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Proof of uniform convergence for a cell-centered AP
discretization of the hyperbolic heat equation on general
meshes

Christophe Buet*, Bruno Després! Emmanuel Franck! Thomas Leroy®

July 9, 2015

Abstract

We prove the uniform AP convergence on unstructured meshes in 2D of a generalization,
see [7], of the Gosse-Toscani 1D scheme for the hyperbolic heat equation. This scheme is also
a nodal extension in 2D of the Jin-Levermore scheme described in [23] for the 1D case. In
2D, the proof is performed using a new diffusion scheme.

1 Introduction

We address the convergence analysis on unstructured meshes of diffusion asymptotic preserving
schemes for the discretization of a problem with a stiff parameter denoted as 0 < ¢ < 1. The
model problem considered in this work is the hyperbolic heat equation in the domain ¢ > 0 and
reQCR”

1
O + - div(u®) =0, p® €R,
P (1)

opu® + EVpE = —%uf, u® € R"
€ €
discretized with first order finite volume schemes. This problem is representative of many transport
problem such as transfer and neutron transport, for which the small parameter ¢ is the ratio of two
very different sound velocities and o is the absorption or the opacity. For simplicity both ¢ and
o > 0 are kept constant in space in this study. The system (1) can also be introduced as a specific
linearization of a pressure-velocity system of partial differential equations in the acoustic regime.
In this work we will need the following well known energy estimates concerning the solution V¢
of the Cauchy problem for the partial differential equation (1).

Proposition 1.1. If Q =R" or Q =T", then
IVEI ) < NTVEO)]|mP () (2)

and moreover -
§‘|u8|‘%2([O,T];HP(Q)) <[VE(0)[ 130 (2)- (3)
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We will consider well prepared data in the sense that: p®(¢ = 0) is independent of ¢ and is
sufficiently smooth; the initial velocity satisfies the equality in the second equation of (1) at leading

order. It writes .
p°(t =0) = pp and u®(0) = —;Vpo. (4)

For such well prepared data, it can be easily shown that the formal limit of P¢ for small ¢ is
0 1
P Op — ;Ap =0. (5)

Remark 1.2. We do not consider the regime o — 0, since it introduces a singularity both in the
initial data of the hyperbolic heat equation and in the limit parabolic equation.

1.1 Precision of AP discretizations

Before addressing the main difficulty of this work which is the discretization on unstructured
meshes, we briefly recall the now well known notion of an asymptotic preserving technique [21]-
[22] which is illustrated in the figure 1. For the simplicity of the presentation, we will consider
mainly semi-discrete numerical methods, this is why the time step does not show up in the graphic.
The parameter h designs a numerical method with characteristic length h < 1: that is we assume
a numerical method P for the discretization of P¢.

Definition 1.1 (Uniform AP). If P; is consistent with P* uniformly with respect to e, then we
say that the scheme Pf is uniformly AP (uniformly asymptotic preserving).

However the design of such methods and the numerical proof of this property is difficult. This
is why it has been proposed in [21] to rely on the simpler necessary condition, where the limit as
e — 0 of P¢ is called the limit diffusion scheme Py.

e—0
By pY
h—0 h—0
Pf o PO
e—0

Figure 1: The AP (asymptotic diagram) diagram

Definition 1.2 (AP). If P{ is consistent with the limit model P°, then we say that the scheme
Pf is AP (asymptotic preserving).

This property is simpler to analyze than the uniform AP. It explains why it has been very
fruitful in the past. In 1D, many AP schemes have been designed for some PDE and physical
problems: S. Jin, C. D. Levermore [23] or L. Gosse, G. Toscani [18] for the hyperbolic heat
equation, M. Lemou, L. Mieussens, N. Crouseilles [27]-[10]-[11] for some kinetic equations, L.
Gosse [19], C. Buet and co-workers [6] or S. Jin and C. D. Levermore [24] for Sy equations and
C. Berthon, R. Turpault [2]-[3]-[4] for generic systems and a non linear radiative transfer model.
Recently some asymptotic preserving schemes for linear systems and non linear radiative transfer
model have been designed in 2D [7]-[8]-[9]. Other application to non linear hyperbolic systems
of conservation laws with stiff diffusive relaxation is to be found is [30]. Relaxation systems



are treated in [15]. More general situation for transport and discrete velocity systems are in
[25, 26]. However for this type of schemes it is difficult to obtain convergence estimates due to the
competition between the two parameters € and h. To our knowledge this type of proof are only
given for uniform grids [7] (consistence and stability, Lax theorem), [18] (L' and BV estimates),
[28] (L? estimates). The goal of this work is to prove the uniform AP property on unstructured
grids.

To this end we adapt a strategy developed in [16] in a slightly different context. It relies on
the derivation of a priori estimates attached to the AP diagram in figure 1. To have a more global
perspective on this strategy, let us assume some natural abstract a priori estimates for a given
norm which is in our work based on || f|| = || fl|z2(j0,71x0) or [|f|| = | flle([0,7];2(c2)) Where T > 0
is a given final time, Q = R, in 1D or Q = [0, 1] with periodic boundary conditions in 2D. We
assume five constants a, b, ¢,d, e > 0 and four additional constants |C,C~,C,C, > 0 > 0 such
that the error attached to the branches of the AP diagram can be bounded like

1P = P lnaive < ,Ce™"R, (6)
177 — PRIl < Ce". (7)
1Py — POl < Cyhe, (8)
|P¥ — P < Cee®, (9)

The first inequality is the naive error bound which typically blows up for small . The second
inequality for || P — P|| is assumed to have a form similar to the last one which expresses that
PO is the limit of P%. The third inequality corresponds to the usual AP property.

Proposition 1.3. Assume that all these inequalities are at hand and that d > ¢ and e > a. Then
the uniform AP holds with a rate at least O (haﬂTb)

Proof. The triangular inequality writes
”Pii - PEH < min (”Pif _PE”naiveu ||Pi§ - P}?H + ”Pi? - POH + ”PE _POH)
which yields, using min(z,y 4+ z) < min(z,y) + min(x, z), d > ¢ and e > q,
|1Pf — P°|| < C (min (e7°A¢, &) + h* +min (7"h% &%) < C (2min (e °h%, %) + 1) (10)

with C' = max ((C,C~,C\,C.). We define a threshold value e¢presn by Eajl;eshhc = €% osn SO
either ¢ < €¢hresn SO that

ac

. —brc _a a _ ha
min (s he e ) < ethresh = hat?,

Or € > &¢nresh and the same bound is obtained by taking the other term as the minimum. And
since d > ¢, one gets the abstract bound ||P; — P¢|| < 3Cha+ which ends the proof. O

1.2 Organization of the proof

The structure of these inequalities explains our strategy: that is we prove separately each of these
inequalities (9-7) with care, so that the inequalities d > ¢ and e > a are true. This part of the
proof relies on specific hyperbolic and parabolic numerical methods. Even if it is technical, the
first three inequalities (9-8) do not yield additional difficulties with respect to the state of the art.
The proof of inequality (7) is provided in 1D, and can be probably be generalized straightforwardly
on cartesian meshes in 2D and 3D. On the other hand our researches on proving (7) for || P — P
show a fundamental obstruction in dimension greater than one on unstructured meshes which
was not expected initially. Since the main difficulty is related to PP, it motivates the definition
of a new diffusion scheme. To this end we remark that another diffusion scheme is naturally
defined from Pf by killing the derivative 0;v;, in the discrete version of the second equation of (1).
Killing at the continuous level the d;v is absolutely equivalent to taking the formal limit ¢ — 0.



But at the discrete level, it appears that it generates a new family of diffusion schemes, where
both parameters h and € are present. We call them Diffusion Asymptotic schemes, DAj. By
construction P}? = lim._,g DAj. This is summarized in figure 2. Finally since the scheme DAj is
still an accurate discretization of P°, our proof of the uniform AP property is based on the new
AP diagram displayed in figure 3.

_ Oy =0 e—0 0
P); DA% Ph

Figure 2: Definition of the diffusion asymptotic scheme DAj .

Our main theorem 3.16 in dimension 2 is based on this structure and it may be stated as follows:
The so-called JL-(b) scheme defined in [7] for the discretization of the hyperbolic heat
equation (1) (the scheme is cell-centered with nodal based fluxes) is uniformly AP
on unstructured meshes, with a rate of convergence at least O(hi) for sufficiently
smooth initial data. This is an improvement with respect to [7] where only AP was proven.
To our knowledge this is the first time that such a result is obtained on general unstructured

multidimensional meshes. More precisely the convergence estimate can be written as

error < C'min (\/ﬁ , £max (1, ﬁ)—l—h—i—a)
€

where the first argument in the min function comes from the hyperbolic analysis and the second
argument comes from the parabolic analysis. Some natural regularity assumptions are nevertheless
imposed on the mesh in the hypothesis 2.1, this is not very restrictive. For example meshes with
angles greater than 90 degrees are allowed. If the mesh is made with triangles, the hypothesis
is fulfilled if all angles are greater than 12 degrees, see [7]. It is interesting to notice that the
rate of uniform convergence is O(h%) in dimension one. The difference essentially comes from the
estimate of the reconstruction of the initial velocity which is needed to rewrite a diffusion scheme
as a non homogeneous hyperbolic scheme: it is much simpler in dimension one (see equation (23))
than in dimension two (see proposition (3.13)). In this work we considered mainly semi-discrete
numerical schemes, since it simplifies a lot the notations and allow to focus on the main difficulties,
but the final estimates of convergence can be generalized to fully discrete schemes, using the a
priori estimates developed in [12]. For explicit schemes, these estimates add a term proportional
to the square root of the maximal time step allowed by the CFL condition. Since our problem
is an hyperbolic+relaxation problem, with a limit which is parabolic, this additional term can be
computed and is of the order between h (for purely hyperbolic) to h? (for purely parabolic). We
refer to [7] for the detail of CFL condition in 1D and 2D. Concerning the implicit fully discrete
version of the semi-discrete scheme which is unconditionally stable and well adapted to the test
problem analyzed at the end of this work, the same kind of error terms can be analyzed. We will
obtained the following result in dimension two.

Theorem 1.1. With some usual regularity assumptions on the mesh, the error between our cell-
centered finite volume corner-based-flux implicit discretization P}, and the ezact solution is

IVilta) = VE(ta)l 2y < © (hF + A6 ) Ipollirscey,  ta =nAE< T,

The constant is independent of h, € and At and behaves less than T3 for large T'.

The proof is an easy add-on on the space estimate O(hi) of theorem 3.16, by means of an
abstract method [12] which gives a general bound O(Atz) of the difference between the semi-
discrete scheme and the implicit Euler scheme. This will be explained at the end of this work.
The rate of convergence is confirmed by the numerical results of section 5, which show an even
better rate of convergence.



atvh =0 e—0 0
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Figure 3: The new AP diagram, where the previous branch is still displayed in dashed lines.

We think that some of our results can have an interest for the development and use of such
methods in research or industrial codes with complex non linear physics on unstructured meshes.
Indeed for such codes cell-centered Finite Volume schemes are a natural solution in terms of data
structure. The point is the following: the scheme studied in this work is the only cell-centered one
we know in 2D to compute the solutions of problems which admit diffusion limits in certain regimes
and for which it is possible to prove the AP property. Since the structure of this cell-centered
scheme is nodal based, it strongly questions the ability of standard Finite Volume methods with
edge-based fluxes to recover asymptotic diffusion regimes. As demonstrated in this work, nodal
based Finite Volume techniques do not suffer from this drawback. For linear wave equation the
nodal scheme can be understand as some 1D Riemann problem written in some direction around
each node, so can be interpreted as an approximation of the 2D Riemann problem [17].

1.3 Organization of the work

This work is organized as follows. Section 2 is dedicated to the discretization of the model problem
in dimension one on irregular grids. The convergence is proved in theorem 2.10 with order h3
in the L? space-time norm. In the next section, the nodal solvers for the hyperbolic equation
are defined, and the various a priori estimates proved. The main theorem of uniform AP for the
JL-(b) scheme with a rate O(h7) is proved at the end of the section. Section 5 provides numerical
results that sustain the fact that the convergence order depends on the relative value of € and h,
and so is mixed hyperbolic/parabolic. Our final remarks will be gathered in a conclusion. All our
results and numerical methods in 2D can be generalized in 3D provided a convenient definition of
the nodal corner vector is used as in [13].

2 Analysis in 1D

The model problem in dimension one writes

{ Op® + la$u6 =0,

e .
P . 8tu6+ga;pp6:_%u6'

(11)

As stressed already in (4), we consider well-prepared data p®(t = 0) = po and ug = —£0,po. The
equations (11) admit the formal diffusion limit when ¢ tends to 0:

1
PY . Oyp — —0Opap = 0. (12)
o

A useful variable will be the scaled gradient

1
— _Lo,p. 13
v=——0p (13)



2.1 Notations

We denote x;,1/2 the nodes, the cells j are the intervals [z;_; /o, 2;41/2], thus Az; = x;14/5 —
Tj_1/2, j is the center of the cell j that is z; = %(xj+1/2 +xj_1/0), and Axj 0 =251 — x5 =
%(ij+1 + Az;). Natural assumptions on the mesh are summarized below:

Hypothesis 2.1 (Regularity of the mesh in 1D and constant Caq). We consider that there exists
a universal constant 0 < Caq < 1 independent of the mesh size h = sup;¢, Ax; which controls the
mesh from below

Cmh <Az; <h VjeZ. (14)

The semi-discrete JL(b) scheme, derived in [7] in 2D, can also be written in 1D on irregular

meshes as .

d uf 1 — U 1
71)? + M — 0’
P;f . dt R Eija . R (15)
Ao Pty TPy o Mg Ty
dt eAx; g2 2 ’
with the fluxes pj 41 and uj L1 are the solutions of the well-posed linear system
2 2
5 € Oij =2 _
. Piry Ty T 5 ey ST
JEL: A (16)
[FAVFER]
“Piay Uyt T Wy = it

This scheme is the same as the Gosse-Toscani scheme'. Other equivalent forms of P can be

obtained by various manipulations, as in (29). We use another formulation of the Gosse-Toscani
obtained using the Jin-Levemore scheme [23] and a discretization of the source term which uses
the fluxes. Contrary to the Gosse-Toscani scheme which uses Riemann problem, this formulation
based an elementary algebraic computation is easier to write in 2D on unstructured meshes (the
design is detailed in [7]). The natural pointwise initialization is chosen

5 ,
p;(0) = po(z;) and uj(0) = - .o (z5) for all j € Z. (17)

1A long and tedious computation shows that the scheme is strictly equivalent to the Gosse-Toscani’s scheme,
described in [18] but only for uniform meshes, which writes in terms of w®,v® = p® £ u®

dw; ]V[jfl wE — ws_ 1 ij,; o
- z 9 97l (1—M, 1) —ws)=M, 1 2 7y — wh),
dt € ij a‘ij J72 J J ) Al‘j 2e2° 7 J
— = (1= M 1 )(wf —f) = M1 5o (Wi —v5)
dt € Az, eAzx; 2 2 Az; 2
: _ 2¢ _ Az t+Azia i
with Mj+% = 0A1j+l+26and A:Ej+% = —1——. By writing
2
£ — anE) — . _ . — €
Mj*%(wajfl “;j) = Migwon = My g+ (M 3 Mjf%zwj
My 3 Wiy —v5) = M avjy — My gvf = (M4 — M;_ 105
then in terms of p an u® we have evidently
£ — €
a1ty Ty
dt € Aac]- ’
M - M €
duf 1 J+%p3+% ]7%pj—% 1 ij+% o Az]_Q 2 D MJ+% M;_1 .
_J 4z S ) = 1 = 3 3
dt € Az; 2 It Az e? 773 Azy g2 ) eAx; 7
PE+pS u€ —us uStus,,  ps— PS5y,
with the fluxes given by p° =4 i+l I+ and u, J J J T
& VPl 7 T2 it+3 2 2



When ¢ tends to 0, the scheme P admits the diffusion limit scheme Py

d 1(pj+1 =P Pj—Pj-1
PO . A . — — J J J =0 18
h T o( Azt Ar; 1 (18)
2 2
with the pointwise initialization
pj(O) = p0($j) for all] e 7. (19)

Other quantities are the reconstructed gradient

o lpm-p
/U]_;'_% +’Uj—%
VT

We denote by V(t,z) = (p°(z,t),u®(x,t)) the solution of the hyperbolic heat equations P¢. We
reconstruct similar quantities from the diffusion scheme: it yields We(¢,z) = (p(x,t),ev(z,t))
which is the solution of the diffusion limit (12)-(13). The indicatrix function of the interval
(7j-1/2,%;41/2) is denoted as 1;(x) = 1 if 2 € (x;_1/2,7;41/2) and 1;(z) = 0 in the other case.

With this notation we note V5 (¢,z) = (ZjeZ P5(1)1(2), 32 ez u5 ()15 (x)) the solution of the

JL-(b) scheme P;. Finally we note W5 (¢,z) = (Zjezpj(t)lj ()€ 5e20) (t)lj(x)) the solution
of the diffusion scheme P} (18)-(20).

For simplicity we choose a final time T" > 0. All error estimates will be given for t < T', either
in the norm || f(#)|| Lo (j0,7];L2(r)), OF mostly in the norm || f||L2([0,7]xR)-

Hypothesis 2.2 (Regularity of the initial data and constant C4). We consider that there exists
a universal constant C 4 > 0 which controls all kind of approzimations/interpolations/projections
on the mesh of exact functions. We will write for example the error estimates at the initial time
under the form

V5(0) — VE(O)HLZ(]R) < Cahllpollm2(w) (21)

and

[W3.(0) = W) L2y < Cahllpollz2w)- (22)

The second inequality in the hypothesis can be related to the sharper inequality
\ > (u5(0) —ev,(0)) 1,

j L2(R)
The other technical constants used to bound the errors of the left, top, right and bottom branches
of the AP diagram 1 will be denoted as |C, C7, C| and C.

< Cahellpol| 2 (m) - (23)

2.2 Study of ||P° — P

In this section we prove a natural error estimate [16] between the solution of the hyperbolic heat
equations (11) and the solution of the diffusion limit equation (12).

Lemma 2.3. One has the estimate

T3
[V — WE||L2(j0,11xr) < Coe €llpoll s (m) O =—5- (24)

Proof. We redefine v = —£9,p with p the diffusion solution of (12) and introduce R® such that

g
the solution of the diffusion equation satisfies

{ Op+ 10,0 =0,

O+ Z0:p+ Zv=R° (25)



where R® = 0;v = —£0i,p =
Denoting e =p —p°, f€=w

— 22 0222p. Note that [[R*(¢)[|2r) < [R7(0)][z2®) < 2= lpoll e w)-
— uf, we make the difference between the systems (11) et (25)

{

Since data are well-prepared, one has e(0) = f¢(0) = 0. Consider ||V® — W5||2L2(R) = ||es||%2(R) +
Hf5||%2(]R). Adding the first equation of (26) multiplied by e® and the second multiplied by f¢
and integrating on R, we find out that: 4|Ve — W5||2L2(R) < g B fedz < ||Re|| 2wl VE —
WE| Lo ([0,1);22(r)) by integration between 0 and T. Finally

e + 10,5 =0,

atfa + %89368 + é%fs (26)

= R°.

W¢||z2(r). One gets a bound of [V —

(Ve — WEHL?([O,T]XR) < \/TH\f6 — WEHLOO([O,T];LQ(]R)) which ends the proof. O
2.3 Stability estimates for P; and P
The estimates (27-28) and (31) characterize the dissipation rate of both schemes.
Proposition 2.4. The scheme P; is stable in L? norm. Moreover,
\/ / (o Ay (5, )2) dt < ZIVEO) e (21)
and
T
|~ 5, — ) | < VAV O e (25)

JEL JEZ

Remark 2.5. The strategy of the proof of many estimates in this work consists in analyzing

the balance between the dissipation of the fluzes and the physical dissipation (all source terms like
%u) on the one hand, and some truncation errors on the other hand. This is why it is convenient

to reformulate Py so that the pressure fluzes pS i+l and p _y are eliminated in the second equation

of (15). This elimination is technically convenient since all dissipation terms are expressed using
the same variable, namely w. It will simplify a lot the comparisons between all kinds of dissipation
terms and other errors terms.

Proof. According to the above remark we obtain the formulation (29) which is equivalent to P¢

us, 1 —ut

d j+i j—1
Az, Lps g ItE 073 g
i gl € ’
ut , +ut )
+7 —_=
Ao = ===+ 2y =0, (29)
UAI]J'_% € £ €
24— | %y TP TP T T U

Consider now the discrete quadratic energy E(t) = 3 3 Az;((p5)% + (u5)?). Multiplying the first
equation of (29) by p; and the second equation by uj and adding on all the cells, one finds

E'(t) =

> ”2

JEZ

5 =X, (05

Since 2:].(U§Jr 1

],,
rearranging the terms

uE,

+Z ]+2 J

JEZL

Z

€Z

J %pj_i_z 2

JEZ J
—P§41), one has by using the third equation of (29) and
— E)2 (e, 1)+ (uf
g J+3
jez

to\»—-

—0. (30



Integrating (30) between 0 and t, one finds F(t) < E(0), that is the L? stability of Pf. The
estimate (27) comes from Awz; 1 = 1(Az; + Azji1). The estimate (28) is directly deduced from
(30). O

Some similar bounds hold for the quantities related to the diffusion scheme (18). First, mul-
tiplying the diffusion scheme by p; and adding on all the cells, one has the L? stability in the

sense ( )2
1d o 1 Pj+1 — Dj

D D Dy vy
J J Jts

Thus the following estimate holds for the function v, = (vj +1 ) ~defined by (20)
j

T
_ (o)
om0z i) = /0 S Ay (0430 <4/ SIPOll 2y, € >0, (31)
J

2.4 Study of ||P; — P?||naive
In this section we prove the convergence of P; to P°. We still denote V() = (p°, u®).

Lemma 2.6. There exists a constant |C > 0 independent of h,e,Cpaq, with at most a linear
growth in time, such that the following estimate holds

.C [n
V5, — V5HL2([0,T]><JR) < m\/z HpoHHQ(R) . (32)

Proof. We use the method introduced by C. Mazeran [29] in his PhD thesis. It starts with an
estimate for the time derivative of & = 1||V5 — V¢||2, (r)- For the sake of simplicity, ¢ stands

indifferently for %q or 0yq for any quantity g. One has

810 = 5 [0 + 2 do+ 5 [ (0FF + (@Y do

D1 D2
+ / (— @)D — () ) + / (~p5, (%) — () de
R R
D3 D4

We will successively estimate each of those terms, the fundamental idea being that Dy < 0 and
D5y < 0 are used to control spurious contributions in D3 and Dy4. First D; corresponds to the
entropy production of the scheme. Thanks to (30), one has

JEZ JEZ JEZ

One also directly obtains

For Dy, one gets directly

€ —
b = Lyt
4 = p;
- 9 X . . 1
JEZL JEL JEL i3




In this method the third term D3 is more complicated to study

uS, g —us_y 1 ZTipl P — P51 1 Tiyd
DS:Z J+3 = J—3 (AI/ 2pE(SL’)d$>+Z J+3 = J—3 (Ax/ QUE(.’E)CZ.’E)
JEL T4 JEL ITi-4
1 +U€_l 1 Tl
—l—ZA ]+2 5 2 (Ax/ ’ 2u8(x)dx>.
JEZ I

It is decomposed in several pieces. We add and subtract in each fluxes the value of the unknowns
in the cell. We also add and subtract to the two first integrals the value of the unknowns on the

edge. Denoting by (5;-‘L (9) = A%L, I“2 g(x)dx — g(a:ji%), one gets after rearrangements

ut 1—u5- us
1 i s
D=y b+ S
JEZ JEZ

P —ps ps—ps .
Z Jj+s5 J Z J JI—5 —

jEz JET

u (1) < ZPE(%‘JF%) —Pa(xj—%) .
€

’U,E(x‘_i_l)_
_Z JT3 . 2 p] uj
JEZ JEZ
47_"_,“5._; 1 Tl
+San 5t (G [ o)
JEz ARG RE)

Using the fluxes’ definition (16), one can eliminate the pressure fluxes. With a Young’s inequality
ab < aa® + ibQ where a > 0, one gets

Piry ~ P 1
DT () = D (uf — i )6 () — oy > Ajus 4 6F (o)
JEL JEL JEL
(uj_,’_% _u§)2 1 o + 2 o 2 c 2
SCVZ*E + rﬂa"‘@ Zz(sj (’LL) +8EQZZA$J<UJ+é)
VIS VIS

JEZ
Using this expression in D3 and using again Young’s inequality, one gets for arbitrary a > 0
5)2

l)3<<(1§£: +a 2{:

JEL JEZ

(26 s o)

JEL
2 € 2 €
1 ( j_l) +(’U/j+ j+1 +u]_l ( 1 i3
+)  —olAx} . -+ ) Az —2 2 / u®(x da:)
Z 8 € Z J52 2 Az; ), (z)
JEZ JEZ i-%
€

10



We now sum all bounds contributing to &”(t) and we get:

(us s —us)? + (us_, —us)?
g/(t) S (71+a)z J+3 J J—3 J
JEZ €
55 (p°)? + 05 (p°)?
+/ )2 — ()2 j j
+JZ€;(<2016 )((5J(u) +6; (u%)?) + ea )
1 (U§,%)2 + (U;+%)2
+Z§O’AJ)§ -
JEZ

(Uj %)Q‘F(UE 1)?

+ ut T 1 3
J+1 i-3 1 it3 o \j— i+
—I—ZA 2 2 (ij/m 1 u%x)da:) —ZAJZ]'% 5—: 2

JEZ i~ % jGZ
1 Ti+d e ( it
JrZA:r] 5 U5 N ZAx] A (u®)*(x)dx ).
i Sy x; )
JEZ Ti-1 JEZ -1

We now examine the sum of all terms in the two last lines of the RHS of the above inequality |,
which we denote S. One finds

2 2
. o R 1 ity . A 1 g
S = —ZAJ,‘] 5.2 -1~ E/ u(z)de | + Uit T AL u®(x)dx
i€z 7Ty 77%-4
o i+l
+2522</ u%x)dm) (u;—uj_i_%-i-u;—u;_é)
jez -1
2522(/ dm)(u —uj+1-|-u —u;_ ;).
jez NT_1

2 € € 2
o? Tird “ —’LL]+ 1) +(uj_“j_1)
J

JEZ

and & = 1, and coming back to &”(t) we get

&) < Z < (i + 2;) (6 () + 05 (u°)?) + é (67 (r°)* + 5j(p5)2)> (33)

2 £ 2 2
1 2(u§_l) + (uj+l) 2 ]+2
+ E gO’ALUJ 2 - 2 “!‘4763 /x E( )da: . (34)

JEZ JEZ Ji=

1
2

To estimate the contrlbutlons on the ﬁrst line we use the following fact: for any quantity ¢, one
can use q( 1 )+ f s)ds and integrate this expression in the cell Axz;; we get

>jez (5]i( )2 g th||H1 R)" Therefore the first terms on the right hand side of (33) can be estimated

o €
( 252)/ Z (0 (u 65 (u%)?) dt < 2h( % 2> 0113 2 (0,19: 51 ) -

JEZL

Since Hu5||%2([07t]:H1(R)) < t|ve (0)||2 (®) and also 5 |lu ||L2 (o m Ry = 1VE(O HH1 by (2) and
(3), one gets that

( )/ U] 7 (u)?) dt < 2h (t+§) V()3 e- (35)

JEZ

11



A similar and simpler formula for the next terms is

ht, . ht, .
/ S0 0707 + 57 (%)) < 2 1 By < 22 IVEO) - (36)

JEZ

Next, using the assumption (2.1) on the mesh and the estimate (27), one controls the next term

by
T € 2 £ 2
1 o (W—3)" + (W) h < ()12
/ S gond - < 2o VO aqe) (37

Finally the last term in (34) can be bounded as

2
J+
4532</ Tut( dw) ,43h||u 122 8)

JEZ -3

so that

2
i+i
=/ Z(/ M@de) < bl e € EHV Ol 39

JEZ

by means of the energy 1dent1ty. We note that

IVEO)lzzrr) < (1 +/0)Ipoll o+ ) < (1+1/0)lIpollr+r @) Vp € N. (39)

So using (35-38) we obtain for all time ¢t < T

1 1
s <60+ (L4 g+t +—4C + 1) IV O B
1 2
g(1+1/a)(CAh+ + - +F+ )h|p0|H2(R)

where the initialization stage is estimated using (21). One obtains after integration

V5, — Vel 20,11 xR) < \F(\/1+1/0 X \/ 2 )\/>||V Ol &5 (ry-

The constant in parentheses is vT1/1 + 1/0\/Cih€CM +2TCpm + 5CMm + 5+ FCMm/VCM <

LC .
Joo with
1 1
¢C:\/f\/1+1/0>< \/Ci+2T+2+4+Z.
The proof is ended. O

2.5 Study of |P) — P
We first recall a fundamental error estimate [14] for the diffusion limit scheme (18-19).

Lemma 2.7. There exists a constant C| > 0 independent of h,e,Cnq, with a linear growth in
time, such that the following estimate holds

Cy
W35 — Wel L2011 xr) < —==nhlpoll g2 (®)- (40)
h ([0;T]xR) N (R)

12



Proof. We use a method that one can find in Eymard-Gallouet-Herbin [14]. It is based on a notion
of consistency for finite volumes schemes. We set

0up(w1 ) — Oup(w; 1) p(zj+1) — p(z))

Nl

S5 = ’E’Ep(x]) - and rj+% = afp(xj+%) -

ij A.’L'j_,’_% ’
so that one has the identity
gp(x_) U (plein) —p(xy) - plag) —plzia) _ s IS T
dt"" 7 oAz Az s Az;_y o oAz;
We next introduce the difference e; = p(z;) — p; which satisfies
do 1 (ewmize eimeim s T~y
dt 7 oAz, Az Az; 1 o oAz

with e;(0) = 0 for all j. By multiplying this equation by e; and denoting by ||ex ||2L2(R) =>_; Az ef,
one finds that

€+1
el + Z e ZA%%Bﬁ ZH ¢~ eji).

The Cauchy-Schwarz inequality yields
(g1 —e)? | 1 )
er+%(€j _€j+1) < EZTFF; + izij+%Tj+é‘
J 2

One finds out with natural notations

1d 1 3 (ej+1 —¢5)°

1 2
5 dtH%HH(R) + 5= 2% Ax]ur% < ;||3h||L2(R)H€hHL2(R) + %HThHLQ(]R)' (41)

Using the definitions of the truncation error sj, one easily obtains by using classical arguments
llsull 2o, 1y xr) < \@hHaxmpHm([o,T]xR)i since p satisfies the diffusion equation (12), one gets

02zl L2 (j0,11xR) < /0 /2[|0zzpol|L2(r); one gets |[shlL2(jo,rxr) < VOI|OzzpollL2(®). The same
manipulations on the second truncation error rj yield

Isnllz2o,11xr) + 178l 20,11 xR) < VOhpoll 2 (R)- (42)
One gets the bound from (41)

b1 1
lenllZ2 ) () < enll72 () (0) +/0 ;||8h\|L2(R)H€h||L2(R) + %HT}IH%‘Z([O,T]XR)'

The use of the lemma (B.2), which is a corrolary of the Bihari’s inequality, gives us:

2
1 1
||€h||L2 ([0,T]x2) = T ( \/||€h||L2 Q)( )+ ;||7"h\|%2([0,T]xQ) + U\FT||Sh|L2([07T1XQ)> - (43)

The initial value is bounded using (22) and taking into account (42) we obtain

lenllz2(o,rx0) < (%/CA +—=+y ) hllpoll = B hllpo]- (44)

13



We also deduce from (41)

(ej+1—¢5)° 2
/Z jgz_ 2 < (Isnll2or1xm) + Il L2o.11xm) ™ + lenllZ2 o,y xm)
0 5 +
< (o4 B?) B?(|poll 32 gy

The other term that we must bound in (40) is fj, = € (v(z;) — v;) L;(z) = —¢ (é)'”pT(:”j) + Uj) 1(x)
with v; defined in (20). It yields

pg+1 p] Pj p] 1

- 8351)(1']) +

| frll L2 (0;myxR) = / ZA

2
One gets from the triangular inequality

2\ T 2
p Pj
/ E Az;ia ( X‘; J _ 8xp($j)> < / g Az <3xp(1'j+§) — 8$p(zj)>
+ 0 j

1
+ [0+ B?]® hllpoll m2®y + Irall L2 o, xR)-

where the definition of e; yields pf“}% —Oup(zj) = (amp(xj+%) - axp(xj)) + (W) —Tjg1

1
Since (fOT Az (azp(xj+%) - 8mp(xj))2) t < hy/5lpoll s (m) and the estimate (42) holds,
one gets

/ ZAx]+ (pjg;ﬁin] —(9xp(xj)>2 < ([0+BQ]5 \/E‘F \/E> hllpollrrz2(r).  (46)

Taking into account that the weight Axz; (45) is different from the weight Az; 1 in (46), one gets

S 1 g 1 1 o
2(10: < B?]? — 2 < B?|* — 2
il < = o+ B+ /5 497 ) lmliy < 2= (1o + 87 [+ V&) Hlpnllece
(47)

Wel L2 oiryxr) = llenllZzqoiryury + IallTz o)y i

since ¢ < 1. Finally, the difference |W$ —
bounded using (44) and (47)

W5, — We[| L2011 xr) <

Cy
VCOm
and the constant C| with the definition of B by (44), has, at most, a linear growth in time. It
ends the proof. O

2.6 Study of ||P; — P?||

In this section we prove an error estimate between the solution of the scheme (29) and the solution

of the diffusion scheme (18). It is necessary to use some comparison estimates between the initial
data of P and PP.

Lemma 2.8. There exists a constant C~ > 0 independent of h,e, Caq and growth as T3 for large
T such that the following estimate holds

—

C
V5, = Willz2(o,1)xr) < EEHPOHH?(R)- (48)

14



Proof. For practical reasons we use the formulation (29) of the hyperbolic scheme which is equiv-
alent to (15-16) and we reformulate the diffusion scheme (18-20) as

d its ~ %3
Al’j%pj + % = 0,
d Uiyl +uj_1 2
ijauj _J*z  J73 - Ch- + g’U,j = ALUjRj7
Pj = Pj+1 T Uy + e = 2uypn H oAz =+ Az 1S
D+ Dy
Yits o A$J+;
+1 +uj_l
uj = f’

where the error terms are R; and S, +1 A simple computation using the last two identities in
(49) yields

1
R = —uy and5j+;27(Uj+uj+1—2uj+%>.

One has from the triangular inequality applied to u; = il Rl |

T
0 jez

dt"

:\/7 / %Axﬁl

Since the scheme is invariant with respect to the time variable, one can apply (31) to the derivative

with respect to time. It yields
2
[o
< —
V2

T

| Saa.,
0 jez

where the last inequality is from the well preparedness of the initial data, as detailed in proposition

2.9. So one has the bound

L2([0,T]xR)

/ ZAl‘ ‘t3+2

JEZ

73+

d
g it

d
Lon
7" (0) L

1
< -
oS \/%Hpolle(R)

€
R < — . 50
(1Rl L2(0,7)xR) < \/meOHHWR) (50)
Using the definitions of u; (49), SjJr% can be written in terms of %pj and %pj+1
el Az; d Aziiq d
S. _ j % I+
]+% <ALL‘ +1 dtp Az +1 dtpj+1
Using the technical proposition 2.9, one finds out that S = (SjJr%)jEz satisfies
ISleaorren < oo |57 < L ool 61)
- L2([0,T] xR) UC
We now introduce the differences
ej =pj — D5, fj:uj—uzandfﬁ%:uj+%—u§+%. (52)

15



Let us look at the difference between the scheme (29) and (49). We get

fip1—f_1
ij%ej_i_% =0,
fioi+f._1
d +370-3
Azjgfy — =22+ 2f; = Ax;R;,

Fiv
e — e+ fit fir1 = 2fj4 — 0Bz = Ay S

hol—

We use the notation |V§ — WiH%g(R) = >, Azj(e3 + f7). Using the same kind of proof than for
the L? stability of proposition 2.4, one gets that

fivs o

2 J+ 2

2dt” Vi, = Willz2m) < E AzjRif; — E Az =~ St T 2 > Az ff
J J

JEL

Using a Young’s inequality on the second term of the right side of this inequality, one finds out
that

1d
2 dt

1
IV = Will3ae) < > AR, f; + g > AwSh. (53)
J J
Using the Cauchy-Schwarz inequality, we have
d € €112 £ € 1 2
i IVh = WillLa@) < Bl 2y Vi = Willzzw) + o 151z
Integrating in time on [0, ¢]
IVEO-Wi Ol < ([ IV~ WaOlets) 1Rl + g5 110 m1cm) + IVO) ~ Wi ) -

Another use of the Bihari’s inequality, lemma (B.2), yields

2

T
1
Vi =Wl L2 (o, 1xm) < T 2\/|VE = Wi (0)1Z2r) + /0 HS||L2 (o.11x8) T VT IRIZ2 0,11 xx)

Finally, using the previous estimates on R, S, the well-preparedness of the data (23) one gets

2

1
V5, = Wil 72 (0,77 xm) < 57 (2\/(0Ah5)2 gy 302 ‘*‘\F ) 1ol 2 r)

The proof is ended. O

Proposition 2.9 (Technical result). The bound \/Z] Azj(Lp)2(t) < o Y|pollpem) holds at
any time.

Proof. By linearity of the diffusion scheme, z, = %ph is solution of PY:

d 1(zj41— 2 P — Zj—
Azrjdtzj_<zj+1 5 _Z] 1>:07

o AJ;jJr% Ax] 1
with initial condition
d L (po(zj+1) —po(x;)  po(x;) — po(wj—1)
(0 — . 54
240) = Spmley) = ( o - (54)
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One gets from a Taylor expansion with integral residue that

po(Tj+1) — po(x))
Ax

— Ozpo(z;)

Tj+1
< / 19uapo(y)] dy.
xr

it3 J

po(z;j)—po(zj—1)
7A;z. 1 : xpO xJ
it

A;ja f;jfll |0z2p0(y)| dy from which the bound /37, Az;23(0) < o~ ||pol| a2 (r) is deduced. Since

the scheme P} is stable in L?, this bound is true at any time. Considering (54) the discrete second
derivative attached to P,? is bounded at any time, which ends the proof of the claim. O

Similarly one has the bound < f 1022p0(y)| dy. Therefore |2;(0)| <

2.7 End of the proof of uniform AP property

Theorem 2.10. Assuming a sufficiently smooth well prepared initial data, the scheme P5 con-
verges to P° at order at least & in L*([0,T] x R), uniformly with respect to e

Proof. All the previous estimates show that (9-8) are true witha=1,b=c= % and d = 1. More
specifically, estimates (32), (48), (40) and (24) shows that

. h
HVE _ ViHLz([O,T]XR) § C min <\/:, h + 2€> ||p0||H3(]R)

where

N
C—max[ & ¢ o }

VG Cn’ VT’

and behaves less than T2 for large T. Using the general method described at the beginning of
this work in proposition 1.3, one obtains the convergence estimate ||V, — V|| 120, 71xr) < C(T')h4

with the order of convergence ¢ = %< = 1

a+b — 3°

O

3 The 2D case

In this section we prove the uniform convergence of the solution of the diffusion AP scheme
introduced in [7] to the solution of the hyperbolic heat equation. The structure of our proof is
globally the same as in the previous section. However two major difficulties will be treated: a)
the first one consists in the adaptation to our problem of a combination of specific finite volumes
techniques for hyperbolic and parabolic equations; b) the second one is to derive new bounds for
the scheme DAS,.

The model problem is the hyperbolic heat equation in the domain € =|0,1[?> with periodic
boundary conditions and well-prepared data

1
0" + - div(u®) =0,

1 o
atus + prE = —?us,
e e

p°(t =0) = po, u®(t = 0) = u = —=Vpo.

When ¢ tends to zero, this problem admits the following diffusion limit
1
PO Op — — div(Vp) =0, p(t =0) = po.
o

The rescaled gradient is v = —pr We will admit the following proposition, the proof of which
can be easily obtained by a method similar to the one of proposition 2.3.

17



Proposition 3.1. The error between the two solutions can be upper bounded by

T
1 = pllzoeto,rysm () + IVllzoe 0,73 m (2)) < —zellpollmstny,  n €N (55)

Proof. The structure of the proof in the L>([0,T]; L?(£2)) norm is the same as the one of propo-
sition 2.3. Since the coefficients of the problem are constant, similar bounds are obtained at any
order of derivation which proves the estimate for any n > 0. O

3.1 Definition of Pj

Let us consider an unstructured mesh in dimension 2. The mesh is defined by a finite number
of vertices x, and cells ;. We denote x; a point chosen arbitrarily inside ;. For simplicity we
will call this point the center of the cell. By convention the vertices are listed counter-clockwise
Xp—1, Xy, Xp41 With coordinates x, = (x,,y,). We note /;,n;, the vector as follows

1
Ly = idist (Xp—1,Xr41) and nj, = (Xpt1 — xr_l)L ) (56)

2,

This notion of a corner vector can be rigorously introduced also in any dimension using the
definition [13]. The scalar product of two vectors is denoted as (x,y).

Figure 4: Notation for node formulation. The corner length ;. and the corner normal n;, are
defined in equation (56). The point x; is an arbitrary point inside the cell, typically the centroid
of the cell or an averaged of the corners.

The numerical approximation of the problem P¢ that we study is the JL-(b) scheme defined
in [7]

d 1
|9 | 05 + 2 Er Ljr(uf,my,) =0

d 1 o ~
|9 | a5+ 2 > Limyep5, = = > Bjrus,

with for simplicity point wise initial data p5(0) = po(x;) and u5(0) = —eo~'Vpy(x;). The fluxes

(57)
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are defined by the so-called corner problem

g
{ P = 25 = (mjp 05 = ) = = (6 = x;,u5), (58)

52, vy = 0.

This corner problem has been introduced in [7] as a multidimensional version of the 1D Jin-
Levermore technique [23]. Its solution is provided by the solution of the linear system

Ya, > g By | us =" tepimy, + > @500, (59)
J J J J

where the geometry of the mesh is used to define the matrices &, and Bjr
ajr = ljrnjr & Ny, and ﬁj?“ = ljrnjr ® (Xr - Xj)' (60)

We will use the notations A; = > a&;r, 4, = Ej &, and B, = Ej Bjr. By comparison with the
scheme Pf in dimension one, one sees that the multi-dimensional scheme (57-60) is more tricky
than the 1D scheme (15-16).

Starting from (57) and taking into account of the definitions of the fluxes (58) and also the
identity ZT ljrmj . = 0, the scheme Pj can also be rewritten as

d 1
|| 2p5 + > lip(us,mg,) =0

P; - d 1 (61)
[ 05+ 2 D (e — )y, =0
When & — 0 the scheme P$, see (57) or (61), admits the limit diffusion scheme P9
d
|QJ|£pj +Zl]'r Vi, Iy =0,
P) : . (62)

1 __
Vr = ;Br ! lerpjnjﬁ
J

with B, = Zj Lirnjr ® (X, — x;). We define additionally v; by a kind of mean

(Z &j7»> V= Z Eiijr.
T T
This is well defined since the matrix ), &;, is symmetric positive by definition of the &;,.

3.2 Definition of DAj

We define now that is call thereafter the "diffusion approximation" scheme. We just neglect the
time derivative in the second equation, that we make d;u5 = 0 for (61). It leads to the scheme

d 1
| Q| @Pi + - Z(ljrui,njr) =0
DAj : < 2 Lyr(myr,uf — ug)nye =0 (63)

O'/\
o g __ £ ol €
E Qjr + E gﬁjr u, = E ljrpjnjr+ E Qjrl,;
J J J J

This scheme depends of two parameters, the size of the mesh h and the small parameter e. We
notice that DAJ, # P9 for £ > 0, and that lim._,o+ DAj, = P9. The point wise initial data for
(63) is p5(0) = po(x;). There is no need of initial data for (u5(0)), which will be obtained as a
function of (p5(0)) by solving a linear system.
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3.3 Mesh assumptions

oy

Figure 5: Definition of the control volume V,. around vertex x,. The control volume around the
vertex x, is defined by the closed loop that joins the center of the cells (x;’s) and the middle of
the edges (x;,1’s).

The characteristic length of the mesh is h = max; (diam(€2,)), so that

ljr S h; Vj,T', (64)
1] < h?, V3.
The control volume V,. around the vertex x, is defined by the closed loop ... RIEEES V75 STE RIS

Here the x;’s are the center of the cells, and the xj+%’s are the middle of the edges around the
vertices x,. A typical example is depicted in figure 5.

Additional geometrical assumptions are always necessary in dimension greater than one to
guarantee some minimal regularity of the mesh. We make the usual assumptions listed below
from 1 to 3. The last items are more specific.

Hypothesis 3.2. Our geometrical assumptions will be the following

1. The numbers of cells which share a node r is bounded independently of h, which means there
exists P € N independent of h such that

> 6 < P. (65)

For example, for a structured mesh of quadrangular cells P = 4.

2. For each cell of the mesh, the number of edges is bounded independently of h, or equivalently
the numbers of vertices for a cell is bounded independently of h.
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3. The mesh is reqular in the sense that there exists a universal constant Cpaq > 0 such that the
inverse inequalities hold:

Cmh <y, Vy,r uniformly with respect to h (66)
where X, is a vertex of the cell ;, and
Cmh? <|Q4], Vi uniformly with respect to h. (67)

and
Cmh? < V.| < Ph?, vr uniformly with respect to h. (68)

We recall that V. is the volume control (centered on x,) and ; is the cell j. The inequality
|V,.| < Ph? is immediate to check on the figure 5.

4. A consequence of the items 1-8 is that there exists a constant o > 0 such that

(Aju,u) > ah(u,u), A; = @ (69)

It can be proved with a geometrical identity that we borrow from [13] (proposition 8).
5. The matriz B, = Zj Ejr s positive in the sense that
(Bru,u) = (Bju,u) > o|V;|(u,u), (70)

where BS = (B, + BL) is the symmetric part of By, and o is the same constant as in (69).
Square meshes satisfy (70). This assumption is however not trivial to check in the general
case. We point out [7] where sufficient conditions such that (70) is satisfied can be found; in
particular it is shown that triangular meshes with all angles greater than 12 degrees satisfy
it.

3.4 Norms and error measurements

The quadratic norms below are usual integral norms. It yields for any cell centered quantity

= (fi)jecens: [ fllL2) = \/22; 19511 f;]?. For vertex based quantity g = (gr)revertices, we use
lgllL2) = v/ 2o, [Villgr|?: it is more a convention. Useful quantities are

o Vi (t,x)= (Zjecens P ()10, (%), 3 ccens U5 (1) 1o, (x)) which is the solution of P5,.
e Ve(t,x) = (pf,u®) (t,x) which is the solution of P¢,

o W5 (t,x) = (ZjeCells P ()10, (%), 3 ccens U5 (t) 10, (x)) which is the solution of DASJ. No-
tice that an abuse of notations is made with the solution of Pj.

e We(t,x) = (p, —£Vp) (t,x) which is the solution of P°.

o

As in dimension one, the differences between these quantities are characterized at the initial
time with a universal constant C'4 > 0 which indicates it can be related to the approxima-
tion/interpolation/projection of a smooth function on the mesh. We will use for example some
bounds that can be obtained as by-product or corollary of the first technical inequality below.

{ IVE(0) = V() 220y < Cah[VE(0)llrr2(2) < CABlIV (0) 20 (71)

[We(0) — W5, (0)[l2() < Cahl[W=(0)[| g2 (0)-

We will need additional technical estimates for the corner based Finite Volume scheme Pj.
These technical estimates can be formulated as follows. Let f be a regular function. We define

21



§ir(f) = \STIJI Jo, fdx— f(x,) which is the interpolation error term that compares mean value in a
cell 2; and point values at a vertex x, of the same cell. Let I'; . = [X7, ch+1] be the edge oriented
toward the outside of the cell j, with length |I';,|. We define also ¢, ,(h) = ﬁ Jr. hds —

M which is another interpolation error contribution that compares the mean value and

the mid sum, on the edge.

Proposition 3.3. One has the technical inequalities

1050 < Call Flleco, (72)

and _
10 ()] < Cahl| fll3 ;) (73)

Proof. These non optimal inequalities are consequences of classical approximations results. We
will not prove them. However one can notice that the scaling is correct. That if a function f has
its third derivatives bounded in L>(€;), then || f||2(q,) = O(h) because the problem is 2D: this
is compatible with the fact that d;, is a first order difference. Similarly h| f||lgs(q,) = O(h?) is

compatible with the fact that gjr is a second order difference. An alternative proof is by assuming
that f is in HP(§2) for a sufficiently large p. Then by the Sobolev embeddings, all derivatives up
to fourth order are in L* which is enough to prove that (72) is a first order interpolation error
term, and that (73) is a second order interpolation error term. In this case it also explains very
simply why the constant C'4 is independent of the mesh size. O

The first technical inequality is actually true for any points in the cell. So it allows to compare
the mean value and the point value in the cell. This is why it yields (71) after summation over all
cells and redefinition of C'4.

As in dimension one, we will use constants |C, C~, C| and C in the errors bounds for the
four branches of the new AP diagram. The important point is that these constants are independent
of h and e. They have of course some dependence with respect to other parameters such as the
constant of the mesh C'y, for example, but we will not keep track of these dependence in order to
simplify the notations. Nevertheless the interested reader can compare with the same estimates in
dimension one where the dependence with respect to the mesh constant is indicated. A first result
is the inequality (55) which yields the basic estimate for the lower branch of the AP diagram. It
can be formalized as follows.

Lemma 3.4. One has the estimate
W — V= 12j0,11x0) < Ceellpollae(a) (74)

where the constant C' is independent of h and &, with a growth in time less than T? by comparison
with (55).

3.5 Study of ||P; — P¢||aive

In this part, we exploit the hyperbolic nature of both P¢ and P5 to obtain the main bound. As
one will see below, the convergence estimate (75) is not trivial. It indicates that, for a problem
with O(e~2) terms, a scheme converges, with h, with at rate O(¢~2) with respect to e.

Lemma 3.5 (Naive estimate). There exists a constant |C independent of h and e, with a linear
growth in time, such that the following estimate holds

h
IV = VoIl o ry:n2(0) < ¢C\[|po|H4m)- (75)
The norm is slightly stronger than the L?([0,7] x Q) needed to complete the proof.
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3.5.1 Stability
We first prove the L? stability of the scheme P defined in (57,58).

Proposition 3.6 (Stability). The semi-discrete general JL-(b) scheme defined by (57,58) is stable
in the L? norm in the sense that ||V (t)|| < 0. Moreover we have the bounds

g > 1 £
?HUTHLQ([O,T]XQ) < a”vh(O)HL?(Q)a (76)

T
/0 SO ey, (w6 —ub))2dt < el[V5,(0)][32q)- (77)
7 T

Proof. We define the functions pj, and uj by p; = p; and uj, = u; on ;. We set for convenience
E(t) =||V5(t)||*. One has

! 1 d (3 g [ d d 1>
B0 =5 [ 500 P i) = [ g+ (i Goi) -3 15 L p5 + (w5, L),

Using the definition of scheme
1 £ g 1 £
=== > Lepsutmg) = 2 30 S 0w e ul) = 5 30D (Bputiug). (78)
J T J T ki r

Using (58) we expand the second term of the previous equation

ZZ (Ljrpj, 04, u ZZWJ (uf, njq) +ZZ (@jr(uf —u7), uj) — gzz@ruivuﬂ
7 T

(79)
Since ), lj;nj, = 0 the first term of (79) is zero. Summing on r the second equation of (58) and
permuting the sums, we show that 0 = Z Z Lirpjr(ur, nj,) which yields that
jor

0=>" 1;p5(ui,n;,) Z Z (@ + ﬁ]r )+ Z Z (@jrus, us) (80)
;T
Plugging (79) and (80) in (78) and permuting the sums in E’(¢) gives

:—722 (@j,(u§ — ug),ui —uf 222 (Bjrut, us)

which gives

LY b <)+ G Y (B o s
T o2

By geometrical assumption (70) we have E' (t) < 0, that is the L? stability, and by integrating
this equality on [0, 7] we obtain

+/0Tigzzjr<njm<u;u /ZBuu E(0)

Using again the geometrical assumption (70) for the terms (B,u$,ut) we have

T T
1 o
T +/0 3 bl (05— w)) + a/o TS Wl i < B
r o j T
which gives (76) and (77). The proof is ended. O
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3.5.2 Main estimate

Our goal now is to prove the lemma 3.5 as the consequence of propositions 3.7 to A.3. This part
is the more technical one of the paper, but is essential to be able to use the general strategy of
proposition 1.3 with convenient exponents. Like in 1D, we use the method introduced by Mazeran
[29] and decompose the proof in several steps. We introduce &(t) = ||V — V¥, ||L2 () As for the

1D proof and for the sake of simplicity, for any quantity g, ¢’ stands indifferently for dtq or 0uq.

Proposition 3.7. One has the formula

1 2
"(t) = - le,r(nj’r,uj —up)* + By + By + B3 (82)

where

LS (1t )50+ LSS () 50),
J T
:g Z Z |Fj77’|p§(nj,r7 Sjvr(ue)) + é Z Z |Fj,r| (11;, nj,rgj,r(p€)>
j r J T
~ 1
B=G X3 (B iy [ win) + 5 Z. <“? )
_&%Z/ (u,u® dx——z (Bus, u
i

Proof. We first consider the time derivative

&'(t) =/Q(pi(pi)”r(HZ,(UZ)’))dXﬂL/Q(pa(pE)’Jr(ug»(us)’))dx

1
Dy=-- S (g, us —ug)? - ;12 > (Bug, ).
Jr
One also directly has

g g g _ g g g
DQZ—? Q(u ,u )dx——?Z/Q (u,u)dx.

Then, using the definition (57,58) of the scheme we have
ES Y (Bt ) [ o
= - jr Uy, Iy | X
e & Js 7 ‘Q‘ ‘p
J T J QJ
IS (S g, + 23 Byt L/ W dx
c ; - JrEmirlg,r c - J,T S ‘Q]‘ Qj
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Since ), lj;mj, = 0, we can write
— %ZZ (lj,r(uf —u’),n;, )é
+= Z (Zlﬂnﬂ Pir—15) Qi/ de)
i(zzﬁ”“"’ ] / ).

One gets
ZZ(]T - )njr) o Zz<rnm~p]r pi)yf%,r(ue))
1 zz(ﬂ - >nﬂ) s<xr>+62;(zﬂnjr<p;,r—p;>,u&(x»)
B (TR )

We have the identities 3, lj;nj. = 0 and }; ljrnjrpj » = 0 by definition (58). Therefore one
can simplify the third and fourth term in the previous expression and get

ZZ(wu ) ) ) + ZZ( I
- ZZ (lj,ruj,nj,r>p8(xr) —Z EJ: 27: <lj,rp§nj,r , uE(X'r‘)>
‘;(zzﬁwur, [, )

We now look at D,. By definition, one has

ZpJZ/ unﬂd0+ ( <Z/ P do + — / fdx>)

where fi;, is the normal to the edge I';, = [x,,X,41] oriented toward the outside of the cell j.
This expression needs an important manipulation which is to approximate the integral on edges
by corner values. This necessary manipulation is one of the ideas that was introduced in [29] in
order to proceed to the numerical analysis of such corner based finite volume schemes. This is

why interpolation terms 4, (h) = o Jr,, b e )thxri1) are introduced. One gets after an
algebraic manipulation

1 ~ N 1 . o
D4 = g Z Z |Fj,r|p§ (nj,T7 5j,r(u5)> + g Z Z ‘I‘j,rl (11;7 nj,réj,r(pa)) + 672 Z (u}/ﬂ uE)
j T i ; y
1 _ uf(x,) +ut (x4 PE(x,) + pF (Xrs1)
+ - Z > alpS (nj,ra - 5 s ) Z Z ;. <u],n] . r+
J r

2

A Dyl r—1 [Ty r -1

By definition (56), n;,l;, =

ZZWJ’J“Z’; (ﬁjm u®(x,) +2u (Xr+1 ) ZZW)J n;,u(x,)).
7 T

, S0 one can see that
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It yields a slightly simpler expression
S D) DI T] CINUS RED 3 SB[ R WERTS) F ol O A
J T J r J
+ é Z Z ljrp; (njra uE(XT)) + é Z Z erps(xr) (ana uj)
i i
One can now compute the sum D3 + Dy

1 1
Dt D1 = 2 5057 (= w)omy )35, 070 + 2 350 (1m0, = 5) . 0300 )
J r 7 T
1 € 5 € 1 € N €
2SS () ) 2 3 S 0 (w07 )
J r 7 T
o ~ 1 o
+ = Bjrus , —/ ugdx> + = (ue»,/ uadx).
52(22; ’ €41 Jo, 62; 7,

One finally gets after rearrangement the final result (82) for &/(t) = D1 + Dy + D3 + Dy. O

The proof of the dissipative identity relies on a careful and technical evaluation of F1, Fs and
Es5. Using the damping of the first term in (82), it is sufficient to obtained the desired result. We
refer the reader to the appendix for all details.

3.6 Study of |DA; — P?|
This main result in this section is the following.

Lemma 3.8. There exists a constant C| independent of h and e, with a growth in time less than
T% such that one has the estimate

W35, — W= L2(0,11x0)) < CL(h+€)llpoll e (0)- (83)

This result, which is merely a consequence of (96) and (97) in proposition 3.12, will be ob-
tained after studying in details the well-posedness, stability and consistency of the new diffusion
asymptotic scheme rewritten after a convenient rescaling. The proof is provided just after the
proof of the proposition. Additional technical results will be derived at the end of the section.

3.6.1 Rescaling of the equations

We rescale the semi-discrete diffuse asymptotic scheme DA (63) wherein for convenience we made
the following change of unknowns

€ b
u u
9 9

(84)

In order to keep a simple notation we dropped the superscript € and the bars. Thus the scheme
(63) is now written as:

d
|25 | 0+ > (jrar,my,) =0

22 Lir (g, 0y — wj)ny, = 0
(E Zj ajr + O’Br) u, = Zj ljrpjl’ljr + EZ]' ajruj

(85)

Remark 3.9. If wet set e = 0 we naturally recover the limit diffusion scheme (62).

This way of writing the system is much better to help the intuition, since it is can be naturally
interpreted as the discretization of a diffusion equation.
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3.6.2 Well-posedness

What we mean about well-posedness is the following: if we are able to write the last two relations
of (85) as a non singular linear system with the u,’s and u;’s as unknowns, then we have a unique
solution in terms of the p;’s. This notion is the relevant one for numerical discretization.

Let us denote Y = ({u,}, {u,}) the vector of unknowns. We can write the last two relations
of (85) as MY = b where M is a (J + R)? square matrix, J is the number of cells and R. One can
observe that unless € = 0, M is not a blockwise triangular matrix. One has

(MY,Y) = Z (0Byu,,u,) + EZ Z Lir (u, —uy, nj7‘)2
T 7 r

Assume (MY,Y) = 0: in this case the geometrical assumption (70) implies that all the u, are
null and therefore it remains to study >°; >-, I;» (uj,njr)2 = 0 that is ) (uj, Cju;) = 0 where
C; = ZT lj»nj, ® nj,.. Since the C; are all invertible unless the mesh is degenerate, all the u;
are null: we have proved the invertibility of the matrix M and thus the scheme (85) exists and is
uniquely defined.

3.6.3 Stability

1
We note E(t) = 3 Z €25 |p§ The initial data is pn(0) = (p;(0)) ;e ceis-
J

Proposition 3.10. Under the geometrical assumption (70), the diffusion approzimation scheme
(85) is stable in the L? norm, in the sense that E'(t) < 0. One has
1
||ur||L2([0,T]xQ) < P ||ph(0)||L2(Q) (86)

and

el S (e () = ) < 1 (0) ] 2y - (87)

[O,T] 7 T

Proof. One has

/ d
E (t) = Z |Qj|pj£pj = - ij Z(ljrum njr) = Z ur, lernjrpj
] J J

J T T

With the last equation of (85), one finds E'(t) = — 3, (ur, (5 > Qjr + O'Br) u -, ajruj).

We expand the right hand side E (t)=->,(eBru,,u,) —e), (ur, Zj ajr(u, — uj>. Permut-
ing the sums in the second term of the right hand side , we show that

E(t)=->(¢Bu,,u,) —EZZ(ur,&jT(uT —u;)). (88)

Using the definition of the u;, second line of (85), one has
Z <Uj, Z (/)z\j,,«(u,,« — 11j)> = 0. (89)
7 T

Combining (89)xe with (88) and using the definition of the matrices &;, one has finally

E'(t) =— Z (oB,u,,u,) —¢ Z Z Lir (uy — uy, njr)Q .

T
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By the geometrical assumption (70) we have E(t) < 0, that is the L? stability. By integrating
this equality on [0,T] we obtain

—1—/0 ;(aBrur,ur)—&-/O 8?2@ (ur —ujjan)2 = E(0)

Using again the geometrical assumption (70) for the terms (B,u,,u,) we have

T T
1)+ [l [ eSS0 0= wm, ) < BO)
T J T

which gives (86) and (87). O

3.6.4 Consistency

FOY COnVenience we set
_ _ 1 N 1
p; =p(x;,t) Wy = *;Vp(xmt) u, = *;Vp(xmt) (90)

where p(x,t) is the solution of the diffusion equation. We define three consistency errors by
inserting these quantities into the three equations of (85) which are also rescaled by a factor |Ql_| ,
J

E and IVI It yields
d _ 1 _
aj = 5pj T T E (Ljr 0y, mjy),

b; “h Zlﬂ n;,, W, — 0;)n;,,

1 ~ =
c, = Al oB,a, — E lirpjnjr + ¢ E a;r(a, — ;)
T . .
J J

Proposition 3.11. There exists a constant C. > 0 independent on h and € such that the following
estimates hold

Hah”Loo([o,T]:LZ(Q)) < Cch||p0||H4(Q)a (91)
||bh||Loo([o,T];L2(Q)) < Cehllpollms (), (92)

and
el Lo 0, 77:22(0)) < Celh +€)llpollma(o)- (93)

Proof. The proof uses the inequalities of proposition 3.3. For example one has

1 Jo, Ap(x,t)dz 1
a; = — | Ap(x;,t) — —2 + / OppdT — Lir (0, VD(x,, ¢
e L] | Jog, P07 = 2 1or (. V1)

—J1
=d} —22

The first term is |dj| < C 1Pl 74(q,) by virtue of the first inequality of the proposition (3.3) with
x, changed into x;. The second term dj can be rearranged. Indeed by definition of /;,n;, one has

Zlﬂ (5,0, Voloe 1 Z/aﬂ k 'k) ‘;VP (mfk) | ar
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where n; = 7, defined in the previous part and the nodes x;rk and x}; are the end of the edge
0Qj1, = Q; () Q, with the relation 09, = |J 0Q;x. Therefore

d2=2kj/mjk Vp - p( )+vp( )n~ dr.

2 T

The second inequality of the proposition 3.3 yields |d5| < C4h®||p|| 4 (q,) Therefore one can write
a; < Cllpoll H1(0,) Where the constant is uniform with respect to j. It ylelds

lanll ey = ¢Z|ﬂ a2 < ¢Z|ﬂ AP0y < Chlplls < Chllpolls.  (94)

Since it is true at any time ¢, it yields the first bound (91). The second inequality can be obtained
with the same argument. Consider the decomposition

Vp(x)dv Vp(x)dv
Vp(xr) = Vp(x;) = (Vp(xr) - —fstj()) - (Vp(xj) - _W> .

Each parenthesis can be estimated with the first inequality of proposition 3.3. The rest of the
proof of the second bound (92) is immediate since I;, is neutralized by the ;. The third bound is
analyzed as follows. We write ¢, = ¢ + c% with

o Vp Xr, 1
Cr = A Uzlﬁnjr@(xr_xj) ( ) Zl 1D (X, 1)
J

|‘2| Z ((Xj — %, Vp(%y, 1)) —p(xj,t)>ljrnjr

V] Z < — Xy, Vp(xr, 1)) = p(x5,1) + p(%s, t))zjrnjr

and ¢’ = ﬁ (Z] Lirnj, @ nj, (Vp(x,,t) — Vp(xT,t))). The first interpolation of proposition

3.3 can be used to evaluate the difference of point values in cl.

Concerning c? we notice that

It yields |c?| < C5|Ipll a3 (a,)-

1 xr
(x; — %X, VD(x1, 1)) — p(xj, 1) + p(xp, 1) = <|X—X| / Vp(x)dr — Vp(x,), %, — xj>
T i Xj

where the integral in along the chord between x; and x;. The first term in the scalar product is
the comparison between a mean value and a point value. So it can be estimated as in proposition
3.3. Tt yields similarly

1 X
‘ <XTXJ| /xj Vp(x)dT — Vp(xr),xr — Xj)

Thus [c2| < Chlp|lps,). After summation of the cfs and cls, one gets the last inequality of
the claim. The constant C, is the maximum of the three constants that show up in the three
inequalities. O

< Chllpllas(o;)- (95)

3.6.5 Convergence

We study the numerical error between the solution of the diffusion asymptotic scheme written as
(85) and the point values of the exact solution (90). Let us define three error variables

ej:pj—ﬁj,fT:uT—ﬁr and g; = u; — U;
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Proposition 3.12. There exists constants C1 > 0, Cy > 0,C3 > 0 and Cy4 > 0 independent of h
and €, bounded for any time T and growing at most as T%, such that

lenllLe(o,11:2(02)) < C1(h+€)llpollma (0, (96)
[l 220, 71x02) < C2(h+€)llpollma(a), (97)
and
lnlzeqorixe < Ca(h+ €1/ (L+ Dlpollrsc (98)
Moreover

T
S [ S 6 = m)? < Cath + Dol (99
o 5T
Proof. By construction
| Q| e+ Z(ljrfmnjr) =—1Qj|a

le,«(njr, fr — fj)njr = —hbj,

€ E 0y + 0B, | £, — E Lirejnj, —e E ayf;=— |V, c.
J J J

The errors are measured with E(t) = %||eh||%2(m, F(t) = ”fh”%%[o,t]xsz) = fot >, Vel |£-? and
gnll7e = 1825 i|”. By proceeding as for the results of stability one has the identity
2 oaixey = Jo ;19451 1%, B di for the results of stabili has the identi

E'(t) = Z|Qj|€j i= Zej <— (ler (njmfr)> - Qj%‘)
== Z(ljrnjr% £,) = > 19 ¢ja;

J

=St (X @ +0B | -2 Gt | - Ilesa; — Y Vil (er £
r J J J r

==Y (0B ) —ey | £ au(f =) | =D 19]ea, = Y Vil (er, )
T r ]

J T

2
= — Z (O‘Brfr, f.)— EZ Z Lir (f, — fj, Ile) — Z |Qj| eja; — Z |V;| (cr,£r) + EZh(bj,fj).
r J T 7 T J
Using Young’s inequality and assumptions (67) and (70), one gets

2
E'(t) < —aollfullFz) — Y > L (f = £,050)" + V2E(@)||an] |2 (0)
s (100)
(181 + o llenlZagy ) + s (1l ooy + ~[[bal2
g 1thlizz(e) 5 NChllz2 () Ty, \TBRIIL2(0) LA

where i, > 0 are two arbitrary coefficients that will be specified later. Now using (69) and (64),
we have

h
|QJ| |fj|2 < a ler(njrafj)Q- (101)
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Therefore

|Q|f|2<<22l]rn]r, - +22zﬂ|f|>

which yields, using (68) and (65)
2h 2P
llgnll720) < o ;ljr(njrafj —f,)% + m”th%z(Qy (102)
So from (100) we obtain

1 ,u ePn
s\/zE<t>||ah||m<m+2||ch||%2(m+( e~ 0 ) Il

— 2
+<CMO[ 1) ZZZJT r an) th thH VM777>0

Let us choose the free coefficients p and 7 so that

W ePn fofe! i 1
= — < —— and —-1<—=.
hC3, o= T A MO )
Let us choose first y = %>. The two inequalities reduce to
P 1
° 277 < e adn < -.
hCi 2 Cpma — 2

A natural solution is n = 92& min (1 MM) So

(t) <V2EWlanllizey — T F 0 = 5 DD b (6~ £,my,)

r

w\m

1 2
+£||ch”L2(Q)+2hC bnll72q)

By the consistency estimates (91-92-93), one has

1 2 1 2 € 2
§HahHL2(Q) + @HChHLz(Q) + m”bh”L?(Q)

1 1 €
<C? (2h2 + @(h +e)’ + QhC'MnhQ) 1211% o (fo.77: 54 2))

1 1 €
< Cc2 <2h2 + %(h + 5)2 + 2hCMT]h2> ||p0||§—[4(9)

The last term in the parenthesis is

€ 2 _

1
_ 1
ShCn C%Aaehmax( ,eP/(achCp))

1 1 L
< CM eh(1+eP/(achCp)) = CM ch + Cj”wazag .

So there exists a constant C, independent of h and ¢ such that

E'(t) <V2E(t) — — -5 Z ler T an)Q + Ce(h + 6)2”170“%{4(9)' (103)
Integrating (103), we find that for any for ¢t <T

t
E()+—F /ZZ;N . an.)2§E(O)+/O V2E(s)|lan| L2(@)ds + tCe (b + €)*[|pol|Fr4(q -

(104)
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that is

B(0) + 27 F(1) /ZZZW —t;n,,)’

(105)
0) + / VIBE)V/Calh + 2)ds + TC.(h + )2 ol sy
0
With another use of the Bihari’s inequality, lemma (B.2), we obtain
l
/ E S 5 ( \/E +TC (h+€) Hp()” +T\/ 2C h+€ Hp0||H4(Q)> (106)

By construction E(0) < C%h?||po||2 #r2()> Which comes from inequality (71) which compares
mean value and point value. E(t) < CZ(t)(h + 5)2||p0||§14(9), where the constant C; is bounded
for any T and growing as T'2. It gives (96), and one easily obtains (97) and (99) from (105) and
the constants Cy and C3 are bounded for any time T and behave as a linear polynomial in T'.
Integrating (102) and using the estimates (97) and (99), one gets

T T
2 2P h
/0 llgl|72q) < ah/o ;ljr(njmfj —£)?+ m”fﬂiz([oﬂm) < Ci(h+e)?(1+ g)||Po||H4(Q),

where the constant C} is uniform in A and € and is bounded for any T with, at most, and behave
as a linear polynomial in 7". The proof is finished. O

Proof of lemma 3.8. The norm of the estimate in the lemma 3.8 can be bounded from the sum
of (96) and (98). However one must rescale back (98) since it corresponds to the scaled variable
(84). This is why (98) must be multiplied by e. It eliminates the e~ 2 divergence in (98). The
constant C'| max(C1, Cs) is bounded for any time T and behaves as T% for large T since it is the
case for C7. and ends the proof. O

3.6.6 Technical estimates

These technical estimates are needed in the next section. These results compare two different
velocities at the initialization stage: on the one hand the velocity computed as the solution of
the linear system made of the two last equations of (85), on the other hand the exact point wise
velocity.

Proposition 3.13. There exists a constant C independent of h and € such that

< Cv/hmax(h,e)||poll g3 ) (107)

L2(Q)

H (w4 290x0)) ¢ =0)

and

| (w+ 2pt) = 0)

h
< C[max(h &)llpoll (- (108)
L2(Q)

Proof. Let us write q, = u, + 2Vp(x,) and s; = u; + 1 Vp(x;). These quantities are solution of
the system

{ (5 > Lirnjr ® njr + O’Br) a —€) ;linj ®@njs; = dl +d?, vr,
=& 22, Lir(njr, qr)mr +e >, Lir(yr, 855, = dj, J,

where the right hand sides are

dvl" = Z ljrp(xj)njr + Z ljr(x,. — Xy, Vp(xr))njh
J J
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d? =l (0, Vp(x,) — Vp(x;)) 0,
i

and

d; = —e > 1y (05, Vp(x,) = Vp(x;)).
r
The right hand side d! can be interpreted as a consistency error. Indeed it can be rewritten as

dl = Z [p(x;) — p(xr) + (% — %5, Vp(x,)]) Ljrnjir,

one obtains from (95) the bound |d}| < 2 neighboring = I:éth||H3(Qj):| h. Tt yields after summation

! |22 () < CR*lIpllas(e), € =CP. (109)

Taking the scalar product of the first line by q, and of the second line by s;, one gets the identity

g Z (qura qr) +e Z lj?” (an7 qr — Sj)2
r Jjr

= (A} ar) Y Lir (e, — s5) (0, Vp(x,) = Vp(X;))

T gr
where d! shows up explicitly. A Young’s inequality yields

g 2 1 g 2

UZ (Brar,ar) + 5 jzrljr (njr, qr —s5)° < 2 (dy,ar) + 5 jzrljr (0, V(%) — Vp(x5))” .
(110)
The first term in the right hand side is
1 1
> (dha) = n (hzd,%,qr) < Oz ld" |z llallzz(e) < Chlpl sy lals -

A similar reasoning as for (109), which one more time can be viewed as a consequence of the first
technical inequality of proposition (3.3), is

2
D lir (g, V() = Vp(x;))* < Chllp|Fa0y-
gr
So (110) implies (after redefinition of the constants)
||q||2L2(Q) <C (||Q||L2(Q)HP||H3(Q) + 5||P||2H3(Q)> h.

HS\HEE? is below the maximal root of the polynomial p(z) = 22 — Chz — Ceh,
H

that is for some constant K > 0 z < gt = Chtv/CThZ+iCeh Vc22h2+405h < K+/max(h?, he). Noticing that
o3 @) < llpoll a3y, It finishes the proof of the first inequality (107). Concerning the second
inequality, we start from (101) to show that

h 2
IslZ2) = D 195l1si < =3 3 (myr.s;)
J j T
h 2 h 2
SQEZZZJT (njrvqr) +2azzl3r (njrvqr_sj)
j j
1 2 h 2
< Qm 2 Vol la: ™ + 25 Zj:zr:ljr (0, qr — s5)

1 h 2
< QWHCIHQL?(Q) +2- ;ljr (njr,q, —s5)".

It means that z =
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The first term is natural bounded bounded using (110). The crux of the estimate is the second
term which is naturally bounded by (107)

2 h
> i (njr,qr — ;)% < - (K max(h2, he)h + Cah) Dol 35 0y < D(h+a)g|\po||i13(m7 D > 0.
Jr

We obtain therefore
h
I3y < € (max0.0e) + 01+ ) Iy, € >0
The numbers h and € can be considered less than 1. There are two cases: NEigher h < € so
Isll72y < Chellpoll3s(qy for another constant C; or & < h, so [s[|2) < C™|lpol3ys (g for

another constant C. So we can writes sl z2() < C\/gmax(h, ¢) for a certain constant C' > 0
independent of h and €. The proof of (108) is ended. O

Proposition 3.14. There exists a constant C independent of h and € such that

d 19
H (dt“’“) < C'max (17 \/D Ipoll 23 - (111)
L2([0,T]1%xQ)

Proof. The proof is essentially a consequence of the previous proposition. Let us denote the time
derivative of any f as f = 0,f. By linearity of the system (85), one has

d _ .
|5 | b5 + > (L, my,) =0
2 Lir (@, 0 — 05)myp = 0
£ Zj aﬁ + O'BT> . = E]« ljrﬁjnﬁ +e Zj ajrﬁj

The L? stability property yields
T
15013 o122 + [ D (Brite, W)dt < [|pn(0)]172 (0 (112)
0

where this last quantity can be estimated with the first equation of (85): the square of the norm
in (111) is also bounded by the same quantity. It remains to bound [|5(0)||z2(q)). Using again the
notation q, = u, + %Vp(xr), we consider at time ¢ = 0 the relation

. d 1 11 1
Pj= P = —mzr:ljr(umﬂjr) == mzr:ljr(Vp(Xr),njr) —mzlﬁ(qmng‘r%

1

=}l e
J

=v7
J

One has vj = Iﬂiljl > Lir(Vp(xr) — Vp(x;),1n;,). Using techniques which have been used many

times in this paper, one has |vj] < C%Hp”HS(Qj), which turns into

' lz2@) =, [ 1951012 < Cllpllrsy < Clpollms ), € >0.
J

The other term is naturally bounded by the norm of q, that is |[v?|| f2(q) < ﬁHqHLz(Q), P the
maximal number of vertices per cell. Going back to (107), one obtains

1
[0[l20) < C5v/hmax(h,e)|[pollas(@) < Cv/max(1,e/h)l|poll s (o) (113)

The sum |[v!]|z2(q) + |0*| L2(q) yields the bound for 5 (0) that was looked for. The estimate is
dominated by the worst term which is the right hand side of (113). Plugging in (112), the proof
is finished. O
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3.7 Study of ||P; — DAS||

In this section we estimate the difference between the hyperbolic scheme Pj and the diffusion
asymptotic scheme DAS . Since the discrete of the discrete equations are very similar, this proof is
simple. This is where we get the clear benefit of the introduction of the new diffusion asymptotic
scheme.

Lemma 3.15. There exists a constant C~ independant of h and €, with a linear growth in time,
such that the following estimate holds

9
V5, = Whllzzo,myxa) < C7 <h2 + e max (17 \/;>) Ipoll 3 (e (114)

Proof. We introduce R; = uJ such that the solution V}, of the diffusion scheme (63) satisfies

d 1
| | pi + 2 > (e, u,) =0,

d 1w R
|9 | Zw+ 2 > Uepinge + @ (u; — wp) = [Q4|Ry, (115)

o T
Ar *Br) r l'r j gy — A'r i = 0.
( Jrg u EJ, jrPiN; Ej:O‘J u;

By definition | R||z2(0) = || u;]|r2(q). Using the second line of (63), one has u; = A7 'S ajeu,

and thus [|4u|r2(0) < C|l4u,llr2(). Using (111) (and taking care that rescahng (84) by a
factor € was systematically used in the previous section), one gets for a smooth initial data

g
IR L2(0,77x0) < Cemax (1, \/;> Ipoll 2 (-

We denote by e; = p; — pj, f; = u; —uj and £, = u, —uj. One finds, making the difference
between the schemes (115) and (57)

d 1
| Qj | %63‘ + g Z(ljrnjr, f,«) = 0,

d 1 ~
PTR > Urejnje + a5, (F — £)) = |2[R;,

(A'r + gBr) f’r‘ : Z ljrejnj”‘ - Zaj’r‘fj = 0
J J

| € |

We are going to write an inequality satisfied by E(t) = |e(t)||2, ) T Hf(t)||iz(m, knowing that
e(0) = 0. Using the same kind of proof than for the L? stability of the JL-(b) scheme (proposition
3.6), one can show that

§£E Z|Q |(Ryj, £5) < [Ifllz2@ IRl|z20) < VE®) R 22(0)-

By integration, one has for t < T

VE(t) </ E(0) + \/THRHL?([O,T]xQ) = [[£(0)[|z2(0) + \/THR”Lz([O,T]xQ)-

One has [[f(0)||z20) < CVhemax(h,e)||pollgs ) by virtue of (108) (taking care that there is a
rescaling (84) by €). We simplify a little ||£(0)|12(q) < C (h* + €2) ||Ipol 2 (q), s0

\/E(t) < C (h2 + e max (1, \/i) \/T) ||p0||H3(Q)7 C > 0.
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Since [|V5, — W5 || L2(0,11x0)) = \/fOT E(t)dt, the proof is ended with

C~ =CT <h2 + e max (1, ﬁ)) lpoll 3 ()

3.8 Space estimate for uniform AP property in 2D

We have the following result of uniform convergence for a mesh satisfying the geometrical assump-
tions (3.2).

Theorem 3.16 (Space estimate). There exists a constant C>0 independent of h and e, increasing
at most as T%, such that the following estimate holds

IVE = Villzz o<y < Ch ol asco).

Proof. The proof is a slight adaptation of our initial proposition 1.3, where we use the norm
-1l = Il [z2(jo,7]x0))- From the triangular inequality applied to the AP diagram, one has

Vi, = VI < min ([[V3, = VE|lwaive, [V, = W[ + [[W), = W& + [[W® — V7).

All these norms are estimated with (75), (114), (83) and (74). Therefore one can write

h
V5 — Ve[| < Cmin (\/Z , (h2 + £max (1,\/i>) + (h+e¢) +5> lpoll 2y, C >0,

where

TGy
Vi Cai VT

C = max [ C&}

and behaves as T2 for large T.
The parenthesis is

Z = min <\/§ (h2+emax(1,ﬁ)>+(h+e)+e>
< min <\/§ , £max <1\/§) +2h+2e> < min <\/§ , 3cmax (1\/5) +2h>.

As in proposition 1.3, a threshold value is obtained by equating the more singular terms, that is
£/ 5th}rlesh = Ethresh ﬁsthﬁesh , with solution €¢presh = Vh. Two case occur. The first case is & > Ethresh-

Then the first term in Z shows that Z < Ethh - = hi. The second case is & < Ethresh- Then the
second term in Z shows that Z' < 3etnreshy/ =2t +2h = 3hi+2h < 5h1. In both case Z < Chi.
The proof is ended. O

4 Implicit discretization and proof of theorem 1.1

We explain hereafter how to compare the implicit scheme and the semi-discrete scheme, in a
way that produces immediately abstract error bounds. This technique comes from [12] where
applications to the numerical analysis of explicit schemes was the main goal. In what follows
we concentrate on implicit Euler discretization for two reasons. First reason is that the theory
is a little simpler to explain than for the explicit scheme, for which the interested reader may
nevertheless refer to the cited work. The very simple proof that is provided is new. Second
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reason is that implicit discretization is somehow necessary to take into the account the intrinsic
stiffness of the problem. In particular the numerical tests have been performed with the implicit
method. With the explicit method the CFL condition is so restrictive that it makes impossible the
convergence study. The proof is a consequence of the abstract estimate (120) with the technical
estimate (126) for the initial data.

4.1 An abstract estimate

The idea is to compare the solution Up(t) of a semi-discrete scheme
Un(t) = ALUL(t), Un(0) = U™ (116)
with the solution of the corresponding implicit Euler scheme with time step At

Un+1 _ Un ] .
=AU Uy =1y (117)

The operator depends on an abstract parameter h: with symbolic notation, this abstract param-
eter is h = (h,€) in the case of our problem P5. The question is to bound the difference of these
two uniformly with respect to At and uniformly with respect to the abstract parameter h.

We assume a natural L? norm denoted as || - || with the associated scalar product. For simplicity
we also assume that Ay is dissipative in the sense that

(Un, ApUyp) <0 for all Uy, in the appropriate discrete space.

Taking the scalar product of (117) with U™, one deduces that |US| < U] for all Up.
Assuming the discrete space in finite (this is always true for discrete methods in a compact domain),
one gets the unconditional stability estimate

[(In — AtAR) M| <1 VAE>0 (118)

where I}, is the discrete identity operator and the norm is the induced one for operators. Note that
(118) ultimately shows that the matrix I, — AtAp is non singular. So the matrix of the problem
can be assemble and invert on a computer.

Let us define for convenience V}* = Uy (nAt) so that the semi-discrete scheme can be rewritten as
1 (n+1)At

S AV = /At UL (s)ds — ApUn((n + 1)AD)

vt - vy
At

1 [ntDAt
- = / ApUn(s)ds — AUp((n + 1)At) = AtA,sp+!
nAt

where the residual is SZH = ﬁ ng_l)m Uh(s)_U’LA(t(nH)At) ds. We notice that

Ishll < sup_ UL ()] < 14U, AL <T. (119)
_s_

Therefore this special residual is uniformly bounded provided ||A,U™| is uniformly bounded.
This is actually true: it comes from the fact that Wj,(t) = Uj (t) is solution of W} (t) = AyWy(t)
and Wy,(0) = ARUM. So the strong L? stability of the semi-discrete scheme due to (121) yields
the bound (119).

Proposition 4.1 (Time estimate). Let T > 0 be a final time. Then there exists a constant C
independent of h, € and At, proportional to VT, such that

(U — Up(nAb)|| < CVAL| AL UM, nAt <T. (120)
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Proof. The initial data is the same V0 = UM, Let us define the error E}' = V;* — U which is
solution of _—
EM— pr
At
It yields (I, — AtAR)EPT = EP + At?Aps) ™, that is Ept = (I, — AtA,) T B + At(I, —
AtAy) " AtAysi . We obtain the representation formula (discrete Duhamel’s formula)

= A Bt 4+ AtA st B =0. (121)

n—1
Ep = At (I — AtA) 7" (I — AtAy) T ALA,sh T (122)

p=0

Let us define the operator T}, = (I, — AtAp)~! which is bounded ||T},|| < 1. One has the formula
Ty — I, = (I — AtA,) ' AtAy, and the formula (1), — %Ah)fl % = (I, — AtA,) "', Plugging
in the discrete Duhamel’s formula, one obtains another representation

(M)H_p (T}, — ]h)] S+, (123)

Eh_AtZ[Ih—Ah) ”11’)} 5

The first operator in brackets is bounded by 1 due to the stability (118). On the other hand it is
an easy exercise in number theory to show that for ¢ > 0

(2 m-w- () -(1)m

where the binomial coefficients are ( 7({ ) = ——L— for 0 < r < g, otherwise zero. Therefore

(q r)!

<3| () ()= a2( )

where the last inequality is from a telescoping reasoning and r, is one of the closest entire number to

I, + T,
Tn — 1I1)
(%57 @

q/2, that is |2 —r,| < 1. But there exists a universal constant, denoted K, such that 2(;%1 < ;] > <
*

\/fﬁ' Therefore (M)q (T, — In) H < K/\/q +1 Using this universal estimate in (123) and

the estimate on s}, we obtain ||E”|| <At m
basic bound shows that >_" < K+/n. Therefore

AR = Atp TSl ARUR. A
p=1 f
IR < AtK K/nl|AWURY|| < (KKVT)VAH AU, nAt<T.

The proof is ended. O

To finish the proof of the theorem 1.1, it is now necessary and sufficient to show that ||-4 U, (0)|| =
| ApUn1|| is bounded independently of h for the initial data of P5. This is the purpose of the next
section.

4.2 Technical estimates

To prove the uniform on the initial data, we will use in a slightly different manner the estimates for
the initial data that have been obtained for the diffusion approximation scheme DAj. However
we will need an additional assumption of the mesh

(Ayu,u) > ah(u,u), A, = Zajr (124)
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This assumption is not restrictive so we do not comment on it. The following technical estimates
show two things. First in explains in what sense the corner velocity is a good approximation of the
gradient at the corner at initial stage. Second it provides in (126) a control of the time derivative
at time ¢ = 0 uniformly with respect to h and e, it immediately shows the boundedness of the
abstract quantity A,U™ in (119). So it is possible to apply the above proposition and the main
theorem is proved. We now turn to the proof the technical estimates.

Proposition 4.2. There exists a constant C independent of h and € such that the initial data of
P; satisfies

Proof. The corner problem (59) that defines u, = u2(0) at initial time is rewritten as
o €
Ar *Br> r = l'r j ir — A‘rv i)
( + - u ZJ: jrPo(%;)1; p Xj:% Po(x;)

Let us defined d! = > bir (Po(x5) — po(xr) — (X — Xr, VPo(Xr))) njr, already defined and bounded
n (109). So elimination of p(x;) and simplification with 3, l;;n;,p(x,) = 0 yield

< Chellpol| a3 () - (125)

9
us(0)+ S Vae)||

(A,« + SBT) u, = ; Lir (% — %5, Vpo(%x,)) 0 + d!

€ . e R
- zj: ajrVpo(xr) + - z]: a;r (Vpo(xr) — Vpo(x;)) .
that is with the definition of the matrices

(4 +28.) (w + 2 Vpo(x)) =i+ = 350 (Vo) = Vo))

The coercivity (124) of the matrices A, and B, yields

2
oz(h—&-gh)
€

With estimate of d} (109), estimate of the difference Vpo(x,) — Vpo(x;), it yields

2
a(h+0h)
€

with a constant uniform with respect to h, € and the index of the cell j. That is

€
u, + *VPO (Xr)
g

< |q! = P~ _ .
<|d;| + pu zj:a]T |Vpo(xr) — Vpo(x;)]

€
u, + —Vpo(x;,)
o

S
< CO* + Zh)lplle,.

c
< —ellplle,-
!

€
u, + —Vpo(x,)
o

After squaring and summation with respect to j, it yields the result. O

Proposition 4.3. There exists a constant C > 0 which do not depend on h and € such that the
initial data of P satisfies

|5vi| < Clalo (126)

L2(Q))

Proof. The P$ scheme (57) or (61) can be rewritten

d 1
. @t = Ty ey (127)
h T
d £
@ = ] 2 lir (e, vl - uS)ng,.

39



At time t = 0 one has u; —uj = (s + £Vpo(x,)) + £ (Vpo(x;) — Vpo(x,)): the first term can

be estimated by (125) and the second one as usual. Therefore there exists constants such that

h N
o < CWPhE||pOHH3(Q) < Cllpoll g3 ()

1 €
o | l'r : *v )y gr
€|Qj| ET: J (ur+ o po(X ) n; )
In a similar way

h = C
< ——5Cllpollus(a,) < E||p0”H3(Qj)~

1
ol ~ 0Cph?

> 10 (Vpo(xr) — Vo (x;),m1)

Therefore

< Cllpoll m2(0)-
L2(Q)

1
o] XT: Lir(Vpo(xr) — Vpo(x;), nj)

It shows that ||%p5(0)”L2(Q) < Cllpollr3(a,)- Considering (127) , a similar result for %u®(0). It
shows H%VZ(O)HB(Q)) < Cllpoll 3 (e2)- The proof is ended. O

5 Numerical illustration

To illustrate the theory and have a more quantitative version of the error estimates studied in
this work, we consider the academic square Q = [0, 1]? and discretize the hyperbolic heat equation
of a mesh made with random quads. A random quad mesh is made of quads where the vertices
are moved randomly around their initial position, by a factor between 10% and 30%. We use the
fully implicit time discretization version of the 2D scheme detailed in this work. The solution
of the linear systems is computed via an iterative GMRES algorithm, which converges smoothly
in our numerical experiments. The reference analytical solution used in our tests is designed by
separation of variables. A solution of (1) is

e? €
p=f+—0:f andu=—-=Vf,
g g

with f solution of
2
5 1
Of + —02f — —Af=0. (128)
o o
We propose to construct a solution for a subset of small € to validate the uniform convergence.

Firstly we consider that the solution is a periodic solution on the square [0, 2] x [O, %] For this
we use the separation of the variables. We consider the following function

ft,x,y) = a(t) cos(Lrz)) cos(Lmy).

and we propose to find the function a(t) such that f(¢,z,y) = «(t) cos(Lma) cos(Lmy) is a periodic
solution of (128). The function « is determined as the solution of
2 9L 272
o/ () + (1) + =~

g g

alt)=0

with o/(0) = 0 and «(0) = 1. For small ¢, which is the case we are interested in, the solution is

computed as follows. First determine
o(\/1—§228L27r2+1) a<./1—§28L2w2—1>
2¢2 '

AL = — 52 and \y =

Then

_ )\2 At )\1 Aot
at) = ~ _)\16 % _)\16
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Figure 6: The error is plotted in log scale versus the number of cells per direction for the test
problem described in section 5. Each curve corresponds to a value of 7 € {0, i, %, 1,2}, plus a

reference line for order one. One sees that the order of convergence is an increasing function of 7.

from which p(t) and u(t) are easily recovered.

We decide that an exact relation is enforced between ¢ and h = %, so that the error can
be expressed as a function of h solely. The relation between e and h writes ¢ = 0.01(40h)" for
T € {0, %, %, 1,2}. The error between the exact solution and the numerical solution is computed
numerically in function of h = %, for different values of 7, and the results of some of these
numerical experiments is displayed in figure 6. The results correspond to the time 7' = 0.02 using
the time step At = 0.2h2.

As predicted by the theory, the scheme is uniformly AP and the error behavior is a continuous
function of v between the hyperbolic and parabolic limits. However the results are much better,
in the sense the order is greater than the theoretical prediction since the order is approximatively
1 for v = 0 (hyperbolic limit) and 2 for v = 2 (parabolic regime). We can find a closed result on
the second order convergence for the parabolic regime in the paper [1] (1D linear problem). The
reason is probably that the theory is based on worst case estimates, as it is often the case for the
numerical analysis of finite volume schemes [14].

6 Conclusion

The proof that was given of the uniform AP property is quite technical. It relies on specific
hyperbolic and parabolic estimates for linear nodal finite volume schemes on general meshes.
We observe that the multidimensional case yields an additional contribution in the error that
ultimately slightly degrades the convergence rate. It is an open problem to determine if these
inequalities are optimal. The numerical results indicate that it is probably not the case.
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A Detailed proof of the naive estimate (75)

Our aim is to now examine each term in the right hand side of the dissipative identity (82). Its
first term is already non positive.

Proposition A.1. Let v > 0 be a number which precise value will be determined further. There
exists a constant C1(vy) which depends on v such that one has the bound for the second term of
the dissipative identity (82)

T T
i £ £\2 h £ 2
Ey(t)dt < Lir(nj, s —us)? +C V()11 - 129
/0 1(t) _5/0 jE o (s 05 — 1) + C1(7) - ﬁCMH O) Iz (129)

Proof. We use a Young’s inequality ab < I a + 1vb2 with some positive constanty which will be
defined later, for the second term and the deﬁnltlon of the fluxes (58) for the third term: we get

El<*2l]r n;r,u ]_ 27522 3.
3 S (g — uS) (6 (u —ZZ( Bt ]r<u€>>
7 T

Another use of Young’s inequality with the same coefficient «y for the third term yields

h
E < ZJZ L 05— ) 4+ 5 szsﬂ(psy
e S ) - ZZ (25,0, Mus))
7 T
S gzlj,T(nj,r7u§ - 275 ZZ 7, r
Q’VEZZ|6’ _ZZ< BJW“T? G, (u5)>.

We now look at the last term of this inequality W = —1 D2 (‘;@’Tui, 6j’r(u5)) . By definition

(60) of Bj,r, one has ’Bj,r < h2. Therefore

wi < 2 (ZZ

T

) (Z;w;r(uw?)%
(] ) (S Tmeteor)

o o (S W) + >l )

vy h
D S S =D 3) DUk
J.r jor

+<2:€+2"€h\/>>225, ;@zrlm(u
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Using the first interpolation result of proposition 3.3 and the assumption (65), one has

ZZ% 2 < PO |2 (@) and ) ) 185,00 < POA|I0 |32 )

j T

So we obtain

T T 2
2l PC45h
/0 Eydt < 5/0 ;T L (0,05 —us)?dt + 27’2 ||P8|\%2([0,T];H2(sz))

h oh P
+PC3 (2 + 52 \/ C/\/l) |[u® HL2 ([0,7);H2(2) T % 2\/ ||117=||L2 ([0,T]x Q)"

Using energy estimate (2) for the the second term of the rhs of the above inequality, (3) for the
third term and (76) for the last term, one gets finally

T ~ (T
/)&@ﬁgg/)Zwﬂm%@—ﬁf (131)
0 0 =
2,7
PC%h h oh | P \e2 oh [P &2

T ah PCO | s—+ 55— | =+ 51/ 5—— | IVE(0)|IF .

+< 2ve A (2’)/6 + 2e2 CM) o + 2e2\ Cpm oa> V= O )
After a convenient definition os the constant C1 (), it ends the proof. O

Proposition A.2. There exists a constant Cy such that the third term in the dissipative identity
(82) can be bounded as

T
h € 2
| Battrit < oIV Ol (132

Proof. We decompose Fs in (82) in two terms. Making use of the second set of inequalities of the
proposition 3.3 and the assumptions (64) and (65), the first one can be bounded as

AP

Y 5 IIVE @)l so,)-

J

1 c N £
|A| = - Z Z |Fj,r|pj(nj,r7 5]‘,7‘(11 )) <
7 T

Using the inequality ab < 3(a® +b?), it yields |A| < SaEp? > P51+ Calp, > ||V5(t)||?{3(9j).
The assumption (67) yields
CuP h C

AP
Al < == HVf(m§“n+ 5 MIVEO s 0)-

The L? stability (76) of the scheme P§ shows that
V5@ lz2 ) < IVEO0)][20) < [[VE0)|[22(0) + IVE(0) = VE(0)|[22(0) < (1+ Cah)[[VE(0)||l 20

where the last inequality comes from the initialization stage (71). With the basic energy estimate
(2), and since h is bounded, we obtain

T
C’A h C’

The second contribution in Ey is B = 1 25 2 1T (u;, 0,0, (p5)>. Almost the same calcula-

tions show the bound

CuP h C 4P

T
< _r AT £ 23
[ i <7 (S S can + G VO

Summing the two contributions, it concludes the proof after a convenient definition of Cs. O
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Proposition A.3. Let 7 > 0 be a number which precise value will be determined further. There
exists a constant C3(y) which depends on 4 such that one has the bound for the last term of the
dissipative identity (82)

2
> e P~ h £ 2
/0 tydt < 12 / ZZZJT (nﬂ, ul uj> dt+03(7)—ECMHV )13 - (133)

Proof. The definition of Es5 in (82) is

_ 9 5 e 1 € g e e
Bi= S5 (B gy [, we) nzz(uw/ﬂﬂ

-5Y [ o X—*ZZ@

7 3J

Using the Cauchy-Schwarz inequality on the third term [(u®,u®), one gets

&<ZZ@W“MM W>2%X@Af>
—;zﬂj(/g_ufdx) SIS B
J J j T

which can be written

o ~ 1
Es < —— B')Tui,uf,——/ u%lx)— (/ / de—u)
’ ﬁEE(J 251 Ja, QZ ©190

that is
o ~ 1 1
B3 <—— Bir (ui - usdx> , U — — usdx)
’ e? Xr:Zj: ( ! €2 Q; 1€2; Q,
—EZZ B 1 u®dx uE—L u®dx
€2 & =\ o, Tyl e,
52 Z </ EdX m EdX — uj) .

One has, using the geometric identity ) Bjr = \Qj\ld which can be found in [7, 13],

~ 1 1 1
5',r7/ u'dx, u. — —/ usdx> + </ u®dx, —/ ugdx—u‘s->
ZEJ:( Y] Jg, 195 Ja, EJ: Q, 1951 Ja, I

~ 1
:ZZ(B]’,T/ u‘dx, ui—uj).
5 1051 Jo,

We thus get after simplification
o ~ 1 1
Es <—— (ﬁ i (ui - — ude) , ul — —/ ude) —
e? szj ! €451 Jo, €45 Ja, =5
o P 1 1> [ 13
> (B [, i wi ) =5

We add and subtract at each average on the cell the nodal value. We recall the notation d; ,(u®) =
|Qi1j| fﬂj u®dx — u®(x,). We get for the term under the first sum in (134)

R 1 1
Y cdx ), ut — — °d
(oo (s = g [, o) = g f, )
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= <Bj,r (ui - uf(xr)> ,ul — ue(xr)> - (Bj,r <ui - UE(XH) ) 5;',7«(115))
(Bt s o)) (B ) 05,0 ). (135)

The first of these quantities is purely nodal: one has after summation

P (B (2 - w00 ) w = i)
ZXT:(BT<U'$—“E(XT)) , ul —uf > >0‘ZWHU o (x,)? (136)

with the help of (70). The second and third term in the identity (135) can be bounded by a
Young’s inequality with a convenient constant C' = %%“ so that all terms containing us — u®(x,)
are controlled by (136). So we obtain concerning S; defined in (134)

si< (14 o) 7 DMWY

Using the first interpolation result stressed in proposition 3.3, one has in dimension two |J; . (u®)| <
Callu® ()| z2(q,)- So, taking into account energy estimate (3) we have for the first term

2P

We now consider the second term called Sy in (134)

~ 1
5=~ 55 Y (B [
T

/ Sldt<CAP<1+C a)hQIIVg(O)I?{zm)

u®dx, u; — u§>
Using (@ ® b & d) = (b,7)(@,d), one has

g 1
—gzzljr((xr—xj),w/ﬂusdx) (njr, ui—ug)
roj ]

Using the Young’s inequality ab < 75 a? + = b2 we get

T =~ T 2 T 2
yo o 1
T J T ¥ J J

Using one more time the energy estimate (3) the second term in the right hand side of the above
inequality is bounded by - ||V5( )||L2(Q) Thus

T ~ T 2
o € € 2 2P 2 h € 2
/0 Es(t)dt < %/0 ET Ej i <nj7’7uruj> dtJFP{CA <1+CMa>h +20M% VEO) 772+

which is the expected result after convenient redefinition of the constant in front of the last
term. O

End of the proof of the naive estimate of proposition (3.5). One gets
1 /7 T T T
8(T) < 50) - - / S0 (0 uE — uS)? + / By (t)dt + / Ea(t)dt + / By(t)dt
(R 0 0 0
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where integrals are estimated in (129), (132) and (133). Using equation (71), one finds
&(T) < 12|V (0)ll2 (o

1 T
R T
+7/T21j7r(njm,u§uf)2+01(fy) ! ”VE(O)”%P(Q)

€Jo 57 evVCOm

h

VE(0) |3

G V<Ol
o [ z c_ut) de+ CuF V)2
% ], ZZ sl =5 ) i+ Co(3) o [VEO) oy,

This estimate is fundamental, since it shows the competition between different kind of error

terms and the dissipation of the fluxes. Choosing by example 7 < = and v < 3 , all terms like

LC h I 2
Po

+ Cy
€

fo jr (05 —u ¢)2 vanish. All other terms can put together as &(T) <

||H4 Q)a
where the constant |C has , as in 1D, has at most a linear growth in time. It ends the proo% of
the naive estimate. O

B Bihari’s inequality and application

We recall a nonlinear generalization of the Gronwall-Bellman inequality known as Bihari’s inequal-
ity
Lemma B.1. If
t
v) <t [ bolaly(s))ds, (157)
0

with a non negative constante, b(t) a positive function and g a positive non decreasing function
then, noting by G(x) an antiderivative of 1/g(x), one has

t
y(t) < G™1 <G(a) + / b(s)ds> . (138)
0
The proof is trivial by setting Z = a + fot b(s)g(y(s))ds and and verifying that Z' < bg(Z), see

[5]. In our work g(z) = \/z. Moreover a, b(s)? and y are square of L?(€2) norms. More precisely
in our convergence’s proofs one ends to inequality of the type

t t
1 126 (1) < V1120 (0) + / 1A + / 1Bl 2 ¥ [ 22y ds. (139)
for Y, A and B functions of L?(Q. Thus for all t < T

T t
1Y 126 () < 1V 1120 (0) + / 14|20 + / 1Bl 2 1Y |22y ds. (140)

Using the Bihari’s inequality (138) and the Cauchy-Schwarz inequality one obtain for all ¢t < T,

2

1 t
1Y By ®) < 5 { 20/1Y By (O) + 14122 g0 17y + ﬁ\/ / 1Bl oz mands | + (141)
and majorizing ¢t by T in the right-hand side
2
||Y||L2 Q) ||Y||L2 [¢) + ||A||L2 0,T]x8) + \/THBHL?([O,T]xQ) . (142)
) ({0,177
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Integrating in time that gives

2
||Y||L2([o T)x Q) < T( \/||Y||L2 sz)( )+ ||A||L2 ([0,T]x ) + \/T”BHLZ([O,T]XQ)) (143)

We can summarize these calculations by the lemma

Lemma B.2. If Y, A and B are functions of L*(Q) satisfying (159) then

¥ llzsorixey <\ g (20T oy O + 1A orpey + VTUBlizomeny)  (144)

If Al 2 < C et ||BH%2(Q) < C, with C constant then the right-hande side behaves as T'3

for large time. If ||Ally2q) < C or [ [|AllL2(@) < C and [) [|B]|2.q) < C, then the right-hand
side behaves now as T for large time.
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