the limit diffusion scheme P 0 h . If P 0 h is consistent with the limit model P 0 , then we say that the scheme P ε h is AP (asymptotic preserving).

P 0 h ε → 0 P ε h → 0 P 0 ε → 0 h → 0 P ε h
This property is simpler to analyze than the uniform AP. It explains why it has been very fruitful in the past. In 1D, many AP schemes have been designed for some PDE and physical problems: S. Jin, C. D. Levermore [START_REF] Jin | Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF] or L. Gosse, G. Toscani [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF] for the hyperbolic heat equation, M. Lemou, L. Mieussens, N. Crouseilles [START_REF] Lemou | Mieussens A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF]- [START_REF] Crouseilles | Lemou An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits[END_REF]- [START_REF] Crouseilles | A dynamic multi-scale model for transient radiative transfer calculations[END_REF] for some kinetic equations, L. Gosse [START_REF] Gosse | Transient radiative transfer in the grey case: Well-balanced and asymptotic-preserving schemes built on Cases's elementary solutions[END_REF], C. Buet and co-workers [START_REF] Buet | Diffusion limit of the lorentz model: asymptotic preserving schemes[END_REF] or S. Jin and C. D. Levermore [START_REF] Jin | The discrete-ordinate method in diffusive regime[END_REF] for S N equations and C. Berthon, R. Turpault [START_REF] Berthon | Turpault An HLLC scheme to solve the M 1 model of radiative transfer in two dimensions[END_REF]- [START_REF] Berthon | Turpault Late-time relaxation limits of nonlinear hyperbolic systems. A general framework[END_REF]- [START_REF] Berthon | Turpault Asymptotic preserving HLL schemes[END_REF] for generic systems and a non linear radiative transfer model. Recently some asymptotic preserving schemes for linear systems and non linear radiative transfer model have been designed in 2D [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF]- [START_REF] Buet | An asymptotic preserving scheme with the maximum principle for the M 1 model on distorted meshes[END_REF]- [START_REF] Buet | Asymptotic preserving finite volumes discretization for non-linear moment model on unstructured meshes, Finite Volumes for Complex Applications VI Problems[END_REF]. Other application to non linear hyperbolic systems of conservation laws with stiff diffusive relaxation is to be found is [START_REF] Naldi | Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation[END_REF]. Relaxation systems are treated in [START_REF] Filbet | Analysis of an asymptotic preserving scheme for relaxation systems[END_REF]. More general situation for transport and discrete velocity systems are in [START_REF] Jin | Uniformly accurate diffusive relaxation schemes for multiscale transport equations[END_REF][START_REF] Jin | Diffusive Relaxation Schemes for Discrete-Velocity Kinetic Equations[END_REF]. However for this type of schemes it is difficult to obtain convergence estimates due to the competition between the two parameters ε and h. To our knowledge this type of proof are only given for uniform grids [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] (consistence and stability, Lax theorem), [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF] (L 1 and BV estimates), [START_REF] Liu | Mieussens Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit SIAM[END_REF] (L 2 estimates). The goal of this work is to prove the uniform AP property on unstructured grids.

To this end we adapt a strategy developed in [START_REF] Golse | The convergence of numerical transfer schemes in diffusive regimes I: discrete-ordinate method[END_REF] in a slightly different context. It relies on the derivation of a priori estimates attached to the AP diagram in figure 1. To have a more global perspective on this strategy, let us assume some natural abstract a priori estimates for a given norm which is in our work based on f = f L 2 ([0,T ]×Ω) or f = f L ∞ ([0,T ];L 2 (Ω)) where T > 0 is a given final time, Ω = R, in 1D or Ω = [0, 1] 2 with periodic boundary conditions in 2D. We assume five constants a, b, c, d, e > 0 and four additional constants ↓ C, C → , C ← , C ↓ > 0 > 0 such that the error attached to the branches of the AP diagram can be bounded like

P ε h -P ε naive ≤ ↓ Cε -b h c , ( 6 
)
P ε h -P 0 h ≤ C → ε e . ( 7 
)
P 0 h -P 0 ≤ C ↓ h d , ( 8 
)
P ε -P 0 ≤ C ← ε a , ( 9 
)
The first inequality is the naive error bound which typically blows up for small ε. The second inequality for P ε h -P 0 h is assumed to have a form similar to the last one which expresses that P 0 is the limit of P ε . The third inequality corresponds to the usual AP property. Proposition 1.3. Assume that all these inequalities are at hand and that d ≥ c and e ≥ a. Then the uniform AP holds with a rate at least O h ac a+b . Proof. The triangular inequality writes P ε h -P ε ≤ min P ε h -P ε naive , P ε h -P 0 h + P 0 h -P 0 + P ε -P 0 which yields, using min(x, y + z) ≤ min(x, y) + min(x, z), d ≥ c and e ≥ a,

P ε h -P ε ≤ C min ε -b h c , ε e + h d + min ε -b h c , ε a ≤ C 2 min ε -b h c , ε a + h d ( 10 
)
with C = max ( ↓ C, C → , C ↓ , C ← ). We define a threshold value ε thresh by ε -b thresh h c = ε a thresh . So either ε ≤ ε thresh so that min ε -b h c , ε a ≤ ε a thresh = h ac a+b , or ε ≥ ε thresh and the same bound is obtained by taking the other term as the minimum. And since d ≥ c, one gets the abstract bound P ε h -P ε ≤ 3Ch ac a+b which ends the proof.

Organization of the proof

The structure of these inequalities explains our strategy: that is we prove separately each of these inequalities (9-7) with care, so that the inequalities d ≥ c and e ≥ a are true. This part of the proof relies on specific hyperbolic and parabolic numerical methods. Even if it is technical, the first three inequalities do not yield additional difficulties with respect to the state of the art. The proof of inequality [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] is provided in 1D, and can be probably be generalized straightforwardly on cartesian meshes in 2D and 3D. On the other hand our researches on proving [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] for P ε h -P 0 h show a fundamental obstruction in dimension greater than one on unstructured meshes which was not expected initially. Since the main difficulty is related to P 0 h , it motivates the definition of a new diffusion scheme. To this end we remark that another diffusion scheme is naturally defined from P ε h by killing the derivative ∂ t v h in the discrete version of the second equation of [START_REF] Aregba | Time Asymptotic High Order Schemes for Dissipative BGK Hyperbolic Systems[END_REF]. Killing at the continuous level the ∂ t v is absolutely equivalent to taking the formal limit ε → 0 + .

But at the discrete level, it appears that it generates a new family of diffusion schemes, where both parameters h and ε are present. We call them Diffusion Asymptotic schemes, DA ε h . By construction P 0 h = lim ε→0 DA ε h . This is summarized in figure 2. Finally since the scheme DA ε h is still an accurate discretization of P 0 , our proof of the uniform AP property is based on the new AP diagram displayed in figure 3. Our main theorem 3.16 in dimension 2 is based on this structure and it may be stated as follows: The so-called JL-(b) scheme defined in [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] for the discretization of the hyperbolic heat equation (1) (the scheme is cell-centered with nodal based fluxes) is uniformly AP on unstructured meshes, with a rate of convergence at least O(h 1 4 ) for sufficiently smooth initial data. This is an improvement with respect to [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] where only AP was proven. To our knowledge this is the first time that such a result is obtained on general unstructured multidimensional meshes. More precisely the convergence estimate can be written as

∂ t v h = 0 P ε h DA ε h P 0 h ε → 0
error ≤ C min h ε , ε max 1, ε h + h + ε
where the first argument in the min function comes from the hyperbolic analysis and the second argument comes from the parabolic analysis. Some natural regularity assumptions are nevertheless imposed on the mesh in the hypothesis 2.1, this is not very restrictive. For example meshes with angles greater than 90 degrees are allowed. If the mesh is made with triangles, the hypothesis is fulfilled if all angles are greater than 12 degrees, see [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF]. It is interesting to notice that the rate of uniform convergence is O(h

1 3
) in dimension one. The difference essentially comes from the estimate of the reconstruction of the initial velocity which is needed to rewrite a diffusion scheme as a non homogeneous hyperbolic scheme: it is much simpler in dimension one (see equation [START_REF] Jin | Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF]) than in dimension two (see proposition (3.13)). In this work we considered mainly semi-discrete numerical schemes, since it simplifies a lot the notations and allow to focus on the main difficulties, but the final estimates of convergence can be generalized to fully discrete schemes, using the a priori estimates developed in [START_REF] Després | Lax theorem and finite volume schemes[END_REF]. For explicit schemes, these estimates add a term proportional to the square root of the maximal time step allowed by the CFL condition. Since our problem is an hyperbolic+relaxation problem, with a limit which is parabolic, this additional term can be computed and is of the order between h (for purely hyperbolic) to h 2 (for purely parabolic). We refer to [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] for the detail of CFL condition in 1D and 2D. Concerning the implicit fully discrete version of the semi-discrete scheme which is unconditionally stable and well adapted to the test problem analyzed at the end of this work, the same kind of error terms can be analyzed. We will obtained the following result in dimension two. and h → 0 We think that some of our results can have an interest for the development and use of such methods in research or industrial codes with complex non linear physics on unstructured meshes. Indeed for such codes cell-centered Finite Volume schemes are a natural solution in terms of data structure. The point is the following: the scheme studied in this work is the only cell-centered one we know in 2D to compute the solutions of problems which admit diffusion limits in certain regimes and for which it is possible to prove the AP property. Since the structure of this cell-centered scheme is nodal based, it strongly questions the ability of standard Finite Volume methods with edge-based fluxes to recover asymptotic diffusion regimes. As demonstrated in this work, nodal based Finite Volume techniques do not suffer from this drawback. For linear wave equation the nodal scheme can be understand as some 1D Riemann problem written in some direction around each node, so can be interpreted as an approximation of the 2D Riemann problem [START_REF] Gosse | A two-dimensional version of the Godunov scheme for scalar balance laws[END_REF].

P 0 P ε P ε h ε → 0 h → 0 P 0 h ∂ t v h = 0 DA ε h ε → 0 ε → 0

Organization of the work

This work is organized as follows. Section 2 is dedicated to the discretization of the model problem in dimension one on irregular grids. The convergence is proved in theorem 2.10 with order h

1 3
in the L 2 space-time norm. In the next section, the nodal solvers for the hyperbolic equation are defined, and the various a priori estimates proved. The main theorem of uniform AP for the JL-(b) scheme with a rate O(h 1 4 ) is proved at the end of the section. Section 5 provides numerical results that sustain the fact that the convergence order depends on the relative value of ε and h, and so is mixed hyperbolic/parabolic. Our final remarks will be gathered in a conclusion. All our results and numerical methods in 2D can be generalized in 3D provided a convenient definition of the nodal corner vector is used as in [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF].

Analysis in 1D

The model problem in dimension one writes

P ε : ∂ t p ε + 1 ε ∂ x u ε = 0, ∂ t u ε + 1 ε ∂ x p ε = -σ ε 2 u ε . ( 11 
)
As stressed already in (4), we consider well-prepared data p ε (t = 0) = p 0 and u ε 0 = -ε σ ∂ x p 0 . The equations (11) admit the formal diffusion limit when ε tends to 0:

P 0 : ∂ t p - 1 σ ∂ xx p = 0. (12) 
A useful variable will be the scaled gradient

v = - 1 σ ∂ x p. ( 13 
)

Notations

We denote x j+1/2 the nodes, the cells j are the intervals [x j-1/2 , x j+1/2 ], thus ∆x j = x j+1/2x j-1/2 , x j is the center of the cell j that is x j = 1 2 (x j+1/2 + x j-1/2 ), and ∆x j+1/2 = x j+1 -x j = 1 2 (∆x j+1 + ∆x j ). Natural assumptions on the mesh are summarized below: Hypothesis 2.1 (Regularity of the mesh in 1D and constant C M ). We consider that there exists a universal constant 0 < C M ≤ 1 independent of the mesh size h = sup j∈Z ∆x j which controls the mesh from below

C M h ≤ ∆x j ≤ h ∀j ∈ Z. ( 14 
)
The semi-discrete JL(b) scheme, derived in [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] in 2D, can also be written in 1D on irregular meshes as

P ε h :        d dt p ε j + u ε j+ 1 2 -u ε j-1 2 ε∆x j = 0, d dt u ε j + p ε j+ 1 2 -p ε j-1 2 ε∆x j = - σ ε 2 u ε j+ 1 2 + u ε j-1 2 2 , ( 15 
)
with the fluxes p ε j+ 1 2 and u ε j+ 1 2 are the solutions of the well-posed linear system j ∈ Z :

       p ε j+ 1 2 + u ε j+ 1 2 + σ∆x j 2ε u ε j+ 1 2 = p ε j + u ε j , -p ε j+ 1 2 + u ε j+ 1 2 + σ∆x j+1 2ε u ε j+ 1 2 = -p ε j+1 + u ε j+1 . ( 16 
)
This scheme is the same as the Gosse-Toscani scheme 1 . Other equivalent forms of P ε h can be obtained by various manipulations, as in [START_REF] Mazeran | Sur la structure mathematique et l'approximation numerique de l'hydrodynamique lagrangienne bidimentionnelle[END_REF]. We use another formulation of the Gosse-Toscani obtained using the Jin-Levemore scheme [START_REF] Jin | Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF] and a discretization of the source term which uses the fluxes. Contrary to the Gosse-Toscani scheme which uses Riemann problem, this formulation based an elementary algebraic computation is easier to write in 2D on unstructured meshes (the design is detailed in [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF]). The natural pointwise initialization is chosen

p ε j (0) = p 0 (x j ) and u ε j (0) = - ε σ ∂ x p 0 (x j ) for all j ∈ Z. ( 17 
)
1 A long and tedious computation shows that the scheme is strictly equivalent to the Gosse-Toscani's scheme, described in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF] but only for uniform meshes, which writes in terms of

w ε , v ε = p ε ± u ε      dw j dt + M j-1 2 ε w ε j -w ε j-1 ∆x j = 1 ε∆x j (1 -M j-1 2 )(v ε j -w ε j ) = M j-1 2 ∆x j-1 2 ∆x j σ 2ε 2 (v ε j -w ε j ), dv ε j dt - M j+ 1 2 ε v ε j+1 -v ε j ∆x j = 1 ε∆x j (1 -M j+ 1 2 )(w ε j -v ε j ) = M j+ 1 2 ∆x j+ 1 2 ∆x j σ 2ε 2 (w ε j -v ε j ) with M j+ 1 2 = 2ε σ∆x j+ 1 2 +2ε and ∆x j+ 1 2 = ∆x j +∆x j+1 2
. By writing

M j-1 2 (w ε j-1 -w ε j ) = M j-1 2 w j-1 -M j+ 1 2 w j + (M j+ 1 2 -M j-1 2 )w ε j M j+ 1 2 (v ε j+1 -v ε j ) = M j+ 1 2 v ε j+1 -M j-1 2 v ε j -(M j+ 1 2 -M j-1 2 )v ε j
then in terms of p ε an u ε we have evidently

           dp ε j dt + 1 ε M j+ 1 2 u ε j+ 1 2 -M j-1 2 u ε j-1 2 ∆x j = 0, du ε j dt + 1 ε M j+ 1 2 p ε j+ 1 2 -M j-1 2 p ε j-1 2 ∆x j = - 1 2 M j+ 1 2 ∆x j+ 1 2 ∆x j σ ε 2 + M j-1 2 ∆x j-1 2 ∆x j σ ε 2 u ε j + M j+ 1 2 -M j-1 2 ε∆x j p ε j
with the fluxes given by p ε

j+ 1 2 = p ε j +p ε j+1 2 + u ε j -u ε j+1 2 and u j+ 1 2 = u ε j + u ε j+1 2 + p ε j -p ε j+1 2 .
When ε tends to 0, the scheme P ε h admits the diffusion limit scheme P 0

h P 0 h : ∆x j d dt p j - 1 σ p j+1 -p j ∆x j+ 1 2 - p j -p j-1 ∆x j-1 2 = 0 (18)
with the pointwise initialization

p j (0) = p 0 (x j ) for all j ∈ Z. ( 19 
)
Other quantities are the reconstructed gradient

     v j+ 1 2 = - 1 σ p j+1 -p j ∆x j+ 1 2 , v j = v j+ 1 2 + v j-1 2 2 . ( 20 
)
We denote by V ε (t, x) = (p ε (x, t), u ε (x, t)) the solution of the hyperbolic heat equations P ε . We reconstruct similar quantities from the diffusion scheme: it yields W ε (t, x) = (p(x, t), εv(x, t)) which is the solution of the diffusion limit ( 12)-( 13). The indicatrix function of the interval

(x j-1/2 , x j+1/2 ) is denoted as 1 j (x) = 1 if x ∈ (x j-1/2 , x j+1/2
) and 1 j (x) = 0 in the other case.

With this notation we note

V ε h (t, x) = j∈Z p ε j (t)1 j (x), j∈Z u ε j (t)1 j (x) the solution of the JL-(b) scheme P ε h . Finally we note W ε h (t, x) = j∈Z p j (t)1 j (x), ε j∈Z v j (t)1 j (x)
the solution of the diffusion scheme P 0 h (18)- [START_REF] Gosse | A two-dimensional version of the Godunov scheme for scalar balance laws[END_REF]. For simplicity we choose a final time T > 0. All error estimates will be given for t ≤ T , either in the norm

f (t) L ∞ ([0,T ];L 2 (R)) , or mostly in the norm f L 2 ([0,T ]×R) .
Hypothesis 2.2 (Regularity of the initial data and constant C A ). We consider that there exists a universal constant C A > 0 which controls all kind of approximations/interpolations/projections on the mesh of exact functions. We will write for example the error estimates at the initial time under the form

V ε h (0) -V ε (0) L 2 (R) ≤ C A h p 0 H 2 (R) (21) 
and

W ε h (0) -W ε (0) L 2 (R) ≤ C A h p 0 H 2 (R) . ( 22 
)
The second inequality in the hypothesis can be related to the sharper inequality

j u ε j (0) -εv j (0) 1 j L 2 (R) ≤ C A hε p 0 H 2 (R) . ( 23 
)
The other technical constants used to bound the errors of the left, top, right and bottom branches of the AP diagram 1 will be denoted as ↓ C, C → , C ↓ and C ← .

Study of P ε -P 0

In this section we prove a natural error estimate [START_REF] Golse | The convergence of numerical transfer schemes in diffusive regimes I: discrete-ordinate method[END_REF] between the solution of the hyperbolic heat equations [START_REF] Crouseilles | A dynamic multi-scale model for transient radiative transfer calculations[END_REF] and the solution of the diffusion limit equation [START_REF] Després | Lax theorem and finite volume schemes[END_REF].

Lemma 2.3. One has the estimate

V ε -W ε L 2 ([0,T ]×R) ≤ C ← ε p 0 H 3 (R) , C ← = T 3 2 σ 2 . ( 24 
)
Proof. We redefine v = -ε σ ∂ x p with p the diffusion solution of [START_REF] Després | Lax theorem and finite volume schemes[END_REF] and introduce R ε such that the solution of the diffusion equation satisfies

∂ t p + 1 ε ∂ x v = 0, ∂ t v + 1 ε ∂ x p + σ ε 2 v = R ε ( 25 
)
where

R ε = ∂ t v = -ε σ ∂ tx p = -ε σ 2 ∂ xxx p. Note that R ε (t) L 2 (R) ≤ R ε (0) L 2 (R) ≤ ε σ 2 p 0 H 3 (R) . Denoting e ε = p -p ε , f ε = v -u ε ,
we make the difference between the systems (11) et ( 25)

∂ t e ε + 1 ε ∂ x f ε = 0, ∂ t f ε + 1 ε ∂ x e ε + σ ε 2 f ε = R ε . ( 26 
)
Since data are well-prepared, one has e ε (0

) = f ε (0) = 0. Consider V ε -W ε 2 L 2 (R) = e ε 2 L 2 (R) + f ε 2 L 2 (R) .
Adding the first equation of [START_REF] Jin | Diffusive Relaxation Schemes for Discrete-Velocity Kinetic Equations[END_REF] multiplied by e ε and the second multiplied by f ε and integrating on R, we find out that:

1 2 d dt V ε -W ε 2 L 2 (R) ≤ R R ε f ε dx ≤ R ε L 2 (R) V ε - W ε L 2 (R) . One gets a bound of V ε -W ε L ∞ ([0,T ];L 2 (R)
) by integration between 0 and T. Finally

V ε -W ε L 2 ([0,T ]×R) ≤ √ T V ε -W ε L ∞ ([0,T ];L 2 (R))
which ends the proof.

Stability estimates for P ε h and P 0 h

The estimates [START_REF] Lemou | Mieussens A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF][START_REF] Liu | Mieussens Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit SIAM[END_REF] and (31) characterize the dissipation rate of both schemes.

Proposition 2.4. The scheme

P ε h is stable in L 2 norm. Moreover, T 0 ∆x j+ 1 2 (u ε j+ 1 2 ) 2 dt ≤ ε √ σ V ε h (0) L 2 (R) (27) 
and

T 0   j∈Z (u ε j+ 1 2 -u ε j ) 2 + j∈Z (u ε j-1 2 -u ε j ) 2   dt ≤ √ ε V ε h (0) L 2 (R) . ( 28 
)
Remark 2.5. The strategy of the proof of many estimates in this work consists in analyzing the balance between the dissipation of the fluxes and the physical dissipation (all source terms like σ ε 2 u) on the one hand, and some truncation errors on the other hand. This is why it is convenient to reformulate P ε h so that the pressure fluxes p ε j+ 1 2 and p ε j- 1 2 are eliminated in the second equation of [START_REF] Filbet | Analysis of an asymptotic preserving scheme for relaxation systems[END_REF]. This elimination is technically convenient since all dissipation terms are expressed using the same variable, namely u. It will simplify a lot the comparisons between all kinds of dissipation terms and other errors terms.

Proof. According to the above remark we obtain the formulation [START_REF] Mazeran | Sur la structure mathematique et l'approximation numerique de l'hydrodynamique lagrangienne bidimentionnelle[END_REF] which is equivalent to

P ε h                    ∆x j d dt p ε j + u ε j+ 1 2 -u ε j-1 2 ε = 0, ∆x j d dt u ε j - u ε j+ 1 2 + u ε j-1 2 ε + 2 ε u ε j = 0, 2 + σ∆x j+ 1 2 ε u ε j+ 1 2 = p ε j -p ε j+1 + u ε j + u ε j+1 . ( 29 
)
Consider now the discrete quadratic energy

E(t) = 1 2 j ∆x j ((p ε j ) 2 + (u ε j ) 2 ).
Multiplying the first equation of (29) by p ε j and the second equation by u ε j and adding on all the cells, one finds

E (t) = - j∈Z u ε j+ 1 2 -u ε j-1 2 ε p ε j + j∈Z u ε j+ 1 2 + u ε j-1 2 ε u ε j - 2 ε j (u ε j ) 2 . Since j (u ε j+ 1 2 -u ε j-1 2 )p ε j = j u ε j+ 1 2 (p ε j -p ε j+1
), one has by using the third equation of ( 29) and rearranging the terms

E (t) + j∈Z (u ε j+ 1 2 -u ε j ) 2 ε + j∈Z (u ε j-1 2 -u ε j ) 2 ε + σ ε 2 j∈Z ∆x j (u ε j+ 1 2 ) 2 + (u ε j-1 2 ) 2 2 = 0. ( 30 
)
Integrating (30) between 0 and t, one finds E(t) ≤ E(0), that is the L 2 stability of P ε h . The estimate [START_REF] Lemou | Mieussens A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF] comes from ∆x j+ 1 2 = 1 2 (∆x j + ∆x j+1 ). The estimate ( 28) is directly deduced from (30). Some similar bounds hold for the quantities related to the diffusion scheme [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF]. First, multiplying the diffusion scheme by p j and adding on all the cells, one has the L 2 stability in the sense 1 2

d dt j ∆x j p 2 j = - 1 σ j (p j+1 -p j ) 2 ∆x j+ 1 2 .
Thus the following estimate holds for the function vh = v j+ 1 2 j defined by ( 20)

vh L 2 ([0,T ]×R) = T 0 j ∆x j+ 1 2 (v j+ 1 2 ) 2 ≤ σ 2 p h (0) L 2 (R) , C > 0. ( 31 
)

Study of P

ε h -P ε naive
In this section we prove the convergence of P ε h to P ε . We still denote V ε (t) = (p ε , u ε ). Lemma 2.6. There exists a constant ↓ C > 0 independent of h, ε, C M , with at most a linear growth in time, such that the following estimate holds

V ε h -V ε L 2 ([0,T ]×R) ≤ ↓ C √ C M h ε p 0 H 2 (R) . ( 32 
)
Proof. We use the method introduced by C. Mazeran [START_REF] Mazeran | Sur la structure mathematique et l'approximation numerique de l'hydrodynamique lagrangienne bidimentionnelle[END_REF] in his PhD thesis. It starts with an estimate for the time derivative of

E = 1 2 V ε h -V ε 2 L 2 (R) .
For the sake of simplicity, q stands indifferently for d dt q or ∂ t q for any quantity q. One has

E (t) = 1 2 R ((p ε h ) 2 + (u ε h ) 2 ) dx D1 + 1 2 R ((p ε ) 2 + (u ε ) 2 ) dx D2 + R (-(p ε h ) p ε -(u ε h ) u ε )dx D3 + R (-p ε h (p ε ) -u ε h (u ε ) dx D4
We will successively estimate each of those terms, the fundamental idea being that D 1 ≤ 0 and D 2 ≤ 0 are used to control spurious contributions in D 3 and D 4 . First D 1 corresponds to the entropy production of the scheme. Thanks to [START_REF] Naldi | Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation[END_REF], one has

D 1 = - 1 ε j∈Z (u ε j+ 1 2 -u ε j ) 2 - 1 ε j∈Z (u ε j-1 2 -u ε j ) 2 - σ ε 2 j∈Z ∆x j (u ε j+ 1 2 ) 2 + (u ε j-1 2 ) 2 2 ≤ 0.
One also directly obtains

D 2 = - j∈Z ∆x j σ ε 2 1 ∆x j x j+ 1 2 x j-1 2 (u ε ) 2 dx ≤ 0.
For D 4 , one gets directly

D 4 = j∈Z p ε j u ε (x j+ 1 2 ) -u ε (x j-1 2 ) ε + j∈Z u ε j p ε (x j+ 1 2 ) -p ε (x j-1 2 ) ε + j∈Z σ ε 2 u ε j x j+ 1 2 x j-1 2 u ε (x)dx
In this method the third term D 3 is more complicated to study

D 3 = j∈Z u ε j+ 1 2 -u ε j-1 2 ε 1 ∆x j x j+ 1 2 x j-1 2 p ε (x)dx + j∈Z p ε j+ 1 2 -p ε j-1 2 ε 1 ∆x j x j+ 1 2 x j-1 2 u ε (x)dx + j∈Z ∆x j σ ε 2 u ε j+ 1 2 + u ε j-1 2 2 1 ∆x j x j+ 1 2 x j-1 2 u ε (x)dx .
It is decomposed in several pieces. We add and subtract in each fluxes the value of the unknowns in the cell. We also add and subtract to the two first integrals the value of the unknowns on the edge. Denoting by δ ± j (g) = 1 ∆xj

x j+ 1 2 x j-1 2 g(x)dx -g(x j± 1 2
), one gets after rearrangements

D 3 = j∈Z u ε j+ 1 2 -u ε j ε δ + j (p ε ) + j∈Z u ε j -u ε j-1 2 ε δ - j (p ε ) + j∈Z p ε j+ 1 2 -p ε j ε δ + j (u ε ) + j∈Z p ε j -p ε j-1 2 ε δ - j (u ε ) - j∈Z u ε (x j+ 1 2 ) -u ε (x j-1 2 ) ε p ε j - j∈Z p ε (x j+ 1 2 ) -p ε (x j-1 2 ) ε u ε j + j∈Z ∆x j σ ε 2 u ε j+ 1 2 + u ε j-1 2 2 1 ∆x j x j+ 1 2 x j-1 2 u ε (x)dx
Using the fluxes' definition [START_REF] Golse | The convergence of numerical transfer schemes in diffusive regimes I: discrete-ordinate method[END_REF], one can eliminate the pressure fluxes. With a Young's inequality ab ≤ αa 2 + 1 4α b 2 where α > 0, one gets

j∈Z p ε j+ 1 2 -p ε j ε δ + j (u ε ) = j∈Z 1 ε (u ε j -u ε j+ 1 2 )δ + j (u ε ) - σ 2ε 2 j∈Z ∆x j u ε j+ 1 2 δ + j (u ε ) ≤ α j∈Z (u ε j+ 1 2 -u ε j ) 2 ε + 1 4αε + σ 2ε 2 j∈Z δ + j (u ε ) 2 + σ 8ε 2 j∈Z ∆x 2 j u ε j+ 1 2 2 .
Using this expression in D 3 and using again Young's inequality, one gets for arbitrary α > 0

D 3 ≤ α j∈Z (u ε j+ 1 2 -u ε j ) 2 ε + α j∈Z (u ε j-1 2 -u ε j ) 2 ε + j∈Z 1 2αε + σ 2ε 2 δ + j (u ε ) 2 + δ - j (u ε ) 2 + δ + j (p ε ) 2 + δ - j (p ε ) 2 2εα + j∈Z 1 8ε σ∆x 2 j (u ε j-1 2 ) 2 + (u ε j+ 1 2 ) 2 ε + j∈Z ∆x j σ ε 2 u ε j+ 1 2 + u ε j-1 2 2 1 ∆x j x j+ 1 2 x j-1 2 u ε (x)dx - j∈Z u ε j p ε (x j+ 1 2 ) -p ε (x j-1 2 ) ε - j∈Z p ε j u ε (x j+ 1 2 ) -u ε (x j-1 2 ) ε .
We now sum all bounds contributing to E (t) and we get:

E (t) ≤ (-1 + α) j∈Z (u ε j+ 1 2 -u ε j ) 2 + (u ε j-1 2 -u ε j ) 2 ε + j∈Z 1 2αε + σ 2ε 2 δ + j (u ε ) 2 + δ - j (u ε ) 2 + δ + j (p ε ) 2 + δ - j (p ε ) 2 2εα + j∈Z 1 8ε σ∆x 2 j (u ε j-1 2 ) 2 + (u ε j+ 1 2 ) 2 ε + j∈Z ∆x j σ ε 2 u ε j+ 1 2 + u ε j-1 2 2 1 ∆x j x j+ 1 2 x j-1 2 u ε (x)dx - j∈Z ∆x j σ 2ε (u ε j-1 2 ) 2 + (u ε j+ 1 2 ) 2 ε + j∈Z ∆x j σ ε 2 u ε j 1 ∆x j x j+ 1 2 x j-1 2 u ε (x)dx - j∈Z ∆x j σ ε 2 1 ∆x j x j+ 1 2 x j-1 2 (u ε ) 2 (x)dx .
We now examine the sum of all terms in the two last lines of the RHS of the above inequality , which we denote S. One finds

S = - j∈Z ∆x j σ 2ε 2      u ε j-1 2 - 1 ∆x j x j+ 1 2 x j-1 2 u ε (x)dx   2 +   u ε j+ 1 2 - 1 ∆x j x j+ 1 2 x j-1 2 u ε (x)dx   2    + σ 2ε 2 j∈Z x j+ 1 2 x j-1 2 u ε (x)dx u ε j -u ε j+ 1 2 + u ε j -u ε j-1 2 ≤ σ 2ε 2 j∈Z x j+ 1 2 x j-1 2 u ε (x)dx u ε j -u ε j+ 1 2 + u ε j -u ε j-1 2 .
Using another Young's inequality, one has for all α > 0

S ≤ σ 2 8 αε 3 j∈Z x j+ 1 2 x j-1 2 u ε (x)dx 2 + α j∈Z (u ε j -u ε j+ 1 2 ) 2 + (u ε j -u ε j-1 2 ) 2 ε .
For example by choosing α = 1 2 and α = 1 2 , and coming back to E (t) we get

E (t) ≤ j∈Z 1 ε + σ 2ε 2 δ + j (u ε ) 2 + δ - j (u ε ) 2 + 1 ε δ + j (p ε ) 2 + δ - j (p ε ) 2 (33) + j∈Z 1 8ε σ∆x 2 j (u ε j-1 2 ) 2 + (u ε j+ 1 2 ) 2 ε + σ 2 4ε 3 j∈Z x j+ 1 2 x j-1 2 u ε (x)dx 2 . ( 34 
)
To estimate the contributions on the first line we use the following fact: for any quantity q, one can use q(x j-1 2 ) = q(x) +

x j-1 2

x d ds q(s)ds and integrate this expression in the cell ∆x j ; we get j∈Z δ ± j (q) 2 ≤ h q 2 H 1 (R) . Therefore the first terms on the right hand side of (33) can be estimated as 2) and (3), one gets that

1 ε + σ 2ε 2 t 0 j∈Z δ + j (u ε ) 2 + δ - j (u ε ) 2 dt ≤ 2h 1 ε + σ 2ε 2 u ε 2 L 2 ([0,t]:H 1 (R)) . Since u ε 2 L 2 ([0,t]:H 1 (R)) ≤ t V ε (0) 2 H 1 (R) and also σ ε 2 u ε 2 L 2 ([0,t]:H 1 (R)) ≤ V ε (0) 2 H 1 (R) by (
1 ε + σ 2ε 2 t 0 j∈Z δ + j (u ε ) 2 + δ - j (u ε ) 2 dt ≤ 2h t ε + 1 2 V ε (0) 2 H 1 (R) . ( 35 
)
A similar and simpler formula for the next terms is

1 ε t 0 j∈Z δ + j (p ε ) 2 + δ - j (p ε ) 2 ≤ 2 ht ε p ε 2 H 1 (R) ≤ 2 ht ε V ε (0) 2 H 1 (R) . ( 36 
)
Next, using the assumption (2.1) on the mesh and the estimate [START_REF] Lemou | Mieussens A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF], one controls the next term by

T 0 j∈Z 1 8ε σ∆x 2 j (u ε j-1 2 ) 2 + (u ε j+ 1 2 ) 2 ε ≤ h 4C M V ε (0) 2 L 2 (R) . ( 37 
)
Finally the last term in (34) can be bounded as

σ 2 4ε 3 j∈Z x j+ 1 2 x j-1 2 u ε (x)dx 2 ≤ σ 2 4ε 3 h u ε 2 L 2 (R) so that σ 2 4ε 3 t 0 j∈Z x j+ 1 2 x j-1 2 u ε (x)dx 2 ≤ σ 2 4ε 3 h u ε 2 L 2 ([0,t]×R) ≤ σ 4ε h V ε (0) 2 L 2 (R) (38) 
by means of the energy identity. We note that

V ε (0) H p (R) ≤ (1 + ε/σ) p 0 H p+1 (R) ≤ (1 + 1/σ) p 0 H p+1 (R) ∀p ∈ N. (39) 
So using (35-38) we obtain for all time t ≤ T

E (t) ≤ E (0) + t ε + 1 2 + t ε + 1 4C M + σ 4ε h V ε (0) 2 H 1 (R) ≤ (1 + 1/σ) C 2 A h + 2t ε + 1 2 + 1 4C M + σ 4ε h p 0 2 H 2 (R)
where the initialization stage is estimated using [START_REF] Jin | Efficient Asymptotic-Preserving (AP) Schemes for Some Multiscale Kinetic Equations[END_REF]. One obtains after integration

V ε h -V ε L 2 ([0,T ]×R) ≤ √ T 1 + 1/σ × C 2 A hε + 2T + ε 2 + ε 4C M + σ 4 h ε V ε (0) H 1 (R) .
The constant in parentheses is

√ T 1 + 1/σ C 2 A hεC M + 2T C M + ε 2 C M + ε 4 + σ 4 C M / √ C M ≤ ↓ C √ C M with ↓ C = √ T 1 + 1/σ × C 2 A + 2T + 1 2 + 1 4 + σ 4 .
The proof is ended.

Study of P

0 h -P 0
We first recall a fundamental error estimate [START_REF] Eymard | The finite volume method, Handbook for Numerical Analysis[END_REF] for the diffusion limit scheme [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF][START_REF] Gosse | Transient radiative transfer in the grey case: Well-balanced and asymptotic-preserving schemes built on Cases's elementary solutions[END_REF].

Lemma 2.7.

There exists a constant C ↓ > 0 independent of h, ε, C M , with a linear growth in time, such that the following estimate holds

W ε h -W ε L 2 ([0;T ]×R) ≤ C ↓ √ C M h p 0 H 2 (R) . ( 40 
)
Proof. We use a method that one can find in Eymard-Gallouet-Herbin [START_REF] Eymard | The finite volume method, Handbook for Numerical Analysis[END_REF]. It is based on a notion of consistency for finite volumes schemes. We set

s j = ∂ xx p(x j ) - ∂ x p(x j+ 1 2 ) -∂ x p(x j-1 2 ) ∆x j and r j+ 1 2 = ∂ x p(x j+ 1 2 ) - p(x j+1 ) -p(x j ) ∆x j+ 1 2 ,
so that one has the identity

d dt p(x j ) - 1 σ∆x j p(x j+1 ) -p(x j ) ∆x j+ 1 2 - p(x j ) -p(x j-1 ) ∆x j-1 2 = s j σ + r j+ 1 2 -r j-1 2 σ∆x j .
We next introduce the difference e j = p(x j ) -p j which satisfies

d dt e j - 1 σ∆x j e j+1 -e j ∆x j+ 1 2 - e j -e j-1 ∆x j-1 2 = s j σ + r j+ 1 2 -r j-1 2 σ∆x j
with e j (0) = 0 for all j. By multiplying this equation by e j and denoting by e h

2 L 2 (R) = j ∆x j e 2 j , one finds that 1 2 d dt e h 2 L 2 (R) + 1 σ j (e j+1 -e j ) 2 ∆x j+ 1 2 = 1 σ j ∆x j s j e j + 1 σ j r j+ 1 2 (e j -e j+1 ).
The Cauchy-Schwarz inequality yields

j r j+ 1 2 (e j -e j+1 ) ≤ 1 2 j (e j+1 -e j ) 2 ∆x j+ 1 2 + 1 2 j ∆x j+ 1 2 r 2 j+ 1 2 .
One finds out with natural notations 1 2

d dt e h 2 L 2 (R) + 1 2σ j (e j+1 -e j ) 2 ∆x j+ 1 2 ≤ 1 σ s h L 2 (R) e h L 2 (R) + 1 2σ r h 2 L 2 (R) . ( 41 
)
Using the definitions of the truncation error s h , one easily obtains by using classical arguments

s h L 2 ([0,T ]×R) ≤ √ 2h ∂ xxx p L 2 ([0,T ]×R)
: since p satisfies the diffusion equation ( 12), one gets

∂ xxx p L 2 ([0,T ]×R) ≤ σ/2 ∂ xx p 0 L 2 (R) ; one gets s h L 2 ([0,T ]×R) ≤ √ σh ∂ xx p 0 L 2 (R)
. The same manipulations on the second truncation error r h yield

s h L 2 ([0,T ]×R) + r h L 2 ([0,T ]×R) ≤ √ σh p 0 H 2 (R) . ( 42 
)
One gets the bound from (41)

e h 2 L 2 (R) (t) ≤ e h 2 L 2 (R) (0) + t 0 1 σ s h L 2 (R) e h L 2 (R) + 1 2σ r h 2 L 2 ([0,T ]×R) .
The use of the lemma (B.2), which is a corrolary of the Bihari's inequality, gives us:

e h 2 L 2 ([0,T ]×Ω) ≤ 1 2 T 2 e h 2 L 2 (Ω) (0) + 1 σ r h 2 L 2 ([0,T ]×Ω) + 1 σ √ T s h L 2 ([0,T ]×Ω) 2 . ( 43 
)
The initial value is bounded using [START_REF] Jin | Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review[END_REF] and taking into account (42) we obtain

e h L 2 ([0,T ]×Ω) ≤ T 2 2 C A + 1 √ σ + T σ h p 0 = B h p 0 . ( 44 
)
We also deduce from (41)

T 0 j (e j+1 -e j ) 2 ∆x j+ 1 2 ≤ s h L 2 ([0,T ]×R) + r h L 2 ([0,T ]×R) 2 + e h 2 L 2 ([0,T ]×R) ≤ σ + B 2 h 2 p 0 2 H 2 (R)
The other term that we must bound in (40

) is f h = ε (v(x j ) -v j ) 1 j (x) = -ε ∂xp(xj ) σ + v j 1 j (x)
with v j defined in [START_REF] Gosse | A two-dimensional version of the Godunov scheme for scalar balance laws[END_REF]. It yields

f h L 2 ([0;T ]×R) = ε 2σ   T 0 j ∆x j p j+1 -p j ∆x j+ 1 2 -∂ x p(x j ) + p j -p j-1 ∆x j-1 2 -∂ x p(x j ) 2   1 2 (45) 
where the definition of e j yields pj+1-pj

∆x j+ 1 2 -∂ x p(x j ) = ∂ x p(x j+ 1 2 ) -∂ x p(x j ) + ej+1-ej ∆x j+ 1 2 -r j+ 1 2 . One gets from the triangular inequality   T 0 j ∆x j+ 1 2 p j+1 -p j ∆x j+ 1 2 -∂ x p(x j ) 2   1 2 ≤   T 0 j ∆x j+ 1 2 ∂ x p(x j+ 1 2 ) -∂ x p(x j ) 2   1 2 + σ + B 2 1 2 h p 0 H 2 (R) + r h L 2 ([0,T ]×R) . Since T 0 j ∆x j+ 1 2 ∂ x p(x j+ 1 2 ) -∂ x p(x j ) 2 1 2 ≤ h σ 2 p 0 H 1 (R)
and the estimate (42) holds, one gets

  T 0 j ∆x j+ 1 2 p j+1 -p j ∆x j+ 1 2 -∂ x p(x j ) 2   1 2 ≤ σ + B 2 1 2 + σ 2 + √ σ h p 0 H 2 (R) . ( 46 
)
Taking into account that the weight ∆x j (45) is different from the weight ∆x j+ 1 2 in (46), one gets 44) and ( 47)

f h L 2 ([0;T ]×R) ≤ ε √ C M σ + B 2 1 2 + σ 2 + √ σ h p 0 H 2 (R) ≤ 1 √ C M σ + B 2 1 2 + σ 2 + √ σ h p 0 H 2 (R) , (47) since ε ≤ 1. Finally, the difference W ε h -W ε 2 L 2 ([0;T ]×R) = e h 2 L 2 ([0;T ]×R) + f h 2 L 2 ([0;T ]×R) is bounded using (
W ε h -W ε L 2 ([0;T ]×R) ≤ C ↓ √ C M h p 0 H 2 (R)
and the constant C ↓ with the definition of B by (44), has, at most, a linear growth in time. It ends the proof.

Study of P

ε h -P 0 h
In this section we prove an error estimate between the solution of the scheme [START_REF] Mazeran | Sur la structure mathematique et l'approximation numerique de l'hydrodynamique lagrangienne bidimentionnelle[END_REF] and the solution of the diffusion scheme [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF]. It is necessary to use some comparison estimates between the initial data of P ε h and P 0 h . Lemma 2.8. There exists a constant C → > 0 independent of h, ε, C M and growth as T 3 2 for large T such that the following estimate holds

V ε h -W ε h L 2 ([0,T ]×R) ≤ C → C M ε p 0 H 2 (R) . ( 48 
)
Proof. For practical reasons we use the formulation (29) of the hyperbolic scheme which is equivalent to [START_REF] Filbet | Analysis of an asymptotic preserving scheme for relaxation systems[END_REF][START_REF] Golse | The convergence of numerical transfer schemes in diffusive regimes I: discrete-ordinate method[END_REF] and we reformulate the diffusion scheme [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations C[END_REF][START_REF] Gosse | Transient radiative transfer in the grey case: Well-balanced and asymptotic-preserving schemes built on Cases's elementary solutions[END_REF][START_REF] Gosse | A two-dimensional version of the Godunov scheme for scalar balance laws[END_REF] as

                                   ∆x j d dt p j + u j+ 1 2 -u j-1 2 ε = 0, ∆x j d dt u j - u j+ 1 2 + u j-1 2 ε + 2 ε u j = ∆x j R j , p j -p j+1 + u j + u j+1 = 2u j+ 1 2 + σ∆x j+ 1 2 u j+ 1 2 ε + ∆x j+ 1 2 S j+ 1 2 , u j+ 1 2 = - ε σ p j+1 -p j ∆x j+ 1 2 , u j = u j+ 1 2 + u j-1 2 2 , ( 49 
)
where the error terms are R j and S j+ 1 2 . A simple computation using the last two identities in (49) yields

R j = d dt u j and S j+ 1 2 = 1 ∆x j+ 1 2 u j + u j+1 -2u j+ 1 2 .
One has from the triangular inequality applied to

u j = u j+ 1 2 +u j-1 2 2 d dt u h L 2 ([0,T ]×R) = T 0 j∈Z ∆x j d dt u j 2 ≤ 1 √ C M T 0 j∈Z ∆x j+ 1 2 d dt u j+ 1 2 2 = ε C M T 0 j∈Z ∆x j+ 1 2 d dt v j+ 1 2 2 .
Since the scheme is invariant with respect to the time variable, one can apply (31) to the derivative with respect to time. It yields

T 0 j∈Z ∆x j+ 1 2 d dt v j+ 1 2 2 ≤ σ 2 d dt p h (0) L 2 (R) ≤ 1 √ 2σ p 0 H 2 (R)
where the last inequality is from the well preparedness of the initial data, as detailed in proposition 2.9. So one has the bound

R L 2 ([0,T ]×R) ≤ ε √ 2σC M p 0 H 2 (R) . ( 50 
)
Using the definitions of u j (49), S j+ 1 2 can be written in terms of d dt p j and d dt p j+1

S j+ 1 2 = ε 2 ∆x j ∆x j+ 1 2 d dt p j - ∆x j+1 ∆x j+ 1 2 d dt p j+1 .
Using the technical proposition 2.9, one finds out that S = (S j+ 1 2 ) j∈Z satisfies

S L 2 ([0,T ]×R) ≤ ε C M d dt p L 2 ([0,T ]×R) ≤ ε √ T σC M p 0 H 2 (R) . ( 51 
)
We now introduce the differences

e j = p j -p ε j , f j = u j -u ε j and f j+ 1 2 = u j+ 1 2 -u ε j+ 1 2 . ( 52 
)
Let us look at the difference between the scheme ( 29) and (49). We get

               ∆x j d dt e j + f j+ 1 2 -f j-1 2 ε = 0, ∆x j d dt f j - f j+ 1 2 +f j-1 2 ε + 2 ε f j = ∆x j R j , e j -e j+1 + f j + f j+1 -2f j+ 1 2 -σ∆x j+ 1 2 f j+ 1 2 ε = ∆x j+ 1 2 S j+ 1 2 . We use the notation V ε h -W ε h 2 L 2 (R) = j ∆x j (e 2 j + f 2 j ).
Using the same kind of proof than for the L 2 stability of proposition 2.4, one gets that 1 2

d dt V ε h -W ε h 2 L 2 (R) ≤ j ∆x j R j f j - j ∆x j+ 1 2 f j+ 1 2 ε S j+ 1 2 - σ ε 2 j∈Z ∆x j+ 1 2 f 2 j+ 1 2 .
Using a Young's inequality on the second term of the right side of this inequality, one finds out that 1 2

d dt V ε h -W ε h 2 L 2 (R) ≤ j ∆x j R j f j + 1 4σ j ∆x j+ 1 2 S 2 j+ 1 2 . ( 53 
)
Using the Cauchy-Schwarz inequality, we have

d dt V ε h -W ε h 2 L 2 (R) ≤ R L 2 (R) V ε h -W ε h L 2 (R) + 1 2σ S 2 L 2 (R) .
Integrating in time on [0, t]

V ε h (t)-W ε h (t) 2 L 2 (R) ≤ t 0 V ε h (t) -W ε h (t) L 2 (R) R L 2 (R) + 1 2σ S 2 L 2 ([0,T ]×R) + V ε h (0) -W ε h (0) 2 L 2 (R) .
Another use of the Bihari's inequality, lemma (B.2), yields

V ε h -W ε h 2 L 2 ([0,T ]×R) ≤ 1 2 T   2 V ε h (0) -W ε h (0) 2 L 2 (R) + T 0 1 2σ S 2 L 2 ([0,T ]×R) + √ T R 2 L 2 ([0,T ]×R)   2
Finally, using the previous estimates on R, S, the well-preparedness of the data (23) one gets

V ε h -W ε h 2 L 2 ([0,T ]×R) ≤ 1 2 T 2 (C A hε) 2 + ε 2 T 2 4σ 3 C 2 M + √ T ε 2 2C M 2 p 0 2 H 2 (R)
The proof is ended. Proposition 2.9 (Technical result). The bound

j ∆x j ( d dt p j ) 2 (t) ≤ σ -1 p 0 H 2 (R) holds at any time.
Proof. By linearity of the diffusion scheme,

z h = d dt p h is solution of P 0 h : ∆x j d dt z j - 1 σ z j+1 -z j ∆x j+ 1 2 - z j -z j-1 ∆x j-1 2 = 0,
with initial condition

z j (0) = d dt p 0 (x j ) = 1 ∆x j σ p 0 (x j+1 ) -p 0 (x j ) ∆x j+ 1 2 - p 0 (x j ) -p 0 (x j-1 ) ∆x j-1 2 . ( 54 
)
One gets from a Taylor expansion with integral residue that

p 0 (x j+1 ) -p 0 (x j ) ∆x j+ 1 2 -∂ x p 0 (x j ) ≤ xj+1 xj |∂ xx p 0 (y)| dy.
Similarly one has the bound

p0(xj )-p0(xj-1) ∆x j+ 1 2 -∂ x p 0 (x j ) ≤ xj xj-1 |∂ xx p 0 (y)| dy. Therefore |z j (0)| ≤ 1 ∆xj σ xj+1 xj-1 |∂ xx p 0 (y)| dy from which the bound j ∆x j z 2 j (0) ≤ σ -1 p 0 H 2 (R) is deduced. Since the scheme P 0 h is stable in L 2
, this bound is true at any time. Considering (54) the discrete second derivative attached to P 0 h is bounded at any time, which ends the proof of the claim.

End of the proof of uniform AP property

Theorem 2.10. Assuming a sufficiently smooth well prepared initial data, the scheme P ε h converges to P ε at order at least 1 3 in L 2 ([0, T ] × R), uniformly with respect to ε Proof. All the previous estimates show that are true with a = 1, b = c = 1 2 and d = 1. More specifically, estimates (32), ( 48), ( 40) and [START_REF] Jin | The discrete-ordinate method in diffusive regime[END_REF] shows that

V ε -V ε h L 2 ([0,T ]×R) ≤ C min h ε , h + 2ε p 0 H 3 (R)
where

C = max ↓ C √ C M , C → C M , C ↓ √ C M , C ←
and behaves less than T 3 2 for large T . Using the general method described at the beginning of this work in proposition 1.3, one obtains the convergence estimate

V ε h -V ε L 2 ([0,T ]×R)
≤ C(T )h q with the order of convergence q = ac a+b = 1 3 .

The 2D case

In this section we prove the uniform convergence of the solution of the diffusion AP scheme introduced in [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] to the solution of the hyperbolic heat equation. The structure of our proof is globally the same as in the previous section. However two major difficulties will be treated: a) the first one consists in the adaptation to our problem of a combination of specific finite volumes techniques for hyperbolic and parabolic equations; b) the second one is to derive new bounds for the scheme DA ε h . The model problem is the hyperbolic heat equation in the domain Ω =]0, 1[ 2 with periodic boundary conditions and well-prepared data

P ε :                ∂ t p ε + 1 ε div(u ε ) = 0, ∂ t u ε + 1 ε ∇p ε = - σ ε 2 u ε , p ε (t = 0) = p 0 , u ε (t = 0) = u ε 0 = -ε σ ∇p 0 .
When ε tends to zero, this problem admits the following diffusion limit

P 0 : ∂ t p - 1 σ div(∇p) = 0, p(t = 0) = p 0 .
The rescaled gradient is v = -1 σ ∇p. We will admit the following proposition, the proof of which can be easily obtained by a method similar to the one of proposition 2.3.

Proposition 3.1. The error between the two solutions can be upper bounded by

p -p L ∞ ([0,T ];H n (Ω)) + v L ∞ ([0,T ];H n (Ω)) ≤ T σ 2 ε p 0 H 3+n (Ω) , n ∈ N. ( 55 
)
Proof. The structure of the proof in the L ∞ ([0, T ]; L 2 (Ω)) norm is the same as the one of proposition 2.3. Since the coefficients of the problem are constant, similar bounds are obtained at any order of derivation which proves the estimate for any n > 0.

Definition of P ε h

Let us consider an unstructured mesh in dimension 2. The mesh is defined by a finite number of vertices x r and cells Ω j . We denote x j a point chosen arbitrarily inside Ω j . For simplicity we will call this point the center of the cell. By convention the vertices are listed counter-clockwise x r-1 , x r , x r+1 with coordinates x r = (x r , y r ). We note l jr n jr the vector as follows

l jr = 1 2 dist (x r-1 , x r+1 ) and n jr = 1 2l jr (x r+1 -x r-1 ) ⊥ . ( 56 
)
This notion of a corner vector can be rigorously introduced also in any dimension using the definition [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF]. The scalar product of two vectors is denoted as (x, y).

x j

x r+1

x r-1

x r

Cell Ω j

Cell Ω k l jr n jr The numerical approximation of the problem P ε that we study is the JL-(b) scheme defined in [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] P ε h :

       | Ω j | d dt p ε j + 1 ε r l jr (u ε r , n jr ) = 0 | Ω j | d dt u ε j + 1 ε r l jr n jr p ε jr = - σ ε 2 r β jr u ε r , (57) 
with for simplicity point wise initial data p ε j (0) = p 0 (x j ) and u ε j (0) = -εσ -1 ∇p 0 (x j ). The fluxes are defined by the so-called corner problem

p ε jr -p ε j = (n jr , u ε j -u ε r ) - σ ε (x r -x j , u ε r ), j l jr p ε jr n jr = 0. (58) 
This corner problem has been introduced in [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] as a multidimensional version of the 1D Jin-Levermore technique [START_REF] Jin | Levermore Numerical schemes for hyperbolic conservation laws with stiff relaxation terms[END_REF]. Its solution is provided by the solution of the linear system

  j α jr + j σ ε β jr   u ε r = j l jr p ε j n jr + j α jr u ε j , ( 59 
)
where the geometry of the mesh is used to define the matrices α jr and β jr α jr = l jr n jr ⊗ n jr , and

β jr = l jr n jr ⊗ (x r -x j ). ( 60 
)
We will use the notations A j = r α jr , A r = j α jr and B r = j β jr . By comparison with the scheme P ε h in dimension one, one sees that the multi-dimensional scheme (57-60) is more tricky than the 1D scheme [START_REF] Filbet | Analysis of an asymptotic preserving scheme for relaxation systems[END_REF][START_REF] Golse | The convergence of numerical transfer schemes in diffusive regimes I: discrete-ordinate method[END_REF].

Starting from (57) and taking into account of the definitions of the fluxes (58) and also the identity r l jr n jr = 0, the scheme P ε h can also be rewritten as

P ε h :        | Ω j | d dt p ε j + 1 ε r l jr (u ε r , n jr ) = 0 | Ω j | d dt u ε j + 1 ε r l jr (n jr , u ε r -u ε j )n jr = 0 (61) 
When ε → 0 the scheme P ε h , see (57) or (61), admits the limit diffusion scheme P 0 h P 0 h :

         |Ω j | d dt p j + r l jr v r , n jr = 0, v r = 1 σ B -1 r j l jr p j n jr , (62) 
with B r = j l jr n jr ⊗ (x r -x j ). We define additionally v j by a kind of mean

r α jr v j = r α jr v r .
This is well defined since the matrix r α jr is symmetric positive by definition of the α jr .

Definition of DA ε h

We define now that is call thereafter the "diffusion approximation" scheme. We just neglect the time derivative in the second equation, that we make ∂ t u ε j = 0 for (61). It leads to the scheme

DA ε h :                | Ω j | d dt p ε j + 1 ε r (l jr u ε r , n jr ) = 0 1 ε r l jr (n jr , u ε r -u ε j )n jr = 0   j α jr + j σ ε β jr   u ε r = j l jr p ε j n jr + j α jr u ε j (63)
This scheme depends of two parameters, the size of the mesh h and the small parameter ε. We notice that DA ε h = P 0 h for ε > 0, and that lim ε→0 + DA ε h = P 0 h . The point wise initial data for (63) is p ε j (0) = p 0 (x j ). There is no need of initial data for (u ε j (0)), which will be obtained as a function of (p ε j (0)) by solving a linear system. The characteristic length of the mesh is h = max j (diam(Ω j )), so that

Mesh assumptions

x j x 1 2 x r x j-1 2 V r
l jr ≤ h, ∀j, r, |Ω j | ≤ h 2 , ∀j. (64) 
The control volume V r around the vertex x r is defined by the closed loop . . . , x j-1 2 , x j , x j+ 1 2 , . . . . Here the x j 's are the center of the cells, and the x j+ 1 2 's are the middle of the edges around the vertices x r . A typical example is depicted in figure 5.

Additional geometrical assumptions are always necessary in dimension greater than one to guarantee some minimal regularity of the mesh. We make the usual assumptions listed below from 1 to 3. The last items are more specific. Hypothesis 3.2. Our geometrical assumptions will be the following 1. The numbers of cells which share a node r is bounded independently of h, which means there exists P ∈ N independent of h such that

j δ jr ≤ P. ( 65 
)
For example, for a structured mesh of quadrangular cells P = 4.

For each cell of the mesh, the number of edges is bounded independently of h, or equivalently the numbers of vertices for a cell is bounded independently of h.

3. The mesh is regular in the sense that there exists a universal constant C M > 0 such that the inverse inequalities hold:

C M h ≤ l jr , ∀j, r uniformly with respect to h (66)
where x r is a vertex of the cell Ω j , and

C M h 2 ≤ |Ω j | , ∀j uniformly with respect to h. ( 67 
)
and

C M h 2 ≤ |V r | ≤ P h 2 , ∀r uniformly with respect to h. ( 68 
)
We recall that V r is the volume control (centered on x r ) and Ω j is the cell j. The inequality |V r | ≤ P h 2 is immediate to check on the figure 5.

4. A consequence of the items 1-3 is that there exists a constant α > 0 such that

(A j u, u) ≥ αh(u, u), A j = r α jr . ( 69 
)
It can be proved with a geometrical identity that we borrow from [START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF] (proposition 8).

5. The matrix B r = j β jr is positive in the sense that

(B r u, u) = (B s r u, u) ≥ α|V r |(u, u), (70) 
where

B s r = 1 2 (B r + B t r )
is the symmetric part of B r , and α is the same constant as in (69). Square meshes satisfy (70). This assumption is however not trivial to check in the general case. We point out [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF] where sufficient conditions such that (70) is satisfied can be found; in particular it is shown that triangular meshes with all angles greater than 12 degrees satisfy it.

Norms and error measurements

The quadratic norms below are usual integral norms. It yields for any cell centered quantity

f = (f j ) j∈Cells : f L 2 (Ω) = j |Ω j ||f j | 2 .
For vertex based quantity g = (g r ) r∈Vertices , we use

g L 2 (Ω) = r |V r ||g r | 2 : it is more a convention. Useful quantities are • V ε h (t, x) = j∈Cells p ε j (t)1 Ωj (x), j∈Cells u ε j (t)1 Ωj (x) which is the solution of P ε h . • V ε (t, x) = (p ε , u ε ) (t, x) which is the solution of P ε , • W ε h (t, x) = j∈Cells p ε j (t)1 Ωj (x), j∈Cells u ε j (t)1 Ωj (x) which is the solution of DA ε h .
Notice that an abuse of notations is made with the solution of ,x) which is the solution of P 0 . As in dimension one, the differences between these quantities are characterized at the initial time with a universal constant C A > 0 which indicates it can be related to the approximation/interpolation/projection of a smooth function on the mesh. We will use for example some bounds that can be obtained as by-product or corollary of the first technical inequality below.

P ε h . • W ε (t, x) = p, -ε σ ∇p (t
V ε (0) -V ε h (0) L 2 (Ω) ≤ C A h V ε (0) H 2 (Ω) ≤ C A h V 1 (0) H 2 (Ω) , W ε (0) -W ε h (0) L 2 (Ω) ≤ C A h W ε (0) H 2 (Ω) . ( 71 
)
We will need additional technical estimates for the corner based Finite Volume scheme P ε h . These technical estimates can be formulated as follows. Let f be a regular function. We define

δ j,r (f ) = 1 |Ωj | Ωj f dx -f (x r
) which is the interpolation error term that compares mean value in a cell Ω j and point values at a vertex x r of the same cell. Let Γ j,r = [x r , x r+1 ] be the edge oriented toward the outside of the cell j, with length |Γ j,r |. We define also δj,r (h) = 1 |Γj,r| Γj,r hds -

h(xr)+h(xr+1) 2
which is another interpolation error contribution that compares the mean value and the mid sum, on the edge.

Proposition 3.3. One has the technical inequalities

|δ jr (f )| ≤ C A f H 2 (Ωj ) ( 72 
)
and

| δ jr (f )| ≤ C A h f H 3 (Ωj ) (73) 
Proof. These non optimal inequalities are consequences of classical approximations results. We will not prove them. However one can notice that the scaling is correct. That if a function f has its third derivatives bounded in L ∞ (Ω j ), then f H 2 (Ωj ) = O(h) because the problem is 2D: this is compatible with the fact that δ jr is a first order difference. Similarly

h f H 3 (Ωj ) = O(h 2
) is compatible with the fact that δ jr is a second order difference. An alternative proof is by assuming that f is in H p (Ω) for a sufficiently large p. Then by the Sobolev embeddings, all derivatives up to fourth order are in L ∞ which is enough to prove that (72) is a first order interpolation error term, and that (73) is a second order interpolation error term. In this case it also explains very simply why the constant C A is independent of the mesh size.

The first technical inequality is actually true for any points in the cell. So it allows to compare the mean value and the point value in the cell. This is why it yields (71) after summation over all cells and redefinition of C A .

As in dimension one, we will use constants ↓ C, C → , C ↓ and C ← in the errors bounds for the four branches of the new AP diagram. The important point is that these constants are independent of h and ε. They have of course some dependence with respect to other parameters such as the constant of the mesh C M for example, but we will not keep track of these dependence in order to simplify the notations. Nevertheless the interested reader can compare with the same estimates in dimension one where the dependence with respect to the mesh constant is indicated. A first result is the inequality (55) which yields the basic estimate for the lower branch of the AP diagram. It can be formalized as follows.

Lemma 3.4. One has the estimate

W ε -V ε L 2 ([0,T ]×Ω) ≤ C ← ε p 0 H 4 (Ω) ( 74 
)
where the constant C ← is independent of h and ε, with a growth in time less than T 3 2 by comparison with (55).

Study of P ε h -P ε naive

In this part, we exploit the hyperbolic nature of both P ε and P ε h to obtain the main bound. As one will see below, the convergence estimate (75) is not trivial. It indicates that, for a problem with O(ε -2 ) terms, a scheme converges, with h, with at rate O(ε -1

2 ) with respect to ε.

Lemma 3.5 (Naive estimate).

There exists a constant ↓ C independent of h and ε, with a linear growth in time, such that the following estimate holds

V ε h -V ε L ∞ ([0,T ]:L 2 (Ω)) ≤ ↓ C h ε p 0 H 4 (Ω) . ( 75 
)
The norm is slightly stronger than the L 2 ([0, T ] × Ω) needed to complete the proof.

Stability

We first prove the L 2 stability of the scheme P ε h defined in (57,58). Proposition 3.6 (Stability). The semi-discrete general JL-(b) scheme defined by (57,58) is stable in the L 2 norm in the sense that d dt ||V ε h (t)|| ≤ 0. Moreover we have the bounds

σ ε 2 ||u ε r || L 2 ([0,T ]×Ω) ≤ 1 α ||V ε h (0)|| L 2 (Ω) , ( 76 
) T 0 j r l jr (n jr , (u ε j -u ε r )) 2 dt ≤ ε||V ε h (0)|| 2 L 2 (Ω) . ( 77 
)
Proof. We define the functions p ε h and u ε h by p ε h = p j and u ε h = u j on Ω j . We set for convenience

E(t) = ||V ε h (t)|| 2 .
One has

E (t) = 1 2 Ω d dt (| p ε h | 2 +(u ε h , u ε h )) = Ω p ε h d dt p ε h + (u ε h , d dt u ε h ) = j |Ω j | p ε j d dt p ε j + (u ε j , d dt u ε j ).
Using the definition of scheme

E (t) = - 1 ε j r l jr p ε j (u ε r , n jr ) - 1 ε j r (l jr p ε j,r n jr , u ε j ) - σ ε 2 j r ( β jr u ε r , u ε j ). ( 78 
)
Using (58) we expand the second term of the previous equation j r

(l jr p ε j,r n jr , u ε j ) = j r l jr p ε j (u ε j , n jr ) + j r ( α jr (u ε j -u ε r ), u ε j ) - σ ε j r ( β jr u ε r , u ε j ).
(79) Since r l jr n jr = 0 the first term of (79) is zero. Summing on r the second equation of (58) and permuting the sums, we show that 0 = j r l jr p jr (u r , n jr ) which yields that 0 = j r l jr p ε j (u ε r , n jr )j r

(( α jr + σ ε β jr )u ε r , u ε r ) + j r ( α jr u ε j , u ε r ). ( 80 
)
Plugging ( 79) and ( 80) in (78) and permuting the sums in E (t) gives

E (t) = - 1 ε j r ( α jr (u ε j -u ε r ), u ε j -u ε r ) - σ ε 2 r j ( β jr u ε r , u ε r )
which gives

E (t) + 1 ε r j l jr (n jr , (u ε j -u ε r )) 2 + σ ε 2 r (B r u ε r , u ε r ) = 0. ( 81 
)
By geometrical assumption (70) we have E (t) ≤ 0, that is the L 2 stability, and by integrating this equality on [0, T ] we obtain

E(T ) + T 0 1 ε r j l jr (n jr , (u ε j -u ε r )) 2 + T 0 σ ε 2 r (B r u ε r , u ε r ) = E(0)
Using again the geometrical assumption (70) for the terms (B r u ε r , u ε r ) we have

E(T ) + T 0 1 ε r j l jr (n jr , (u ε j -u ε r )) 2 + α T 0 σ ε 2 r |V r | |u ε r | 2 ≤ E(0)
which gives (76) and ( 77). The proof is ended.

Main estimate

Our goal now is to prove the lemma 3.5 as the consequence of propositions 3.7 to A.3. This part is the more technical one of the paper, but is essential to be able to use the general strategy of proposition 1.3 with convenient exponents. Like in 1D, we use the method introduced by Mazeran [START_REF] Mazeran | Sur la structure mathematique et l'approximation numerique de l'hydrodynamique lagrangienne bidimentionnelle[END_REF] and decompose the proof in several steps. We introduce

E (t) = 1 2 V ε -V ε h 2 L 2 (Ω)
. As for the 1D proof and for the sake of simplicity, for any quantity q, q stands indifferently for d dt q or ∂ t q. Proposition 3.7. One has the formula

E (t) = - 1 ε j,r l j,r (n j,r , u ε j -u ε r ) 2 + E 1 + E 2 + E 3 ( 82 
)
where

E 1 = 1 ε j r l j,r (u ε r -u ε j ), n j,r δ j,r (p ε ) + 1 ε j r l j,r n j,r (p ε jr -p ε j ) , δ j,r (u ε ) , E 2 = 1 ε j r |Γ j,r |p ε j (n j,r , δj,r (u ε )) + 1 ε j r |Γ j,r | u ε j , n j,r δj,r (p ε ) E 3 = σ ε 2 r j β j,r u ε r , 1 |Ω j | Ωj u ε dx + σ ε 2 j u ε j , Ωj u ε dx - σ ε 2 j Ωj (u ε , u ε )dx - σ ε 2 r (B r u ε r , u ε r ).
Proof. We first consider the time derivative

E (t) = Ω (p ε h (p ε h ) + (u ε h , (u ε h ) ))dx D1 + Ω (p ε (p ε ) + (u ε , (u ε ) ))dx D2 + Ω (-(p ε h ) p ε -((u ε h ) , u ε ))dx D3 + Ω (-p ε h (p ε ) -(u ε h , (u ε ) ))dx D4 .
One has thanks to (81)

D 1 = - 1 ε j,r l j,r (n j,r , u ε j -u ε r ) 2 - σ ε 2 r (B r u ε r , u ε r ).
One also directly has

D 2 = - σ ε 2 Ω (u ε , u ε )dx = - σ ε 2 j Ωj (u ε , u ε )dx.
Then, using the definition (57,58) of the scheme we have

D 3 = 1 ε j r l j,r u ε r , n j,r 1 |Ω j | Ωj p ε dx + 1 ε j r l jr n jr p ε j,r + σ ε r β j,r u ε r , 1 |Ω j | Ωj u ε dx
Since r l jr n jr = 0, we can write

D 3 = 1 ε j r l j,r (u ε r -u ε j ), n j,r 1 |Ω j | Ωj p ε dx + 1 ε j r l jr n jr (p ε j,r -p ε j ) , 1 |Ω j | Ωj u ε dx + σ ε 2 r j β j,r u ε r , 1 |Ω j | Ωj u ε dx .
One gets

D 3 = 1 ε j r l j,r (u ε r -u ε j ), n j,r δ j,r (p ε ) + 1 ε j r l jr n jr (p ε j,r -p ε j ) , δ j,r (u ε ) + 1 ε j r l j,r (u ε r -u ε j ), n j,r p ε (x r ) + 1 ε j r l jr n jr (p ε j,r -p ε j ) , u ε (x r ) + σ ε 2 r j β j,r u ε r , 1 |Ω j | Ωj u ε dx .
We have the identities j,r l jr n jr = 0 and j l jr n jr p ε j,r = 0 by definition (58). Therefore one can simplify the third and fourth term in the previous expression and get

D 3 = 1 ε j r l j,r (u ε r -u ε j ), n j,r δ j,r (p ε ) + 1 ε j r l jr n jr (p ε j,r -p ε j ) , δ j,r (u ε ) - 1 ε j r l j,r u ε j , n j,r p ε (x r ) - 1 ε j r l j,r p ε j n j,r , u ε (x r ) + σ ε 2 r j β j,r u ε r , 1 |Ω j | Ωj u ε dx .
We now look at D 4 . By definition, one has

D 4 = 1 ε j p ε j r Γj,r (u ε , ñj,r )dσ + 1 ε j u ε j , r Γj,r p ε ñj,r dσ + σ ε Ωj u ε dx
where ñj,r is the normal to the edge Γ j,r = [x r , x r+1 ] oriented toward the outside of the cell j. This expression needs an important manipulation which is to approximate the integral on edges by corner values. This necessary manipulation is one of the ideas that was introduced in [START_REF] Mazeran | Sur la structure mathematique et l'approximation numerique de l'hydrodynamique lagrangienne bidimentionnelle[END_REF] in order to proceed to the numerical analysis of such corner based finite volume schemes. This is why interpolation terms δj,r (h) = 1 |Γjr| Γj,r h -h(xr)+h(xr+1) 2 are introduced. One gets after an algebraic manipulation

D 4 = 1 ε j r |Γ j,r |p ε j ñj,r , δj,r (u ε ) + 1 ε j r |Γ j,r | u ε j , ñj,r δj,r (p ε ) + σ ε 2 j u ε j , Ωj u ε + 1 ε j r |Γ j,r |p ε j ñj,r , u ε (x r ) + u ε (x r+1 ) 2 + 1 ε j r |Γ j,r | u ε j , ñj,r p ε (x r ) + p ε (x r+1 ) 2 
By definition (56), n jr l jr = ñj,r|Γj,r|+ñj,r-1|Γj,r-1|

2

, so one can see that j r

|Γ j,r |p ε j ñj,r ,

u ε (x r ) + u ε (x r+1 ) 2 = j r l jr p ε j n jr , u ε (x r ) .
It yields a slightly simpler expression

D 4 = 1 ε j r |Γ j,r |p ε j ñj,r , δj,r (u ε ) + 1 ε j r |Γ j,r | u ε j , ñj,r δj,r (p ε ) + σ ε 2 j u ε j , Ωj u ε + 1 ε j r l jr p ε j n jr , u ε (x r ) + 1 ε j r l jr p ε (x r ) n jr , u ε j
One can now compute the sum

D 3 + D 4 D 3 + D 4 = 1 ε j r l j,r (u ε r -u ε j ), n j,r δ j,r (p ε ) + 1 ε j r l j,r n j,r (p ε j,r -p ε j ) , δ j,r (u ε ) + 1 ε j r |Γ jr |p ε j n j,r , δj,r (u ε ) + 1 ε j r |Γ jr | u ε j , n j,r δj,r (p ε ) + σ ε 2 r j β j,r u ε r , 1 |Ω j | Ωj u ε dx + σ ε 2 j u ε j , Ωj u ε dx .
One finally gets after rearrangement the final result (82) for

E (t) = D 1 + D 2 + D 3 + D 4 .
The proof of the dissipative identity relies on a careful and technical evaluation of E 1 , E 2 and E 3 . Using the damping of the first term in (82), it is sufficient to obtained the desired result. We refer the reader to the appendix for all details.

Study of DA

ε h -P 0
This main result in this section is the following.

Lemma 3.8.

There exists a constant C ↓ independent of h and ε, with a growth in time less than T 3 2 such that one has the estimate

W ε h -W ε L 2 ([0,T ]×Ω)) ≤ C ↓ (h + ε) p 0 H 4 (Ω) . ( 83 
)
This result, which is merely a consequence of (96) and (97) in proposition 3.12, will be obtained after studying in details the well-posedness, stability and consistency of the new diffusion asymptotic scheme rewritten after a convenient rescaling. The proof is provided just after the proof of the proposition. Additional technical results will be derived at the end of the section.

Rescaling of the equations

We rescale the semi-discrete diffuse asymptotic scheme DA ε h (63) wherein for convenience we made the following change of unknowns

u ε r = u ε r ε and u ε j = u ε j ε . ( 84 
)
In order to keep a simple notation we dropped the superscript ε and the bars. Thus the scheme (63) is now written as:

         | Ω j | d dt p j + r (l jr u r , n jr ) = 0
r l jr (n jr , u r -u j )n jr = 0 ε j α jr + σB r u r = j l jr p j n jr + ε j α jr u j (85) Remark 3.9. If wet set ε = 0 we naturally recover the limit diffusion scheme (62).

This way of writing the system is much better to help the intuition, since it is can be naturally interpreted as the discretization of a diffusion equation.

Well-posedness

What we mean about well-posedness is the following: if we are able to write the last two relations of (85) as a non singular linear system with the u r 's and u j 's as unknowns, then we have a unique solution in terms of the p j 's. This notion is the relevant one for numerical discretization.

Let us denote Y = ({u j }, {u r }) the vector of unknowns. We can write the last two relations of (85) as M Y = b where M is a (J + R) 2 square matrix, J is the number of cells and R. One can observe that unless ε = 0, M is not a blockwise triangular matrix. One has

(M Y, Y ) = r (σB r u r , u r ) + ε j r l jr (u r -u j , n jr ) 2 
Assume (M Y, Y ) = 0: in this case the geometrical assumption (70) implies that all the u r are null and therefore it remains to study j r l jr (u j , n jr ) 2 = 0 that is j (u j , C j u j ) = 0 where C j = r l jr n jr ⊗ n jr . Since the C j are all invertible unless the mesh is degenerate, all the u j are null: we have proved the invertibility of the matrix M and thus the scheme (85) exists and is uniquely defined.

Stability

We note

E(t) = 1 2 j |Ω j |p 2 j . The initial data is p h (0) = (p j (0)) j∈Cells .
Proposition 3.10. Under the geometrical assumption (70), the diffusion approximation scheme ( 85) is stable in the L 2 norm, in the sense that E (t) ≤ 0. One has

||u r || L 2 ([0,T ]×Ω) ≤ 1 α p h (0) L 2 (Ω) (86) 
and ε

[0,T ] j r l jr (n jr , (u j -u r )) 2 ≤ p h (0) L 2 (Ω) . ( 87 
)
Proof. One has

E (t) = j |Ω j |p j d dt p j = - j p j r (l jr u r , n jr ) = r   u r , j l jr n jr p j   .
With the last equation of (85), one finds E (t) =r u r , ε j α jr + σB r u r -ε j α jr u j .

We expand the right hand side E (t) =r (σB r u r , u r ) -ε r u r , j α jr (u r -u j . Permuting the sums in the second term of the right hand side , we show that

E (t) = - r (σB r u r , u r ) -ε j r (u r , α jr (u r -u j )) . ( 88 
)
Using the definition of the u j , second line of (85), one has

j u j , r α jr (u r -u j ) = 0. ( 89 
)
Combining (89)×ε with (88) and using the definition of the matrices α jr one has finally

E (t) = - r (σB r u r , u r ) -ε j r l jr (u r -u j , n jr ) 2 .
By the geometrical assumption (70) we have E (t) ≤ 0, that is the L 2 stability. By integrating this equality on [0, T ] we obtain

E(T ) + T 0 r (σB r u r , u r ) + T 0 ε j r l jr (u r -u j , n jr ) 2 = E(0)
Using again the geometrical assumption (70) for the terms (B r u r , u r ) we have

E(T ) + α T 0 r |V r | u r 2 + T 0 ε j r l jr (u r -u j , n jr ) 2 ≤ E(0)
which gives ( 86) and (87).

Consistency

For convenience we set

p j = p(x j , t) u j = - 1 σ ∇p(x j , t) u r = - 1 σ ∇p(x r , t) ( 90 
)
where p(x, t) is the solution of the diffusion equation. We define three consistency errors by inserting these quantities into the three equations of (85) which are also rescaled by a factor

1 |Ωj | , 1 h and 1 |Vr| . It yields                        a j = d dt p j + 1 | Ω j | r (l jr u r , n jr ), b j = 1 h r l jr (n jr , u r -u j )n jr , c r = 1 |V r |   σB r u r - j l jr p j n jr + ε j α jr (u r -u j )   .
Proposition 3.11. There exists a constant C c > 0 independent on h and ε such that the following estimates hold

a h L ∞ ([0,T ]:L 2 (Ω)) ≤ C c h p 0 H 4 (Ω) , (91) b h L ∞ ([0,T ]:L 2 (Ω)) ≤ C c h p 0 H 3 (Ω) , ( 92 
)
and c h L ∞ ([0,T ]:L 2 (Ω)) ≤ C c (h + ε) p 0 H 3 (Ω) . ( 93 
)
Proof. The proof uses the inequalities of proposition 3.3. For example one has

a j = 1 σ       ∆p(x j , t) - Ωj ∆p(x, t)dx |Ω j | =d 1 j       + 1 σ|Ω j |        ∂Ωj ∂ n pdτ - r l jr (n jr , ∇p(x r , t)) =d 2 j        . The first term is |d 1 j | ≤ C p H 4 (Ωj )
by virtue of the first inequality of the proposition (3.3) with x r changed into x j . The second term d 2 j can be rearranged. Indeed by definition of l jr n jr one has

r l jr (n jr , ∇p(x r , t)) = k ∂Ω jk   ∇p x + jk + ∇p x - jk 2 , n j   dτ
where n j = ñj,r defined in the previous part and the nodes x + jk and x - jk are the end of the edge ∂Ω jk = Ω j Ω k , with the relation ∂Ω j = ∂Ω jk . Therefore

d 2 j = k ∂Ω jk   ∇p - ∇p x + jk + ∇p x - jk 2 , n j   dτ.
The second inequality of the proposition 3.3 yields |d 2 j | ≤ C A h 2 p H 4 (Ωj ) Therefore one can write a j ≤ C p 0 H 4 (Ωj ) where the constant is uniform with respect to j. It yields

a h L 2 (Ω) = j |Ω j |a 2 j ≤ j |Ω j |C 2 p 2 H 4 (Ωj ) ≤ Ch p H 4 (Ω) ≤ Ch p 0 H 4 (Ω) . ( 94 
)
Since it is true at any time t, it yields the first bound (91). The second inequality can be obtained with the same argument. Consider the decomposition

∇p(x r ) -∇p(x j ) = ∇p(x r ) -- Ωj ∇p(x)dv |Ω j | -∇p(x j ) -- Ωj ∇p(x)dv |Ω j | .
Each parenthesis can be estimated with the first inequality of proposition 3.3. The rest of the proof of the second bound ( 92) is immediate since l jr is neutralized by the 1 h . The third bound is analyzed as follows. We write c r = c a r + c b r with 

c a r = 1 |V r |     σ j l jr n jr ⊗ (x r -x j )   - ∇p(x r , t) σ - j l jr n jr p(x j , t)   = 1 |V r | j x j -x r , ∇p(x r , t) -p(x j , t) l jr n jr = 1 |V r | j x j -x r , ∇p(x r , t) -p(x j , t) + p(x
| ≤ C ε h p H 3 (Ωj )
. Concerning c a r we notice that

x j -x r , ∇p(x r , t) -p(x j , t) + p(x r , t) = 1 |x r -x j | xr xj ∇p(x)dτ -∇p(x r ), x r -x j
where the integral in along the chord between x j and x j . The first term in the scalar product is the comparison between a mean value and a point value. So it can be estimated as in proposition 3.3. It yields similarly

1 |x r -x j | xr xj ∇p(x)dτ -∇p(x r ), x r -x j ≤ Ch p H 3 (Ωj ) . ( 95 
)
Thus |c a r | ≤ Ch p H 3 (Ωj ) . After summation of the c a r s and c b r s, one gets the last inequality of the claim. The constant C c is the maximum of the three constants that show up in the three inequalities.

Convergence

We study the numerical error between the solution of the diffusion asymptotic scheme written as (85) and the point values of the exact solution (90). Let us define three error variables e j = p j -p j , f r = u r -u r and g j = u j -u j Proposition 3.12. There exists constants C 1 > 0, C 2 > 0,C 3 > 0 and C 4 > 0 independent of h and ε, bounded for any time T and growing at most as T 3 2 , such that

e h L ∞ ([0,T ]:L 2 (Ω)) ≤ C 1 (h + ε) p 0 H 4 (Ω) , ( 96 
)
f h L 2 ([0,T ]×Ω) ≤ C 2 (h + ε) p 0 H 4 (Ω) , ( 97 
)
and

g h L 2 ([0,T ]×Ω) ≤ C 3 (h + ε) (1 + h ε ) p 0 H 4 (Ω) . ( 98 
) Moreover ε T 0 j r l jr (f r -f j , n jr ) 2 ≤ C 4 (h + ε) p 0 H 4 (Ω) . ( 99 
)
Proof. By construction

                     | Ω j | e j + r (l jr f r , n jr ) = -| Ω j | a j r l jr (n jr , f r -f j )n jr = -hb j ,   ε j α jr + σB r   f r - j l jr e j n jr -ε j α jr f j = -| V r | c r .
The errors are measured with

E(t) = 1 2 e h 2 L 2 (Ω) , F (t) = f h 2 L 2 ([0,t]×Ω) = t 0 r |V r | |f r | 2 and g h 2 L 2 ([0,t]×Ω) = t 0 j |Ω j | |f j | 2 .
By proceeding as for the results of stability one has the identity

E (t) = j |Ω j |e j e j = j e j - r l jr (n jr , f r ) -|Ω j | a j = - r j (l jr n jr e j , f r ) - j |Ω j | e j a j = - r   f r ,   ε j α jr + σB r   f r -ε j α jr f j   - j |Ω j | e j a j - r |V r | (c r , f r ) = - r (σB r f r , f r ) -ε r   f r , j α jr (f r -f j )   - j |Ω j | e j a j - r |V r | (c r , f r ) = - r (σB r f r , f r ) -ε j r l jr (f r -f j , n jr ) 2 - j |Ω j | e j a j - r |V r | (c r , f r ) + ε j h(b j , f j ).
Using Young's inequality and assumptions (67) and (70), one gets

E (t) ≤ -ασ f h 2 L 2 (Ω) -ε j r l jr (f r -f j , n jr ) 2 + 2E(t)||a h || L 2 (Ω) + µ 2 ||f h || 2 L 2 (Ω) + 1 2µ ||c h || 2 L 2 (Ω) + ε 2hC M η||g h || 2 L 2 (Ω) + 1 η ||b h || 2 L 2 (Ω) (100) 
where µ, η > 0 are two arbitrary coefficients that will be specified later. Now using ( 69) and (64), we have

|Ω j | |f j | 2 ≤ h α r l jr (n jr , f j ) 2 . ( 101 
)
Therefore

|Ω j | |f j | 2 ≤ h α 2 r l jr (n jr , f j -f r ) 2 + 2 r l jr |f r | 2 ,
which yields, using ( 68) and ( 65)

||g h || 2 L 2 (Ω) ≤ 2h α jr l jr (n jr , f j -f r ) 2 + 2P αC M ||f h || 2 L 2 (Ω) . ( 102 
)
So from (100) we obtain

E (t) ≤ 2E(t)||a h || L 2 (Ω) + 1 2µ ||c h || 2 L 2 (Ω) + µ 2 + εP η hC 2 M α -σα f h 2 L 2 (Ω) + η C M α -1 ε j r l jr (f r -f j , n jr ) 2 + ε 2hC M η ||b h || 2 , ∀µ, η > 0.
Let us choose the free coefficients µ and η so that

µ 2 + εP η hC 2 M α -σα ≤ - σα 4 and η C M α -1 ≤ - 1 2 .
Let us choose first µ = ασ 2 . The two inequalities reduce to

εP η hC 2 M α ≤ σα 2 adn η C M α ≤ 1 2 . A natural solution is η = C M α 2 min 1, ασhC M εP . So E (t) ≤ 2E(t)||a h || L 2 (Ω) - ασ 4 F (t) - ε 2 j r l jr (f r -f j , n jr ) 2 + 1 ασ ||c h || 2 L 2 (Ω) + ε 2hC M η ||b h || 2 L 2 (Ω) .
By the consistency estimates (91-92-93), one has

1 2 ||a h || 2 L 2 (Ω) + 1 ασ ||c h || 2 L 2 (Ω) + ε 2hC M η ||b h || 2 L 2 (Ω) ≤ C 2 c 1 2 h 2 + 1 ασ (h + ε) 2 + ε 2hC M η h 2 p 2 L ∞ ([0,T ]:H 4 (Ω)) ≤ C 2 c 1 2 h 2 + 1 ασ (h + ε) 2 + ε 2hC M η h 2 p 0 2 H 4 (Ω) .
The last term in the parenthesis is

ε 2hC M η h 2 = 1 C 2 M α εh max (1, εP/(ασhC M )) ≤ 1 C 2 M α εh (1 + εP/(ασhC M )) = 1 C 2 M α εh + P C 3 M α 2 σ ε 2 .
So there exists a constant C e independent of h and ε such that

E (t) ≤ 2E(t) - ασ 4 F (t) - ε 2 j r l jr (f r -f j , n jr ) 2 + C e (h + ε) 2 p 0 2 H 4 (Ω) . ( 103 
)
Integrating (103), we find that for any for t ≤ T

E(t) + ασ 4 F (t) + ε 2 t 0 j r l jr (f r -f j , n jr ) 2 ≤ E(0) + t 0 2E(s)||a h || L 2 (Ω) ds + tC e (h + ε) 2 p 0 2 H 4 (Ω) . ( 104 
)
that is

E(t) + ασ 4 F (t) + ε 2 t 0 j r l jr (f r -f j , n jr ) 2 ≤ E(0) + t 0 2E(s) C e (h + ε)ds + T C e (h + ε) 2 p 0 2 H 4 (Ω) . ( 105 
)
With another use of the Bihari's inequality, lemma (B.2), we obtain

T 0 E(t) ≤ 1 2 T 2 E(0) + T C e (h + ε) 2 p 0 2 H 4 (Ω) + T 2C e (h + ε) p 0 H 4 (Ω) 2 (106) 
By construction

E(0) ≤ C 2 A h 2 p 0 2 H 2 (Ω)
, which comes from inequality (71) which compares mean value and point value.

E(t) ≤ C 2 1 (t)(h + ε) 2 p 0 2 H 4 (Ω)
, where the constant C 1 is bounded for any T and growing as T 3 2 . It gives (96), and one easily obtains (97) and ( 99) from (105) and the constants C 2 and C 3 are bounded for any time T and behave as a linear polynomial in T . Integrating (102) and using the estimates (97) and (99), one gets

T 0 ||g|| 2 L 2 (Ω) ≤ 2 α h T 0 jr l jr (n jr , f j -f r ) 2 + 2P αC M ||f || 2 L 2 ([0,T ]×Ω) ≤ C 2 4 (h + ε) 2 (1 + h ε ) p 0 H 4 (Ω) ,
where the constant C 4 is uniform in h and ε and is bounded for any T with, at most, and behave as a linear polynomial in T . The proof is finished.

Proof of lemma 3.8. The norm of the estimate in the lemma 3.8 can be bounded from the sum of ( 96) and (98). However one must rescale back (98) since it corresponds to the scaled variable (84). This is why (98) must be multiplied by ε. It eliminates the ε -1 2 divergence in (98). The constant C ↓ max(C 1 , C 2 ) is bounded for any time T and behaves as T 3 2 for large T since it is the case for C 1 . and ends the proof.

Technical estimates

These technical estimates are needed in the next section. These results compare two different velocities at the initialization stage: on the one hand the velocity computed as the solution of the linear system made of the two last equations of (85), on the other hand the exact point wise velocity.

Proposition 3.13. There exists a constant C independent of h and ε such that

u r + 1 σ ∇p(x r ) (t = 0) L 2 (Ω) ≤ C h max(h, ε) p 0 H 3 (Ω) (107) 
and

u j + 1 σ ∇p(x j ) (t = 0) L 2 (Ω) ≤ C h ε max(h, ε) p 0 H 3 (Ω) . ( 108 
)
Proof. Let us write q r = u r + 1 σ ∇p(x r ) and s j = u j + 1 σ ∇p(x j ). These quantities are solution of the system ε j l jr n jr ⊗ n jr + σB r q r -ε j l jr n jr ⊗ n jr s j = d 1 r + d 2 r , ∀r, -ε r l jr (n jr , q r )n jr +ε r l jr (n jr , s j )n jr = d j , ∀j,

where the right hand sides are

d 1 r = j l jr p(x j )n jr + j l jr (x r -x j , ∇p(x r ))n jr , d 2 r = ε j l jr (n jr , ∇p(x r ) -∇p(x j )) n jr and d j = -ε r l jr (n jr , ∇p(x r ) -∇p(x j )) .
The right hand side d 1 r can be interpreted as a consistency error. Indeed it can be rewritten as

d 1 r = j [p(x j ) -p(x r ) + (x r -x j , ∇p(x r )]) l jr n jr ,
one obtains from (95) the bound |d 1 r | ≤ j neighboring r Ch p H 3 (Ωj ) h. It yields after summation

d 1 L 2 (Ω) ≤ Ch 3 p H 3 (Ω) , C = CP. ( 109 
)
Taking the scalar product of the first line by q r and of the second line by s j , one gets the identity σ r (B r q r , q r ) + ε jr l jr (n jr , q r -s j )

2 = r d 1 r , q r + ε jr l jr (n jr , q r -s j ) (n jr , ∇p(x r ) -∇p(x j ))
where

d 1 shows up explicitly. A Young's inequality yields σ r (B r q r , q r ) + ε 2 jr l jr (n jr , q r -s j ) 2 ≤ r d 1 r , q r + ε 2 jr l jr (n jr , ∇p(x r ) -∇p(x j )) 2 .
(110) The first term in the right hand side is

r d 1 r , q r = r h 2 1 h 2 d 1 r , q r ≤ C 1 h 2 d 1 L 2 (Ω) q L 2 (Ω) ≤ Ch p H 3 (Ω) q L 2 (Ω) .
A similar reasoning as for (109), which one more time can be viewed as a consequence of the first technical inequality of proposition (3.3), is

jr l jr (n jr , ∇p(x r ) -∇p(x j )) 2 ≤ Ch p 2 H 3 (Ω) .
So (110) implies (after redefinition of the constants)

q 2 L 2 (Ω) ≤ C q L 2 (Ω) p H 3 (Ω) + ε p 2 H 3 (Ω) h. It means that z = q L 2 (Ω) p H 3 (Ω)
is below the maximal root of the polynomial

p(z) = z 2 -Chz -Cεh, that is for some constant K > 0 z ≤ x + = Ch+ √ C 2 h 2 +4Cεh 2 ≤ K max(h 2 , hε). Noticing that p H 3 (Ω) ≤ p 0 H 3 (Ω)
, It finishes the proof of the first inequality (107). Concerning the second inequality, we start from (101) to show that

s 2 L 2 (Ω) = j |Ω j ||s j | 2 ≤ h α j r l jr (n jr , s j ) 2 ≤ 2 h α j r l jr (n jr , q r ) 2 + 2 h α j r l jr (n jr , q r -s j ) 2 ≤ 2 1 C M α r |V r | |q r | 2 + 2 h α j r l jr (n jr , q r -s j ) 2 ≤ 2 1 C M α q 2 L 2 (Ω) + 2 h α jr l jr (n jr , q r -s j ) 2 .
The first term is natural bounded bounded using (110). The crux of the estimate is the second term which is naturally bounded by ( 107)

jr l jr (n jr , q r -s j ) 2 ≤ 2 ε K max(h 2 , hε)h + Cεh p 0 2 H 3 (Ω) ≤ D(h + ε) h ε p 0 2 H 3 (Ω) , D > 0.
We obtain therefore

s 2 L 2 (Ω) ≤ C max(h 2 , hε) + h(h + ε) h ε p 0 2 H 3 (Ω) , C > 0.
The numbers h and ε can be considered less than 1. There are two cases: Either h < ε so

s 2 L 2 (Ω) ≤ Chε p 0 2 H 3 (Ω) for another constant C; or ε ≤ h, so s 2 L 2 (Ω) ≤ C h 3 ε p 0 2 H 3 (Ω) for another constant C. So we can writes s L 2 (Ω) ≤ C h ε max(h, ε)
for a certain constant C > 0 independent of h and ε. The proof of (108) is ended.

Proposition 3.14. There exists a constant C independent of h and ε such that

d dt u r L 2 ([0,T ]×Ω) ≤ C max 1, ε h p 0 H 3 (Ω) . ( 111 
)
Proof. The proof is essentially a consequence of the previous proposition. Let us denote the time derivative of any f as f = ∂ t f . By linearity of the system (85), one has

         | Ω j | d dt pj + r (l jr ũr , n jr ) = 0 r l jr (n jr , ũr -ũj )n jr = 0 ε j α jr + σB r ũr = j l jr pj n jr + ε j α jr ũj
The L 2 stability property yields

ph 2 L ∞ ([0,T ];L 2 (Ω)) + T 0 r (B r ũr , ũr )dt ≤ ph (0) 2 L 2 (Ω) (112) 
where this last quantity can be estimated with the first equation of (85): the square of the norm in (111) is also bounded by the same quantity. It remains to bound p(0) L 2 (Ω)) . Using again the notation q r = u r + 1 σ ∇p(x r ), we consider at time t = 0 the relation

pj = d dt p j = - 1 |Ω j | r l jr (u r , n jr ) = 1 σ 1 |Ω j | r l jr (∇p(x r ), n jr ) =v 1 j - 1 |Ω j | r l jr (q r , n jr ) =v 2 j . One has v 1 j = 1 |Ωj |
r l jr (∇p(x r ) -∇p(x j ), n jr ). Using techniques which have been used many times in this paper, one has |v

1 j | ≤ C 1 h p H 3 (Ωj ) , which turns into v 1 L 2 (Ω) = j |Ω j |(v 1 j ) 2 ≤ C p H 3 (Ω) ≤ C p 0 H 3 (Ω) , C > 0.
The other term is naturally bounded by the norm of q, that is v 2 L 2 (Ω) ≤ P C M h q L 2 (Ω) , P the maximal number of vertices per cell. Going back to (107), one obtains

v 2 L 2 (Ω) ≤ C 1 h h max(h, ε) p 0 H 3 (Ω) ≤ C max(1, ε/h) p 0 H 3 (Ω) . ( 113 
)
The sum v 1 L 2 (Ω) + v 2 L 2 (Ω) yields the bound for ph (0) that was looked for. The estimate is dominated by the worst term which is the right hand side of (113). Plugging in (112), the proof is finished.

Study of P

ε h -DA ε h
In this section we estimate the difference between the hyperbolic scheme P ε h and the diffusion asymptotic scheme DA ε h . Since the discrete of the discrete equations are very similar, this proof is simple. This is where we get the clear benefit of the introduction of the new diffusion asymptotic scheme.

Lemma 3.15.

There exists a constant C → independant of h and ε, with a linear growth in time, such that the following estimate holds

V ε h -W ε h L 2 ([0,T ]×Ω)) ≤ C → h 2 + ε max 1, ε h p 0 H 3 (Ω) . ( 114 
)
Proof. We introduce R j = d dt u j such that the solution V h of the diffusion scheme (63) satisfies

                 | Ω j | d dt p j + 1 ε r (l jr n jr , u r ) = 0, | Ω j | d dt u j + 1 ε r (l jr p j n jr + α jr (u j -u r )) = |Ω j |R j , A r + σ ε B r u r - j l jr p j n jr - j α jr u j = 0. ( 115 
) By definition R L 2 (Ω) = d dt u j L 2 (Ω)
. Using the second line of (63), one has

u j = A -1 j r α jr u r and thus d dt u j L 2 (Ω) ≤ C d dt u r L 2 (Ω)
. Using (111) (and taking care that rescaling (84) by a factor ε was systematically used in the previous section), one gets for a smooth initial data

R L 2 ([0,T ]×Ω) ≤ Cε max 1, ε h p 0 H 3 (Ω) .
We denote by e j = p j -p ε j , f j = u j -u ε j and f r = u r -u ε r . One finds, making the difference between the schemes (115) and (57):

                 | Ω j | d dt e j + 1 ε r (l jr n jr , f r ) = 0, | Ω j | d dt f j + 1 ε r (l jr e j n jr + α jr (f j -f r )) = |Ω j |R j , A r + σ ε B r f r - j l jr e j n jr - j α jr f j = 0.
We are going to write an inequality satisfied by

E(t) = e(t) 2 L 2 (Ω) + f (t) 2 L 2 (Ω)
, knowing that e(0) = 0. Using the same kind of proof than for the L 2 stability of the JL-(b) scheme (proposition 3.6), one can show that 1 2

d dt E(t) ≤ j |Ω j |(R j , f j ) ≤ f L 2 (Ω) R L 2 (Ω) ≤ E(t) R L 2 (Ω) .
By integration, one has for t ≤ T

E(t) ≤ E(0) + √ T R L 2 ([0,T ]×Ω) = f (0) L 2 (Ω) + √ T R L 2 ([0,T ]×Ω) .
One has f (0) L 2 (Ω) ≤ C √ hε max(h, ε) p 0 H 3 (Ω) by virtue of (108) (taking care that there is a rescaling (84) by ε). We simplify a little f (0

) L 2 (Ω) ≤ C h 2 + ε 2 p 0 H 3 (Ω) , so E(t) ≤ C h 2 + ε max 1, ε h √ T p 0 H 3 (Ω) , C > 0. Since V ε h -W ε h L 2 ([0,T ]×Ω)) = T 0 E(t)
dt, the proof is ended with

C → = CT h 2 + ε max 1, ε h p 0 H 3 (Ω)
.

Space estimate for uniform AP property in 2D

We have the following result of uniform convergence for a mesh satisfying the geometrical assumptions (3.2).

Theorem 3.16 (Space estimate).

There exists a constant C>0 independent of h and ε, increasing at most as T 3 2 , such that the following estimate holds

V ε -V ε h L 2 ([0,T ]×Ω) ≤ Ch 1 4 p 0 H 4 (Ω) .
Proof. The proof is a slight adaptation of our initial proposition 1.3, where we use the norm

• = • L 2 ([0,T ]×Ω))
. From the triangular inequality applied to the AP diagram, one has

V ε h -V ε ≤ min ( V ε h -V ε naive , V ε h -W ε h + W ε h -W ε + W ε -V ε ) .
All these norms are estimated with (75), ( 114), ( 83) and (74). Therefore one can write

V ε h -V ε ≤ C min h ε , h 2 + ε max 1, ε h + (h + ε) + ε p 0 H 4 (Ω) , C > 0,
where

C = max ↓ C √ C M , C → C M , C ↓ √ C M , C ←
and behaves as T 3 2 for large T . The parenthesis is

Z = min h ε , h 2 + ε max 1, ε h + (h + ε) + ε ≤ min h ε , ε max 1, ε h + 2h + 2ε ≤ min h ε , 3ε max 1, ε h + 2h .
As in proposition 1.3, a threshold value is obtained by equating the more singular terms, that is

h ε thresh = ε thresh ε thresh h , with solution ε thresh = √ h. Two case occur. The first case is ε ≥ ε thresh .
Then the first term in Z shows that Z ≤

h ε thresh = h 1 4
. The second case is ε ≤ ε thresh . Then the second term in Z shows that Z ≤ 3ε thresh 4 . In both case Z ≤ Ch 4 . The proof is ended.

ε thresh h + 2h = 3h 1 4 + 2h ≤ 5h 1 

Implicit discretization and proof of theorem 1.1

We explain hereafter how to compare the implicit scheme and the semi-discrete scheme, in a way that produces immediately abstract error bounds. This technique comes from [START_REF] Després | Lax theorem and finite volume schemes[END_REF] where applications to the numerical analysis of explicit schemes was the main goal. In what follows we concentrate on implicit Euler discretization for two reasons. First reason is that the theory is a little simpler to explain than for the explicit scheme, for which the interested reader may nevertheless refer to the cited work. The very simple proof that is provided is new. Second reason is that implicit discretization is somehow necessary to take into the account the intrinsic stiffness of the problem. In particular the numerical tests have been performed with the implicit method. With the explicit method the CFL condition is so restrictive that it makes impossible the convergence study. The proof is a consequence of the abstract estimate (120) with the technical estimate (126) for the initial data.

An abstract estimate

The idea is to compare the solution U h (t) of a semi-discrete scheme

U h (t) = A h U h (t), U h (0) = U ini h (116)
with the solution of the corresponding implicit Euler scheme with time step ∆t

U n+1 h -U n h ∆t = A h U n+1 h , U 0 h = U ini h ( 117 
)
The operator depends on an abstract parameter h: with symbolic notation, this abstract parameter is h ← (h, ε) in the case of our problem P ε h . The question is to bound the difference of these two uniformly with respect to ∆t and uniformly with respect to the abstract parameter h.

We assume a natural L 2 norm denoted as • with the associated scalar product. For simplicity we also assume that A h is dissipative in the sense that (U h , A h U h ) ≤ 0 for all U h in the appropriate discrete space.

Taking the scalar product of (117) with U n+1 h , one deduces that U n+1 h ≤ U n h for all U n h . Assuming the discrete space in finite (this is always true for discrete methods in a compact domain), one gets the unconditional stability estimate

(I h -∆tA h ) -1 ≤ 1 ∀∆t > 0 ( 118 
)
where I h is the discrete identity operator and the norm is the induced one for operators. Note that (118) ultimately shows that the matrix I h -∆tA h is non singular. So the matrix of the problem can be assemble and invert on a computer.

Let us define for convenience V n h = U h (n∆t) so that the semi-discrete scheme can be rewritten as

V n+1 h -V n h ∆t -A h V n+1 h = 1 ∆t (n+1)∆t n∆t U h (s)ds -A h U h ((n + 1)∆t) = 1 ∆t (n+1)∆t n∆t A h U h (s)ds -A h U h ((n + 1)∆t) = ∆tA h s n+1 h
where the residual is

s n+1 h = 1 ∆t (n+1)∆t n∆t U h (s)-U h ((n+1)∆t) ∆t
ds. We notice that

s n h ≤ sup 0≤s≤T U h (s) ≤ A h U ini h , n∆t ≤ T. ( 119 
)
Therefore this special residual is uniformly bounded provided A h U ini h is uniformly bounded. This is actually true: it comes from the fact that

W h (t) = U h (t) is solution of W h (t) = A h W h (t) and W h (0) = A h U ini h .
So the strong L 2 stability of the semi-discrete scheme due to (121) yields the bound (119). Proposition 4.1 (Time estimate). Let T > 0 be a final time. Then there exists a constant C independent of h, ε and ∆t, proportional to √ T , such that

U n h -U h (n∆t) ≤ C √ ∆t A h U ini h , n∆t ≤ T. ( 120 
)
Proof. The initial data is the same

V 0 h = U ini h . Let us define the error E n h = V n h -U n h which is solution of E n+1 h -E n h ∆t = A h E n+1 h + ∆tA h s n+1 h , E 0 h = 0. ( 121 
) It yields (I h -∆tA h )E n+1 h = E n h + ∆t 2 A h s n+1 h , that is E n+1 h = (I h -∆tA h ) -1 E n h + ∆t(I h - ∆tA h ) -1 ∆tA h s n+1 h
. We obtain the representation formula (discrete Duhamel's formula)

E n h = ∆t n-1 p=0 (I h -∆tA h ) -1 n-1-p (I h -∆tA h ) -1 ∆tA h s p+1 h . ( 122 
)
Let us define the operator

T h = (I h -∆tA h ) -1 which is bounded T h ≤ 1. One has the formula T h -I h = (I h -∆tA h ) -1 ∆tA h and the formula I h -∆t 2 A h -1 I h +T h 2 = (I h -∆tA h ) -1
. Plugging in the discrete Duhamel's formula, one obtains another representation

E n h = ∆t n-1 p=0 (I h - ∆t 2 A h ) -(n-1-p) I h + T h 2 n-1-p (T h -I h ) s p+1 h . ( 123 
)
The first operator in brackets is bounded by 1 due to the stability (118). On the other hand it is an easy exercise in number theory to show that for q ≥ 0

I h + T h 2 q (T h -I h ) = 1 2 q r q r -1 - q r T r h
where the binomial coefficients are q r = q! r!(q-r)! for 0 ≤ r ≤ q, otherwise zero. Therefore

I h + T h 2 q (T h -I h ) ≤ 1 2 q r q r -1 - q r ≤ 1 2 q 2 q r *
where the last inequality is from a telescoping reasoning and r * is one of the closest entire number to q/2, that is | q 2 -r * | ≤ 1. But there exists a universal constant, denoted K, such that

1 2q-1 q r * ≤ K √ q+1 . Therefore I h +T h 2 q (T h -I h ) ≤ K/ √ q + 1.
Using this universal estimate in (123) and the estimate on s n h , we obtain

E n h ≤ ∆t n-1 p=0 K √ n-1-p+1 A h U ini h = ∆t n p=1 K √ p A h U ini h . A basic bound shows that n p=1 1 √ p ≤ K √ n. Therefore E n h ≤ ∆tK K √ n A h U ini h ≤ (K K √ T ) √ ∆t A h U ini h , n∆t ≤ T.
The proof is ended.

To finish the proof of the theorem 1.1, it is now necessary and sufficient to show that d dt U h (0) = A h U ini h is bounded independently of h for the initial data of P ε h . This is the purpose of the next section.

Technical estimates

To prove the uniform on the initial data, we will use in a slightly different manner the estimates for the initial data that have been obtained for the diffusion approximation scheme DA ε h . However we will need an additional assumption of the mesh

(A r u, u) ≥ αh(u, u), A r = j α jr . ( 124 
)
This assumption is not restrictive so we do not comment on it. The following technical estimates show two things. First in explains in what sense the corner velocity is a good approximation of the gradient at the corner at initial stage. Second it provides in (126) a control of the time derivative at time t = 0 uniformly with respect to h and ε, it immediately shows the boundedness of the abstract quantity A h U ini h in (119). So it is possible to apply the above proposition and the main theorem is proved. We now turn to the proof the technical estimates. Proposition 4.2. There exists a constant C independent of h and ε such that the initial data of

P ε h satisfies u ε r (0) + ε σ ∇p 0 (x r ) L 2 (Ω) ≤ Chε p 0 H 3 (Ω) . ( 125 
)
Proof. The corner problem (59) that defines u r = u ε r (0) at initial time is rewritten as

A r + σ ε B r u r = j l jr p 0 (x j )n jr - ε σ j α jr ∇p 0 (x j ).
Let us defined d 1 r = j l jr (p 0 (x j ) -p 0 (x r ) -(x j -x r , ∇p 0 (x r ))) n jr , already defined and bounded in (109). So elimination of p(x j ) and simplification with j l jr n jr p(x r ) = 0 yield

A r + σ ε B r u r = j l jr (x r -x j , ∇p 0 (x r )) n jr + d 1 r - ε σ j α jr ∇p 0 (x r ) + ε σ j α jr (∇p 0 (x r ) -∇p 0 (x j )) .
that is with the definition of the matrices

A r + σ ε B r u r + ε σ ∇p 0 (x r ) = d 1 r + ε σ j α jr (∇p 0 (x r ) -∇p 0 (x j )) .
The coercivity (124) of the matrices A r and B r yields

α h + σh 2 ε u r + ε σ ∇p 0 (x r ) ≤ |d 1 r | + ε σ j α jr |∇p 0 (x r ) -∇p 0 (x j )| .
With estimate of d 1 r (109), estimate of the difference ∇p 0 (x r ) -∇p 0 (x j ), it yields

α h + σh 2 ε u r + ε σ ∇p 0 (x r ) ≤ C(h 2 + ε σ h) p Ωj ,
with a constant uniform with respect to h, ε and the index of the cell j. That is

u r + ε σ ∇p 0 (x r ) ≤ C α ε p Ωj .
After squaring and summation with respect to j, it yields the result.

Proposition 4.3.

There exists a constant C > 0 which do not depend on h and ε such that the initial data of

P ε h satisfies d dt V ε h L 2 (Ω)) ≤ C p 0 H 3 (Ω) . ( 126 
)
Proof. The P ε h scheme (57) or (61) can be rewritten

P ε h :        d dt p ε j = - 1 ε|Ω j | r l jr (u ε r -u ε j , n jr ) d dt u ε j = -1 ε|Ωj | r l jr (n jr , u ε r -u ε j )n jr . ( 127 
)
At time t = 0 one has u ε r -u ε j = u ε r + ε σ ∇p 0 (x r ) + ε σ (∇p 0 (x j ) -∇p 0 (x r )): the first term can be estimated by ( 125) and the second one as usual. Therefore there exists constants such that

1 ε|Ω j | r l jr (u ε r + ε σ ∇p 0 (x r ), n jr ) L 2 (Ω) ≤ C h C M h 2 P hε p 0 H 3 (Ω) ≤ C p 0 H 3 (Ω) .
In a similar way

1 σ|Ω j | r l jr (∇p 0 (x r ) -∇p 0 (x j ), n jr ) ≤ h σC M h 2 C p 0 H 3 (Ωj ) ≤ C h p 0 H 3 (Ωj ) . Therefore 1 σ|Ω j | r l jr (∇p 0 (x r ) -∇p 0 (x j ), n jr ) L 2 (Ω) ≤ C p 0 H 3 (Ω) . It shows that d dt p ε (0) L 2 (Ω) ≤ C p 0 H 3 (Ωj ) . Considering (127) , a similar result for d dt u ε (0). It shows d dt V ε h (0) L 2 (Ω)) ≤ C p 0 H 3 (Ω)
. The proof is ended.

Numerical illustration

To illustrate the theory and have a more quantitative version of the error estimates studied in this work, we consider the academic square Ω = [0, 1] 2 and discretize the hyperbolic heat equation of a mesh made with random quads. A random quad mesh is made of quads where the vertices are moved randomly around their initial position, by a factor between 10% and 30%. We use the fully implicit time discretization version of the 2D scheme detailed in this work. The solution of the linear systems is computed via an iterative GMRES algorithm, which converges smoothly in our numerical experiments. The reference analytical solution used in our tests is designed by separation of variables. A solution of (1) is

p = f + ε 2 σ ∂ t f and u = - ε σ ∇f, with f solution of ∂ t f + ε 2 σ ∂ 2 t f - 1 σ ∆f = 0. (128) 
We propose to construct a solution for a subset of small ε to validate the uniform convergence. Firstly we consider that the solution is a periodic solution on the square [0, 2] × 0, 2 L . For this we use the separation of the variables. We consider the following function

f (t, x, y) = α(t) cos(Lπx)) cos(Lπy).
and we propose to find the function α(t) such that f (t, x, y) = α(t) cos(Lπx) cos(Lπy) is a periodic solution of (128). The function α is determined as the solution of

α (t) + ε 2 σ α (t) + 2L 2 π 2 σ α(t) = 0
with α (0) = 0 and α(0) = 1. For small ε, which is the case we are interested in, the solution is computed as follows. First determine The error is plotted in log scale versus the number of cells per direction for the test problem described in section 5. Each curve corresponds to a value of τ ∈ {0, 1 4 , 1 2 , 1, 2}, plus a reference line for order one. One sees that the order of convergence is an increasing function of τ . from which p(t) and u(t) are easily recovered.

λ 1 = - σ 1 -ε 2 σ 2 8L 2 π 2 + 1 2ε 2 and λ 2 = σ 1 -ε 2 σ 2 8L 2 π 2 -1 2ε 2 . Then α(t) = λ 2 λ 2 -λ 1 e λ1t - λ 1 λ 2 -λ 1 e λ2t
We decide that an exact relation is enforced between ε and h = 1 N , so that the error can be expressed as a function of h solely. The relation between ε and h writes ε = 0.01(40h) τ for τ ∈ {0, 1 4 , 1 2 , 1, 2}. The error between the exact solution and the numerical solution is computed numerically in function of h = 1 N , for different values of τ , and the results of some of these numerical experiments is displayed in figure 6. The results correspond to the time T = 0.02 using the time step ∆t = 0.2h 2 .

As predicted by the theory, the scheme is uniformly AP and the error behavior is a continuous function of γ between the hyperbolic and parabolic limits. However the results are much better, in the sense the order is greater than the theoretical prediction since the order is approximatively 1 for γ = 0 (hyperbolic limit) and 2 for γ = 2 (parabolic regime). We can find a closed result on the second order convergence for the parabolic regime in the paper [START_REF] Aregba | Time Asymptotic High Order Schemes for Dissipative BGK Hyperbolic Systems[END_REF] (1D linear problem). The reason is probably that the theory is based on worst case estimates, as it is often the case for the numerical analysis of finite volume schemes [START_REF] Eymard | The finite volume method, Handbook for Numerical Analysis[END_REF].

Conclusion

The proof that was given of the uniform AP property is quite technical. It relies on specific hyperbolic and parabolic estimates for linear nodal finite volume schemes on general meshes. We observe that the multidimensional case yields an additional contribution in the error that ultimately slightly degrades the convergence rate. It is an open problem to determine if these inequalities are optimal. The numerical results indicate that it is probably not the case.

A Detailed proof of the naive estimate (75)

Our aim is to now examine each term in the right hand side of the dissipative identity (82). Its first term is already non positive.

Proposition A.1. Let γ > 0 be a number which precise value will be determined further. There exists a constant C 1 (γ) which depends on γ such that one has the bound for the second term of the dissipative identity (82

) T 0 E 1 (t)dt ≤ γ ε T 0 j,r l j,r (n j,r , u ε j -u ε r ) 2 + C 1 (γ) h ε √ C M V ε (0) 2 H 1 (Ω) . ( 129 
)
Proof. We use a Young's inequality ab ≤ γ 2 a 2 + 1 2γ b 2 ,with some positive constantγ which will be defined later, for the second term and the definition of the fluxes (58) for the third term: we get

E 1 ≤ γ 2ε j,r l j,r (n j,r , u ε j -u ε r ) 2 + h 2γε j r δ j,r (p ε ) 2 + j r l jr (n jr , u ε j -u ε r )(n jr , δ j,r (u ε )) - 1 ε j r σ ε β j,r u ε r , δ j,r (u ε )
Another use of Young's inequality with the same coefficient γ for the third term yields

E 1 ≤ γ ε j,r l j,r (n j,r , u ε j -u ε r ) 2 + h 2γε j r δ j,r (p ε ) 2 + 1 2γε j r l jr |δ j,r (u ε )| 2 - 1 ε j r σ ε β j,r u ε r , δ j,r (u ε ) ≤ γ ε j,r l j,r (n j,r , u ε j -u ε r ) 2 + h 2γε j r δ j,r (p ε ) 2 + h 2γε j r |δ j,r (u ε )| 2 - 1 ε j r σ ε β j,r u ε r , δ j,r (u ε ) .
We now look at the last term of this inequality W = -1 ε j r σ ε β j,r u ε r , δ j,r (u ε ) . By definition (60) of β j,r , one has β j,r ≤ h 2 . Therefore

|W | ≤ σh 2 ε 2 j r u ε r 2 1 2 j r |δ j,r (u ε )| 2 1 2 ≤ σh 2 ε 2 √ P r u ε r 2 1 2 j r |δ j,r (u ε )| 2 1 2 ≤ σh ε 2 P C M r |V r | u ε r 2 1 2 j r |δ j,r (u ε )| 2 1 2 ≤ σh 2ε 2 P C M r |V r | u ε r , u ε r + j r |δ j,r (u ε )| 2 .
It yields

E 1 ≤ γ ε j,r l j,r (n j,r , u ε j -u ε r ) 2 + h 2γε j r δ j,r (p ε ) 2 + h 2γε + σh 2ε 2 P C M j r |δ j,r (u ε )| 2 + σh 2ε 2 P C M r |V r | u ε r , u ε r . ( 130 
)
Using the first interpolation result of proposition 3.3 and the assumption (65), one has

j r δ j,r (p ε ) 2 ≤ P C 2 A ||p ε || 2 H 2 (Ω) and j r |δ j,r u ε | 2 ≤ P C 2 A ||u ε || 2 H 2 (Ω) .
So we obtain 

T 0 E 1 dt ≤ γ ε T 0 j,r l j,r (n j,r , u ε j -u ε r ) 2 dt + P C 2 A h 2γε ||p ε || 2 L 2 (
P C M ε 2 σα V ε (0) 2 H 2 (Ω) .
After a convenient definition os the constant C 1 (γ), it ends the proof.

Proposition A.2. There exists a constant C 2 such that the third term in the dissipative identity (82) can be bounded as

T 0 E 2 (t)dt ≤ C 2 h εC M V ε (0) 2 H 3 (Ω) . ( 132 
)
Proof. We decompose E 2 in (82) in two terms. Making use of the second set of inequalities of the proposition 3.3 and the assumptions (64) and ( 65), the first one can be bounded as

|A| = 1 ε j r
|Γ j,r |p ε j (n j,r , δj,r (u ε )) ≤

C A P ε h 2 j |p ε j | V ε (t) H 3 (Ωj ) .
Using the inequality ab ≤ 1 2 (a 2 + b 2 ), it yields |A| ≤ C A P 2ε h 3 j |p ε j | 2 + C A P 2ε h j V ε (t) 2 H 3 (Ωj ) . The assumption (67) yields

|A| ≤ C A P 2ε h C M V ε h (t) 2 L 2 (Ω) + C A P 2ε h V ε (t) 2 H 3 (Ω) .
The L 2 stability (76) of the scheme P ε h shows that

V ε h (t) L 2 (Ω) ≤ V ε h (0) L 2 (Ω) ≤ V ε (0) L 2 (Ω) + V ε h (0) -V ε (0) L 2 (Ω) ≤ (1 + C A h) V ε (0) H 2 (Ω)
where the last inequality comes from the initialization stage (71). With the basic energy estimate (2), and since h is bounded, we obtain

T 0 |A|dt ≤ T C A P 2ε h C M (1 + C A h) + C A P 2ε h V ε (0) 2 H 3 (Ω) .
The second contribution in E 2 is B = 1 ε j r |Γ j,r | u ε j , n j,r δj,r (p ε ) . Almost the same calculations show the bound

T 0 |B|dt ≤ T C A P 2ε h C M (1 + C A h) + C A P 2ε h V ε (0) 2 H 3 (Ω) .
Summing the two contributions, it concludes the proof after a convenient definition of C 2 .

Proposition A.3. Let γ > 0 be a number which precise value will be determined further. There exists a constant C 3 ( γ) which depends on γ such that one has the bound for the last term of the dissipative identity (82)

T 0 E 3 (t)dt ≤ γσ 2ε T 0 r j l jr n jr , u ε r -u ε j 2 dt + C 3 ( γ) h εC M V ε (0) 2 H 1 (Ω) . ( 133 
)
Proof. The definition of E 3 in ( 82) is

E 3 = σ ε 2 r j β j,r u ε r , 1 |Ω j | Ωj u ε dx + σ ε 2 j u ε j , Ωj u ε - σ ε 2 j Ωj (u ε , u ε )dx - σ ε 2 j r ( β j u ε r , u ε r ).
Using the Cauchy-Schwarz inequality on the third term (u ε , u ε ), one gets

E 3 ≤ σ ε 2 r j β j,r u ε r , 1 |Ω j | Ωj u ε dx + σ ε 2 j u ε j , Ωj u ε - σ ε 2 j 1 |Ω j | Ωj u ε dx 2 - σ ε 2 j r ( β j u ε r , u ε r ),
which can be written

E 3 ≤ - σ ε 2 r j β j,r u ε r , u ε r - 1 |Ω j | Ωj u ε dx - σ ε 2 j Ωj u ε dx, 1 |Ω j | Ωj u ε dx -u ε j
that is

E 3 ≤ - σ ε 2 r j β j,r u ε r - 1 |Ω j | Ωj u ε dx , u ε r - 1 |Ω j | Ωj u ε dx - σ ε 2 r j β j,r 1 |Ω j | Ωj u ε dx , u ε r - 1 |Ω j | Ωj u ε dx - σ ε 2 j Ωj u ε dx, 1 |Ω j | Ωj u ε dx -u ε j .
One has, using the geometric identity r β jr = |Ω j |I d which can be found in [START_REF] Buet | Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes Numerish Mathematik[END_REF][START_REF] Després | Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension[END_REF],

r j β j,r 1 |Ω j | Ωj u ε dx , u ε r - 1 |Ω j | Ωj u ε dx + j Ωj u ε dx , 1 |Ω j | Ωj u ε dx -u ε j = r j β j,r 1 |Ω j | Ωj u ε dx , u ε r -u ε j .
We thus get after simplification

E 3 ≤ - σ ε 2 r j β j,r u ε r - 1 |Ω j | Ωj u ε dx , u ε r - 1 |Ω j | Ωj u ε dx - σ ε 2 r j β j,r 1 |Ω j | Ωj u ε dx , u ε r -u ε j := S 1 := S 2 (134) 
We add and subtract at each average on the cell the nodal value. We recall the notation δ j,r (u ε ) = 1 |Ωj | Ωj u ε dx -u ε (x r ). We get for the term under the first sum in (134)

β j,r u ε r - 1 |Ω j | Ωj u ε dx , u ε r - 1 |Ω j | Ωj u ε dx
= β j,r u ε r -u ε (x r ) , u ε r -u ε (x r ) -β j,r u ε r -u ε (x r ) , δ j,r (u ε ) -β j,r δ j,r (u ε ) , u ε r -u ε (x r ) + β j,r δ j,r (u ε ) , δ j,r (u ε ) .

(135)

The first of these quantities is purely nodal: one has after summation j r

β j,r u ε r -u ε (x r ) , u ε r -u ε (x r ) = r B r u ε r -u ε (x r ) , u ε r -u ε (x r ) ≥ α r |V r ||u ε r -u ε (x r )| 2 (136) 
with the help of (70). The second and third term in the identity (135) can be bounded by a Young's inequality with a convenient constant C = C M α 2P so that all terms containing u ε r -u ε (x r ) are controlled by (136). So we obtain concerning S 1 defined in (134)

S 1 ≤ 1 + 2P C M α h 2 σ ε 2 r j |δ j,r (u ε )| 2 .
Using the first interpolation result stressed in proposition 3.3, one has in dimension two |δ j,r (u ε )| ≤ C A u ε (t) H 2 (Ωj ) . So, taking into account energy estimate (3) we have for the first term

T 0 S 1 dt ≤ C 2 A P 1 + 2P C M α h 2 V ε (0) 2 H 2 (Ω) .
We now consider the second term called S 2 in (134) 

S 2 = - σ ε 2
l jr n jr , u ε r -u ε j 2 dt+P C 2 A 1+ 2P C M α h 2 + h 2C M γε V ε (0) 2 H 2 (Ω) ,
which is the expected result after convenient redefinition of the constant in front of the last term.

End of the proof of the naive estimate of proposition (3.5). One gets 

E (T ) ≤ E (0) - 1 ε T 0 j,
E (T ) ≤ C 2 0 h 2 V ε (0) 2 H 2 (Ω) - 1 ε T 0 j,r
l j,r (n j,r , u ε j -u ε r ) 2 + γ ε T 0 j,r l j,r (n j,r , u ε j -u ε r ) 2 + C 1 (γ)

h ε √ C M V ε (0) 2 H 1 (Ω) + C 2 h εC M V ε (0) 2 H 3 (Ω) + γσ 2ε T 0 r j l jr n jr , u ε r -u ε j 2 dt + C 3 ( γ) h εC M V ε (0) 2 H 2 (Ω) .
. This estimate is fundamental, since it shows the competition between different kind of error terms and the dissipation of the fluxes. Choosing by example γ < 1 σ and γ < 1 2 , all terms like T 0 j,r l j,r (n j,r , u ε j -u ε r ) 2 vanish. All other terms can put together as E (T )

≤ ↓ C 2 h ε p 0 2 H 4 (Ω)
, where the constant ↓ C has , as in 1D, has at most a linear growth in time. It ends the proof of the naive estimate.

B Bihari's inequality and application

We recall a nonlinear generalization of the Gronwall-Bellman inequality known as Bihari's inequality 

) 138 
The proof is trivial by setting Z = a + t 0 b(s)g(y(s))ds and and verifying that Z ≤ bg(Z), see [START_REF] Bihari | A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations[END_REF]. In our work g(x) = √ x. Moreover a, b(s) 2 and y are square of L 2 (Ω) norms. More precisely in our convergence's proofs one ends to inequality of the type

Y 2 L 2 (Ω) (t) ≤ Y 2 L 2 (Ω) (0) + t 0 A 2 L 2 (Ω) + t 0 B L 2 (Ω) Y L 2 (Ω) ds. ( 139 
)
for Y , A and B functions of L 2 (Ω. Thus for all t ≤ T

Y 2 L 2 (Ω) (t) ≤ Y 2 L 2 (Ω) (0) + T 0 A 2 L 2 (Ω) + t 0 B L 2 (Ω) Y L 2 (Ω) ds, ( 140 
)
Using the Bihari's inequality (138) and the Cauchy-Schwarz inequality one obtain for all t ≤ T ,

Y 2 L 2 (Ω) (t) ≤ 1 2   2 Y 2 L 2 (Ω) (0) + A 2 L 2 ([0,T ]×Ω) + √ t t 0 B 2 L 2 ([0,T ]×Ω) ds   2 , ( 141 
)
and majorizing t by T in the right-hand side 

Y 2 L 2 (Ω) (t) ≤

Figure 1 :

 1 Figure 1: The AP (asymptotic diagram) diagram

Figure 2 :

 2 Figure 2: Definition of the diffusion asymptotic scheme DA ε h .

Figure 3 :

 3 Figure 3: The new AP diagram, where the previous branch is still displayed in dashed lines.

Figure 4 :

 4 Figure 4: Notation for node formulation. The corner length l jr and the corner normal n jr are defined in equation (56). The point x j is an arbitrary point inside the cell, typically the centroid of the cell or an averaged of the corners.

Figure 5 :

 5 Figure5: Definition of the control volume V r around vertex x r . The control volume around the vertex x r is defined by the closed loop that joins the center of the cells (x j 's) and the middle of the edges (x j+1 2 's).

  r , t) l jr n jr and c b r = ε σ|Vr| j l jr n jr ⊗ n jr (∇p(x j , t) -∇p(x r , t)) . The first interpolation of proposition 3.3 can be used to evaluate the difference of point values in c b r . It yields |c b r

1

 1 

Figure 6 :

 6 Figure6: The error is plotted in log scale versus the number of cells per direction for the test problem described in section 5. Each curve corresponds to a value of τ ∈ {0,1 4 , 1 2 , 1, 2}, plus a reference line for order one. One sees that the order of convergence is an increasing function of τ .

r j β j,r 1 2 l 1 |Ω j | Ωj u ε dx 2 dt

 1212 |Ω j | Ωj u ε dx , u ε r -u ε j .Using ( a ⊗ b c, d) = ( b, c)( a, d), one hasS 2 = -σ ε 2 r j l jr (x r -x j ), 1 |Ω j | Ωj u ε dx n jr , u ε r -u ε jUsing the Young's inequality ab ≤ γε 2 a jr (x r -x j ), Using one more time the energy estimate (3) the second term in the right hand side of the above inequality is bounded by P h2C M γε V ε (0) 2 L 2 (Ω) . Thus

Lemma B. 1 .

 1 If y(t) ≤ a + t 0 b(s)g(y(s))ds, (137) with a non negative constante, b(t) a positive function and g a positive non decreasing function then, noting by G(x) an antiderivative of 1/g(x), one has y(t) ≤ G -1 G(a) + t 0 b(s)ds . (

2 L 2 2 . 2 . 2 Y 2 L 2 ( 2 0 A L 2 (Ω) ≤ C and T 0 B 2 L 2 (

 2222222202022 (Ω) (0) + A 2 L 2 ([0,T ]×Ω) + √ T B L 2 ([0,T ]×Ω) If Y , A and B are functions of L 2 (Ω) satisfying (139) then Y L 2 ([0,T ]×Ω) ≤ T 2 Ω) (0) + A 2 L 2 ([0,T ]×Ω) + √ T B L 2 ([0,T ]×Ω) (144) If A L 2 (Ω) ≤ C et B 2 L 2 (Ω) ≤ C,with C constant then the right-hande side behaves as T 3 for large time. If A L 2 (Ω) ≤ C or T Ω) ≤ C, then the right-hand side behaves now as T for large time.

  [0,T ];H 2 (Ω))Using energy estimate (2) for the the second term of the rhs of the above inequality, (3) for the third term and (76) for the last term, one gets finally

		+ P C 2 A	h 2γε	+	σh 2ε 2	P C M		||u ε || 2 L 2 ([0,T ];H 2 (Ω)) +	σh 2ε 2	P C M	u ε r	2 L 2 ([0,T ]×Ω) .
				0	T	E 1 (t)dt ≤	γ ε	0	T	j,r	l j,r (n j,r , u ε j -u ε r ) 2	(131)
	+ T	P C 2 A h 2γε	+ P C 2 A	h 2γε	+	σh 2ε 2	P C M	ε 2 σ	+	σh 2ε 2

  are estimated in (129), (132) and (133). Using equation (71), one finds

r l j,r (n j,r , u ε j -u ε r ) 2 + T 0 E 1 (t)dt + T 0 E 2 (t)dt + T 0 E 3 (t)dt

where integrals