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Proof of uniform convergence for a cell-centered AP
discretization of the hyperbolic heat equation on general

meshes
Christophe Buet∗, Bruno Després†, Emmanuel Franck‡, Thomas Leroy§

July 9, 2015

Abstract
We prove the uniform AP convergence on unstructured meshes in 2D of a generalization,

see [7], of the Gosse-Toscani 1D scheme for the hyperbolic heat equation. This scheme is also
a nodal extension in 2D of the Jin-Levermore scheme described in [23] for the 1D case. In
2D, the proof is performed using a new diffusion scheme.

1 Introduction
We address the convergence analysis on unstructured meshes of diffusion asymptotic preserving
schemes for the discretization of a problem with a stiff parameter denoted as 0 < ε ≤ 1. The
model problem considered in this work is the hyperbolic heat equation in the domain t ≥ 0 and
x ∈ Ω ⊂ Rn

P ε :


∂tp

ε + 1
ε

div(uε) = 0, pε ∈ R,

∂tuε + 1
ε
∇pε = − σ

ε2 uε, uε ∈ Rn
(1)

discretized with first order finite volume schemes. This problem is representative of many transport
problem such as transfer and neutron transport, for which the small parameter ε is the ratio of two
very different sound velocities and σ is the absorption or the opacity. For simplicity both ε and
σ > 0 are kept constant in space in this study. The system (1) can also be introduced as a specific
linearization of a pressure-velocity system of partial differential equations in the acoustic regime.
In this work we will need the following well known energy estimates concerning the solution Vε

of the Cauchy problem for the partial differential equation (1).

Proposition 1.1. If Ω = Rn or Ω = Tn, then

||Vε||Hp(Ω) ≤ ||Vε(0)||Hp(Ω) (2)

and moreover
σ

ε2 ||u
ε||2L2([0,T ];Hp(Ω)) ≤ ||Vε(0)||2Hp(Ω). (3)
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We will consider well prepared data in the sense that: pε(t = 0) is independent of ε and is
sufficiently smooth; the initial velocity satisfies the equality in the second equation of (1) at leading
order. It writes

pε(t = 0) = p0 and uε(0) = − ε
σ
∇p0. (4)

For such well prepared data, it can be easily shown that the formal limit of P ε for small ε is

P 0 : ∂tp−
1
σ

∆p = 0. (5)

Remark 1.2. We do not consider the regime σ → 0, since it introduces a singularity both in the
initial data of the hyperbolic heat equation and in the limit parabolic equation.

1.1 Precision of AP discretizations
Before addressing the main difficulty of this work which is the discretization on unstructured
meshes, we briefly recall the now well known notion of an asymptotic preserving technique [21]-
[22] which is illustrated in the figure 1. For the simplicity of the presentation, we will consider
mainly semi-discrete numerical methods, this is why the time step does not show up in the graphic.
The parameter h designs a numerical method with characteristic length h ≤ 1: that is we assume
a numerical method P εh for the discretization of P ε.

Definition 1.1 (Uniform AP). If P εh is consistent with P ε uniformly with respect to ε, then we
say that the scheme P εh is uniformly AP (uniformly asymptotic preserving).

However the design of such methods and the numerical proof of this property is difficult. This
is why it has been proposed in [21] to rely on the simpler necessary condition, where the limit as
ε→ 0 of P εh is called the limit diffusion scheme P 0

h .

P 0
h

ε→ 0

P ε

h→ 0

P 0
ε→ 0

h→ 0

P ε
h

Figure 1: The AP (asymptotic diagram) diagram

Definition 1.2 (AP). If P 0
h is consistent with the limit model P 0, then we say that the scheme

P εh is AP (asymptotic preserving).

This property is simpler to analyze than the uniform AP. It explains why it has been very
fruitful in the past. In 1D, many AP schemes have been designed for some PDE and physical
problems: S. Jin, C. D. Levermore [23] or L. Gosse, G. Toscani [18] for the hyperbolic heat
equation, M. Lemou, L. Mieussens, N. Crouseilles [27]-[10]-[11] for some kinetic equations, L.
Gosse [19], C. Buet and co-workers [6] or S. Jin and C. D. Levermore [24] for SN equations and
C. Berthon, R. Turpault [2]-[3]-[4] for generic systems and a non linear radiative transfer model.
Recently some asymptotic preserving schemes for linear systems and non linear radiative transfer
model have been designed in 2D [7]-[8]-[9]. Other application to non linear hyperbolic systems
of conservation laws with stiff diffusive relaxation is to be found is [30]. Relaxation systems
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are treated in [15]. More general situation for transport and discrete velocity systems are in
[25, 26]. However for this type of schemes it is difficult to obtain convergence estimates due to the
competition between the two parameters ε and h. To our knowledge this type of proof are only
given for uniform grids [7] (consistence and stability, Lax theorem), [18] (L1 and BV estimates),
[28] (L2 estimates). The goal of this work is to prove the uniform AP property on unstructured
grids.

To this end we adapt a strategy developed in [16] in a slightly different context. It relies on
the derivation of a priori estimates attached to the AP diagram in figure 1. To have a more global
perspective on this strategy, let us assume some natural abstract a priori estimates for a given
norm which is in our work based on ‖f‖ = ‖f‖L2([0,T ]×Ω) or ‖f‖ = ‖f‖L∞([0,T ];L2(Ω)) where T > 0
is a given final time, Ω = R, in 1D or Ω = [0, 1]2 with periodic boundary conditions in 2D. We
assume five constants a, b, c, d, e > 0 and four additional constants ↓C,C→, C←, C↓ > 0 > 0 such
that the error attached to the branches of the AP diagram can be bounded like

‖P εh − P ε‖naive ≤ ↓Cε
−bhc, (6)

‖P εh − P 0
h‖ ≤ C→εe. (7)

‖P 0
h − P 0‖ ≤ C↓hd, (8)

‖P ε − P 0‖ ≤ C←εa, (9)

The first inequality is the naive error bound which typically blows up for small ε. The second
inequality for ‖P εh − P 0

h‖ is assumed to have a form similar to the last one which expresses that
P 0 is the limit of P ε. The third inequality corresponds to the usual AP property.

Proposition 1.3. Assume that all these inequalities are at hand and that d ≥ c and e ≥ a. Then
the uniform AP holds with a rate at least O

(
h

ac
a+b

)
.

Proof. The triangular inequality writes

‖P εh − P ε‖ ≤ min
(
‖P εh − P ε‖naive, ‖P εh − P 0

h‖+ ‖P 0
h − P 0‖+ ‖P ε − P 0‖

)
which yields, using min(x, y + z) ≤ min(x, y) + min(x, z), d ≥ c and e ≥ a,

‖P εh − P ε‖ ≤ C
(
min

(
ε−bhc, εe

)
+ hd + min

(
ε−bhc, εa

))
≤ C

(
2 min

(
ε−bhc, εa

)
+ hd

)
(10)

with C = max (↓C,C→, C↓, C←). We define a threshold value εthresh by ε−bthreshh
c = εathresh. So

either ε ≤ εthresh so that
min

(
ε−bhc, εa

)
≤ εathresh = h

ac
a+b ,

or ε ≥ εthresh and the same bound is obtained by taking the other term as the minimum. And
since d ≥ c, one gets the abstract bound ‖P εh − P ε‖ ≤ 3Ch

ac
a+b which ends the proof.

1.2 Organization of the proof
The structure of these inequalities explains our strategy: that is we prove separately each of these
inequalities (9-7) with care, so that the inequalities d ≥ c and e ≥ a are true. This part of the
proof relies on specific hyperbolic and parabolic numerical methods. Even if it is technical, the
first three inequalities (9-8) do not yield additional difficulties with respect to the state of the art.
The proof of inequality (7) is provided in 1D, and can be probably be generalized straightforwardly
on cartesian meshes in 2D and 3D. On the other hand our researches on proving (7) for ‖P εh−P 0

h‖
show a fundamental obstruction in dimension greater than one on unstructured meshes which
was not expected initially. Since the main difficulty is related to P 0

h , it motivates the definition
of a new diffusion scheme. To this end we remark that another diffusion scheme is naturally
defined from P εh by killing the derivative ∂tvh in the discrete version of the second equation of (1).
Killing at the continuous level the ∂tv is absolutely equivalent to taking the formal limit ε→ 0+.
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But at the discrete level, it appears that it generates a new family of diffusion schemes, where
both parameters h and ε are present. We call them Diffusion Asymptotic schemes, DAεh. By
construction P 0

h = limε→0DA
ε
h. This is summarized in figure 2. Finally since the scheme DAεh is

still an accurate discretization of P 0, our proof of the uniform AP property is based on the new
AP diagram displayed in figure 3.

∂tvh = 0
P ε

h DAε
h

P0
h

ε→ 0

Figure 2: Definition of the diffusion asymptotic scheme DAεh.

Our main theorem 3.16 in dimension 2 is based on this structure and it may be stated as follows:
The so-called JL-(b) scheme defined in [7] for the discretization of the hyperbolic heat
equation (1) (the scheme is cell-centered with nodal based fluxes) is uniformly AP
on unstructured meshes, with a rate of convergence at least O(h 1

4 ) for sufficiently
smooth initial data. This is an improvement with respect to [7] where only AP was proven.
To our knowledge this is the first time that such a result is obtained on general unstructured
multidimensional meshes. More precisely the convergence estimate can be written as

error ≤ C min
(√

h

ε
, εmax

(
1,
√
ε

h

)
+ h+ ε

)

where the first argument in the min function comes from the hyperbolic analysis and the second
argument comes from the parabolic analysis. Some natural regularity assumptions are nevertheless
imposed on the mesh in the hypothesis 2.1, this is not very restrictive. For example meshes with
angles greater than 90 degrees are allowed. If the mesh is made with triangles, the hypothesis
is fulfilled if all angles are greater than 12 degrees, see [7]. It is interesting to notice that the
rate of uniform convergence is O(h 1

3 ) in dimension one. The difference essentially comes from the
estimate of the reconstruction of the initial velocity which is needed to rewrite a diffusion scheme
as a non homogeneous hyperbolic scheme: it is much simpler in dimension one (see equation (23))
than in dimension two (see proposition (3.13)). In this work we considered mainly semi-discrete
numerical schemes, since it simplifies a lot the notations and allow to focus on the main difficulties,
but the final estimates of convergence can be generalized to fully discrete schemes, using the a
priori estimates developed in [12]. For explicit schemes, these estimates add a term proportional
to the square root of the maximal time step allowed by the CFL condition. Since our problem
is an hyperbolic+relaxation problem, with a limit which is parabolic, this additional term can be
computed and is of the order between h (for purely hyperbolic) to h2 (for purely parabolic). We
refer to [7] for the detail of CFL condition in 1D and 2D. Concerning the implicit fully discrete
version of the semi-discrete scheme which is unconditionally stable and well adapted to the test
problem analyzed at the end of this work, the same kind of error terms can be analyzed. We will
obtained the following result in dimension two.

Theorem 1.1. With some usual regularity assumptions on the mesh, the error between our cell-
centered finite volume corner-based-flux implicit discretization Pε

h,∆t and the exact solution is

‖Vε
h(tn)−Vε(tn)‖L2(Ω) ≤ C

(
h

1
4 + ∆t 1

2

)
‖p0‖H4(Ω), tn = n∆t ≤ T.

The constant is independent of h, ε and ∆t and behaves less than T 3
2 for large T .

The proof is an easy add-on on the space estimate O(h 1
4 ) of theorem 3.16, by means of an

abstract method [12] which gives a general bound O(∆t 1
2 ) of the difference between the semi-

discrete scheme and the implicit Euler scheme. This will be explained at the end of this work.
The rate of convergence is confirmed by the numerical results of section 5, which show an even
better rate of convergence.
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and
h→ 0

P 0P ε

P ε
h

ε→ 0

h→ 0

P0
h

∂tvh = 0
DAε

h

ε→ 0

ε→ 0

Figure 3: The new AP diagram, where the previous branch is still displayed in dashed lines.

We think that some of our results can have an interest for the development and use of such
methods in research or industrial codes with complex non linear physics on unstructured meshes.
Indeed for such codes cell-centered Finite Volume schemes are a natural solution in terms of data
structure. The point is the following: the scheme studied in this work is the only cell-centered one
we know in 2D to compute the solutions of problems which admit diffusion limits in certain regimes
and for which it is possible to prove the AP property. Since the structure of this cell-centered
scheme is nodal based, it strongly questions the ability of standard Finite Volume methods with
edge-based fluxes to recover asymptotic diffusion regimes. As demonstrated in this work, nodal
based Finite Volume techniques do not suffer from this drawback. For linear wave equation the
nodal scheme can be understand as some 1D Riemann problem written in some direction around
each node, so can be interpreted as an approximation of the 2D Riemann problem [17].

1.3 Organization of the work
This work is organized as follows. Section 2 is dedicated to the discretization of the model problem
in dimension one on irregular grids. The convergence is proved in theorem 2.10 with order h 1

3

in the L2 space-time norm. In the next section, the nodal solvers for the hyperbolic equation
are defined, and the various a priori estimates proved. The main theorem of uniform AP for the
JL-(b) scheme with a rate O(h 1

4 ) is proved at the end of the section. Section 5 provides numerical
results that sustain the fact that the convergence order depends on the relative value of ε and h,
and so is mixed hyperbolic/parabolic. Our final remarks will be gathered in a conclusion. All our
results and numerical methods in 2D can be generalized in 3D provided a convenient definition of
the nodal corner vector is used as in [13].

2 Analysis in 1D
The model problem in dimension one writes

P ε :
{
∂tp

ε + 1
ε∂xu

ε = 0,
∂tu

ε + 1
ε∂xp

ε = − σ
ε2u

ε.
(11)

As stressed already in (4), we consider well-prepared data pε(t = 0) = p0 and uε0 = − ε
σ∂xp0. The

equations (11) admit the formal diffusion limit when ε tends to 0:

P 0 : ∂tp−
1
σ
∂xxp = 0. (12)

A useful variable will be the scaled gradient

v = − 1
σ
∂xp. (13)
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2.1 Notations
We denote xj+1/2 the nodes, the cells j are the intervals [xj−1/2, xj+1/2], thus ∆xj = xj+1/2 −
xj−1/2, xj is the center of the cell j that is xj = 1

2 (xj+1/2 + xj−1/2), and ∆xj+1/2 = xj+1 − xj =
1
2 (∆xj+1 + ∆xj). Natural assumptions on the mesh are summarized below:

Hypothesis 2.1 (Regularity of the mesh in 1D and constant CM). We consider that there exists
a universal constant 0 < CM ≤ 1 independent of the mesh size h = supj∈Z ∆xj which controls the
mesh from below

CMh ≤ ∆xj ≤ h ∀j ∈ Z. (14)

The semi-discrete JL(b) scheme, derived in [7] in 2D, can also be written in 1D on irregular
meshes as

P εh :


d

dt
pεj +

uε
j+ 1

2
− uε

j− 1
2

ε∆xj
= 0,

d

dt
uεj +

pε
j+ 1

2
− pε

j− 1
2

ε∆xj
= − σ

ε2

uε
j+ 1

2
+ uε

j− 1
2

2 ,

(15)

with the fluxes pε
j+ 1

2
and uε

j+ 1
2
are the solutions of the well-posed linear system

j ∈ Z :


pεj+ 1

2
+ uεj+ 1

2
+ σ∆xj

2ε uεj+ 1
2

= pεj + uεj ,

−pεj+ 1
2

+ uεj+ 1
2

+ σ∆xj+1

2ε uεj+ 1
2

= −pεj+1 + uεj+1.

(16)

This scheme is the same as the Gosse-Toscani scheme1. Other equivalent forms of P εh can be
obtained by various manipulations, as in (29). We use another formulation of the Gosse-Toscani
obtained using the Jin-Levemore scheme [23] and a discretization of the source term which uses
the fluxes. Contrary to the Gosse-Toscani scheme which uses Riemann problem, this formulation
based an elementary algebraic computation is easier to write in 2D on unstructured meshes (the
design is detailed in [7]). The natural pointwise initialization is chosen

pεj(0) = p0(xj) and uεj(0) = − ε
σ
∂xp0(xj) for all j ∈ Z. (17)

1A long and tedious computation shows that the scheme is strictly equivalent to the Gosse-Toscani’s scheme,
described in [18] but only for uniform meshes, which writes in terms of wε, vε = pε ± uε

dwj

dt
+
Mj− 1

2

ε

wεj − w
ε
j−1

∆xj
=

1
ε∆xj

(1−Mj− 1
2

)(vεj − w
ε
j ) = Mj− 1

2

∆xj− 1
2

∆xj
σ

2ε2
(vεj − w

ε
j ),

dvεj

dt
−
Mj+ 1

2

ε

vεj+1 − v
ε
j

∆xj
=

1
ε∆xj

(1−Mj+ 1
2

)(wεj − v
ε
j ) = Mj+ 1

2

∆xj+ 1
2

∆xj
σ

2ε2
(wεj − v

ε
j )

with Mj+ 1
2

= 2ε
σ∆x

j+ 1
2

+2εand ∆xj+ 1
2

= ∆xj+∆xj+1
2 . By writing{

Mj− 1
2

(wεj−1 − w
ε
j ) = Mj− 1

2
wj−1 −Mj+ 1

2
wj + (Mj+ 1

2
−Mj− 1

2
)wεj

Mj+ 1
2

(vεj+1 − v
ε
j ) = Mj+ 1

2
vεj+1 −Mj− 1

2
vεj − (Mj+ 1

2
−Mj− 1

2
)vεj

then in terms of pε an uε we have evidently
dpεj

dt
+

1
ε

Mj+ 1
2
uε
j+ 1

2
−Mj− 1

2
uε
j− 1

2

∆xj
= 0,

duεj

dt
+

1
ε

Mj+ 1
2
pε
j+ 1

2
−Mj− 1

2
pε
j− 1

2

∆xj
= −

1
2

(
Mj+ 1

2

∆xj+ 1
2

∆xj
σ

ε2
+Mj− 1

2

∆xj− 1
2

∆xj
σ

ε2

)
uεj +

Mj+ 1
2
−Mj− 1

2

ε∆xj
pεj

with the fluxes given by pε
j+ 1

2
=

pε
j +pε

j+1
2 +

uε
j−u

ε
j+1

2 and uj+ 1
2

=
uεj + uεj+1

2
+
pεj − p

ε
j+1

2
.
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When ε tends to 0, the scheme P εh admits the diffusion limit scheme P 0
h

P 0
h : ∆xj

d

dt
pj −

1
σ

(
pj+1 − pj
∆xj+ 1

2

− pj − pj−1

∆xj− 1
2

)
= 0 (18)

with the pointwise initialization

pj(0) = p0(xj) for all j ∈ Z. (19)

Other quantities are the reconstructed gradient
vj+ 1

2
= − 1

σ

pj+1 − pj
∆xj+ 1

2

,

vj =
vj+ 1

2
+ vj− 1

2

2 .

(20)

We denote by Vε(t, x) = (pε(x, t), uε(x, t)) the solution of the hyperbolic heat equations P ε. We
reconstruct similar quantities from the diffusion scheme: it yields Wε(t, x) = (p(x, t), εv(x, t))
which is the solution of the diffusion limit (12)-(13). The indicatrix function of the interval
(xj−1/2, xj+1/2) is denoted as 1j(x) = 1 if x ∈ (xj−1/2, xj+1/2) and 1j(x) = 0 in the other case.
With this notation we note Vε

h(t, x) =
(∑

j∈Z p
ε
j(t)1j(x),

∑
j∈Z u

ε
j(t)1j(x)

)
the solution of the

JL-(b) scheme P εh . Finally we note Wε
h(t, x) =

(∑
j∈Z pj(t)1j(x), ε

∑
j∈Z vj(t)1j(x)

)
the solution

of the diffusion scheme P 0
h (18)-(20).

For simplicity we choose a final time T > 0. All error estimates will be given for t ≤ T , either
in the norm ‖f(t)‖L∞([0,T ];L2(R)), or mostly in the norm ‖f‖L2([0,T ]×R).

Hypothesis 2.2 (Regularity of the initial data and constant CA). We consider that there exists
a universal constant CA > 0 which controls all kind of approximations/interpolations/projections
on the mesh of exact functions. We will write for example the error estimates at the initial time
under the form

‖Vε
h(0)−Vε(0)‖L2(R) ≤ CAh‖p0‖H2(R) (21)

and
‖Wε

h(0)−Wε(0)‖L2(R) ≤ CAh‖p0‖H2(R). (22)

The second inequality in the hypothesis can be related to the sharper inequality∥∥∥∥∑
j

(
uεj(0)− εvj(0)

)
1j
∥∥∥∥
L2(R)

≤ CAhε‖p0‖H2(R). (23)

The other technical constants used to bound the errors of the left, top, right and bottom branches
of the AP diagram 1 will be denoted as ↓C, C→, C↓ and C←.

2.2 Study of ‖P ε − P 0‖
In this section we prove a natural error estimate [16] between the solution of the hyperbolic heat
equations (11) and the solution of the diffusion limit equation (12).

Lemma 2.3. One has the estimate

‖Vε −Wε‖L2([0,T ]×R) ≤ C← ε‖p0‖H3(R), C← = T
3
2

σ2 . (24)

Proof. We redefine v = − ε
σ∂xp with p the diffusion solution of (12) and introduce Rε such that

the solution of the diffusion equation satisfies{
∂tp+ 1

ε∂xv = 0,
∂tv + 1

ε∂xp+ σ
ε2 v = Rε

(25)
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where Rε = ∂tv = − ε
σ∂txp = − ε

σ2 ∂xxxp. Note that ‖Rε(t)‖L2(R) ≤ ‖Rε(0)‖L2(R) ≤ ε
σ2 ‖p0‖H3(R).

Denoting eε = p− pε, fε = v − uε, we make the difference between the systems (11) et (25){
∂te

ε + 1
ε∂xf

ε = 0,
∂tf

ε + 1
ε∂xe

ε + σ
ε2 f

ε = Rε.
(26)

Since data are well-prepared, one has eε(0) = fε(0) = 0. Consider ‖Vε−Wε‖2L2(R) = ‖eε‖2L2(R) +
‖fε‖2L2(R). Adding the first equation of (26) multiplied by eε and the second multiplied by fε

and integrating on R, we find out that: 1
2
d
dt‖V

ε −Wε‖2L2(R) ≤
∫
RR

εfεdx ≤ ‖Rε‖L2(R)‖Vε −
Wε‖L2(R). One gets a bound of ‖Vε−Wε‖L∞([0,T ];L2(R)) by integration between 0 and T. Finally
‖Vε −Wε‖L2([0,T ]×R) ≤

√
T‖Vε −Wε‖L∞([0,T ];L2(R)) which ends the proof.

2.3 Stability estimates for P ε
h and P 0

h

The estimates (27-28) and (31) characterize the dissipation rate of both schemes.

Proposition 2.4. The scheme P εh is stable in L2 norm. Moreover,√∫ T

0

(∑
∆xj+ 1

2
(uε
j+ 1

2
)2
)
dt ≤ ε√

σ
‖Vε

h(0)‖L2(R) (27)

and √√√√√∫ T

0

∑
j∈Z

(uε
j+ 1

2
− uεj)2 +

∑
j∈Z

(uε
j− 1

2
− uεj)2

 dt ≤
√
ε‖Vε

h(0)‖L2(R). (28)

Remark 2.5. The strategy of the proof of many estimates in this work consists in analyzing
the balance between the dissipation of the fluxes and the physical dissipation (all source terms like
− σ
ε2u) on the one hand, and some truncation errors on the other hand. This is why it is convenient

to reformulate P εh so that the pressure fluxes pε
j+ 1

2
and pε

j− 1
2
are eliminated in the second equation

of (15). This elimination is technically convenient since all dissipation terms are expressed using
the same variable, namely u. It will simplify a lot the comparisons between all kinds of dissipation
terms and other errors terms.

Proof. According to the above remark we obtain the formulation (29) which is equivalent to P εh

∆xj
d

dt
pεj +

uε
j+ 1

2
− uε

j− 1
2

ε
= 0,

∆xj
d

dt
uεj −

uε
j+ 1

2
+ uε

j− 1
2

ε
+ 2
ε
uεj = 0,(

2 +
σ∆xj+ 1

2

ε

)
uεj+ 1

2
= pεj − pεj+1 + uεj + uεj+1.

(29)

Consider now the discrete quadratic energy E(t) = 1
2
∑
j ∆xj((pεj)2 + (uεj)2). Multiplying the first

equation of (29) by pεj and the second equation by uεj and adding on all the cells, one finds

E′(t) = −
∑
j∈Z

uε
j+ 1

2
− uε

j− 1
2

ε
pεj +

∑
j∈Z

uε
j+ 1

2
+ uε

j− 1
2

ε
uεj −

2
ε

∑
j

(uεj)2.

Since
∑
j(uεj+ 1

2
− uε

j− 1
2
)pεj =

∑
j u

ε
j+ 1

2
(pεj − pεj+1), one has by using the third equation of (29) and

rearranging the terms

E′(t) +
∑
j∈Z

(uε
j+ 1

2
− uεj)2

ε
+
∑
j∈Z

(uε
j− 1

2
− uεj)2

ε
+ σ

ε2

∑
j∈Z

∆xj
(uε
j+ 1

2
)2 + (uε

j− 1
2
)2

2 = 0. (30)
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Integrating (30) between 0 and t, one finds E(t) ≤ E(0), that is the L2 stability of P εh . The
estimate (27) comes from ∆xj+ 1

2
= 1

2 (∆xj + ∆xj+1). The estimate (28) is directly deduced from
(30).

Some similar bounds hold for the quantities related to the diffusion scheme (18). First, mul-
tiplying the diffusion scheme by pj and adding on all the cells, one has the L2 stability in the
sense

1
2
d

dt

∑
j

∆xjp2
j = − 1

σ

∑
j

(pj+1 − pj)2

∆xj+ 1
2

.

Thus the following estimate holds for the function v̄h =
(
vj+ 1

2

)
j
defined by (20)

‖v̄h‖L2([0,T ]×R) =

√√√√∫ T

0

∑
j

∆xj+ 1
2
(vj+ 1

2
)2 ≤

√
σ

2 ‖ph(0)‖L2(R), C > 0. (31)

2.4 Study of ‖P ε
h − P ε‖naive

In this section we prove the convergence of P εh to P ε. We still denote V ε(t) = (pε, uε).

Lemma 2.6. There exists a constant ↓C > 0 independent of h, ε, CM, with at most a linear
growth in time, such that the following estimate holds

‖Vε
h −Vε‖L2([0,T ]×R) ≤

↓C√
CM

√
h

ε
‖p0‖H2(R) . (32)

Proof. We use the method introduced by C. Mazeran [29] in his PhD thesis. It starts with an
estimate for the time derivative of E = 1

2‖V
ε
h − Vε‖2L2(R). For the sake of simplicity, q′ stands

indifferently for d
dtq or ∂tq for any quantity q. One has

E ′(t) = 1
2

∫
R

((pεh)2 + (uεh)2)′dx︸ ︷︷ ︸
D1

+ 1
2

∫
R

((pε)2 + (uε)2)′dx︸ ︷︷ ︸
D2

+
∫
R

(−(pεh)′pε − (uεh)′uε)dx︸ ︷︷ ︸
D3

+
∫
R

(−pεh(pε)′ − uεh(uε)′dx︸ ︷︷ ︸
D4

We will successively estimate each of those terms, the fundamental idea being that D1 ≤ 0 and
D2 ≤ 0 are used to control spurious contributions in D3 and D4. First D1 corresponds to the
entropy production of the scheme. Thanks to (30), one has

D1 = −1
ε

∑
j∈Z

(uεj+ 1
2
− uεj)2 − 1

ε

∑
j∈Z

(uεj− 1
2
− uεj)2 − σ

ε2

∑
j∈Z

∆xj
(uε
j+ 1

2
)2 + (uε

j− 1
2
)2

2 ≤ 0.

One also directly obtains

D2 = −
∑
j∈Z

∆xj
σ

ε2

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

(uε)2dx

)
≤ 0.

For D4, one gets directly

D4 =
∑
j∈Z

pεj
uε(xj+ 1

2
)− uε(xj− 1

2
)

ε
+
∑
j∈Z

uεj
pε(xj+ 1

2
)− pε(xj− 1

2
)

ε
+
∑
j∈Z

σ

ε2u
ε
j

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx

9



In this method the third term D3 is more complicated to study

D3 =
∑
j∈Z

uε
j+ 1

2
− uε

j− 1
2

ε

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

pε(x)dx
)

+
∑
j∈Z

pε
j+ 1

2
− pε

j− 1
2

ε

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)

+
∑
j∈Z

∆xj
σ

ε2

uε
j+ 1

2
+ uε

j− 1
2

2

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)
.

It is decomposed in several pieces. We add and subtract in each fluxes the value of the unknowns
in the cell. We also add and subtract to the two first integrals the value of the unknowns on the
edge. Denoting by δ±j (g) = 1

∆xj

∫ x
j+ 1

2
x

j− 1
2

g(x)dx− g(xj± 1
2
), one gets after rearrangements

D3 =
∑
j∈Z

uε
j+ 1

2
− uεj
ε

δ+
j (pε) +

∑
j∈Z

uεj − uεj− 1
2

ε
δ−j (pε)

+
∑
j∈Z

pε
j+ 1

2
− pεj
ε

δ+
j (uε) +

∑
j∈Z

pεj − pεj− 1
2

ε
δ−j (uε)

−
∑
j∈Z

uε(xj+ 1
2
)− uε(xj− 1

2
)

ε
pεj −

∑
j∈Z

pε(xj+ 1
2
)− pε(xj− 1

2
)

ε
uεj

+
∑
j∈Z

∆xj
σ

ε2

uε
j+ 1

2
+ uε

j− 1
2

2

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)

Using the fluxes’ definition (16), one can eliminate the pressure fluxes. With a Young’s inequality
ab ≤ αa2 + 1

4αb
2 where α > 0, one gets

∑
j∈Z

pε
j+ 1

2
− pεj
ε

δ+
j (uε) =

∑
j∈Z

1
ε

(uεj − uεj+ 1
2
)δ+
j (uε)− σ

2ε2

∑
j∈Z

∆xjuεj+ 1
2
δ+
j (uε)

≤ α
∑
j∈Z

(uε
j+ 1

2
− uεj)2

ε
+
(

1
4αε + σ

2ε2

)∑
j∈Z

δ+
j (uε)2 + σ

8ε2

∑
j∈Z

∆x2
j

(
uεj+ 1

2

)2
.

Using this expression in D3 and using again Young’s inequality, one gets for arbitrary α > 0

D3 ≤ α
∑
j∈Z

(uε
j+ 1

2
− uεj)2

ε
+ α

∑
j∈Z

(uε
j− 1

2
− uεj)2

ε

+
∑
j∈Z

((
1

2αε + σ

2ε2

)(
δ+
j (uε)2 + δ−j (uε)2

)
+
δ+
j (pε)2 + δ−j (pε)2

2εα

)

+
∑
j∈Z

1
8εσ∆x2

j

(uε
j− 1

2
)2 + (uε

j+ 1
2
)2

ε
+
∑
j∈Z

∆xj
σ

ε2

uε
j+ 1

2
+ uε

j− 1
2

2

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)

−
∑
j∈Z

uεj
pε(xj+ 1

2
)− pε(xj− 1

2
)

ε
−
∑
j∈Z

pεj
uε(xj+ 1

2
)− uε(xj− 1

2
)

ε
.
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We now sum all bounds contributing to E ′(t) and we get:

E ′(t) ≤ (−1 + α)
∑
j∈Z

(uε
j+ 1

2
− uεj)2 + (uε

j− 1
2
− uεj)2

ε

+
∑
j∈Z

((
1

2αε + σ

2ε2

)(
δ+
j (uε)2 + δ−j (uε)2)+

δ+
j (pε)2 + δ−j (pε)2

2εα

)

+
∑
j∈Z

1
8εσ∆x2

j

(uε
j− 1

2
)2 + (uε

j+ 1
2
)2

ε

+
∑
j∈Z

∆xj
σ

ε2

uε
j+ 1

2
+ uε

j− 1
2

2

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)
−
∑
j∈Z

∆xj
σ

2ε
(uε
j− 1

2
)2 + (uε

j+ 1
2
)2

ε

+
∑
j∈Z

∆xj
σ

ε2u
ε
j

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)
−
∑
j∈Z

∆xj
σ

ε2

(
1

∆xj

∫ x
j+ 1

2

x
j− 1

2

(uε)2(x)dx
)
.

We now examine the sum of all terms in the two last lines of the RHS of the above inequality ,
which we denote S. One finds

S = −
∑
j∈Z

∆xj
σ

2ε2


uεj− 1

2
− 1

∆xj

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx

2

+

uεj+ 1
2
− 1

∆xj

∫ x
j+ 1

2

x
j− 1

2

uε(x)dx

2


+ σ

2ε2

∑
j∈Z

(∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)(

uεj − uεj+ 1
2

+ uεj − uεj− 1
2

)

≤ σ

2ε2

∑
j∈Z

(∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)(

uεj − uεj+ 1
2

+ uεj − uεj− 1
2

)
.

Using another Young’s inequality, one has for all α̂ > 0

S ≤ σ2

8α̂ε3

∑
j∈Z

(∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)2

+ α̂
∑
j∈Z

(uεj − uεj+ 1
2
)2 + (uεj − uεj− 1

2
)2

ε
.

For example by choosing α = 1
2 and α̂ = 1

2 , and coming back to E ′(t) we get

E ′(t) ≤
∑
j∈Z

((
1
ε

+ σ

2ε2

)(
δ+
j (uε)2 + δ−j (uε)2)+ 1

ε

(
δ+
j (pε)2 + δ−j (pε)2)) (33)

+
∑
j∈Z

1
8εσ∆x2

j

(uε
j− 1

2
)2 + (uε

j+ 1
2
)2

ε
+ σ2

4ε3

∑
j∈Z

(∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)2
. (34)

To estimate the contributions on the first line we use the following fact: for any quantity q, one
can use q(xj− 1

2
) = q(x) +

∫ x
j− 1

2
x

d
dsq(s)ds and integrate this expression in the cell ∆xj ; we get∑

j∈Z δ
±
j (q)2 ≤ h‖q‖2H1(R). Therefore the first terms on the right hand side of (33) can be estimated

as (
1
ε

+ σ

2ε2

)∫ t

0

∑
j∈Z

(
δ+
j (uε)2 + δ−j (uε)2) dt ≤ 2h

(
1
ε

+ σ

2ε2

)
‖uε‖2L2([0,t]:H1(R)).

Since ‖uε‖2L2([0,t]:H1(R)) ≤ t‖Vε(0)‖2H1(R) and also σ
ε2 ‖u

ε‖2L2([0,t]:H1(R)) ≤ ‖Vε(0)‖2H1(R) by (2) and
(3), one gets that(

1
ε

+ σ

2ε2

)∫ t

0

∑
j∈Z

(
δ+
j (uε)2 + δ−j (uε)2) dt ≤ 2h

(
t

ε
+ 1

2

)
‖Vε(0)‖2H1(R). (35)
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A similar and simpler formula for the next terms is

1
ε

∫ t

0

∑
j∈Z

(
δ+
j (pε)2 + δ−j (pε)2) ≤ 2ht

ε
‖pε‖2H1(R) ≤ 2ht

ε
‖Vε(0)‖2H1(R). (36)

Next, using the assumption (2.1) on the mesh and the estimate (27), one controls the next term
by ∫ T

0

∑
j∈Z

1
8εσ∆x2

j

(uε
j− 1

2
)2 + (uε

j+ 1
2
)2

ε
≤ h

4CM
‖Vε(0)‖2L2(R). (37)

Finally the last term in (34) can be bounded as

σ2

4ε3

∑
j∈Z

(∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)2
≤ σ2

4ε3h‖u
ε‖2L2(R)

so that
σ2

4ε3

∫ t

0

∑
j∈Z

(∫ x
j+ 1

2

x
j− 1

2

uε(x)dx
)2
≤ σ2

4ε3h‖u
ε‖2L2([0,t]×R) ≤

σ

4εh‖V
ε(0)‖2L2(R) (38)

by means of the energy identity. We note that

‖Vε(0)‖Hp(R) ≤ (1 + ε/σ)‖p0‖Hp+1(R) ≤ (1 + 1/σ)‖p0‖Hp+1(R) ∀p ∈ N. (39)

So using (35-38) we obtain for all time t ≤ T

E (t) ≤ E (0) +
(
t

ε
+ 1

2 + t

ε
+ 1

4CM
+ σ

4ε

)
h‖Vε(0)‖2H1(R)

≤ (1 + 1/σ)
(
C2
Ah+ 2t

ε
+ 1

2 + 1
4CM

+ σ

4ε

)
h‖p0‖2H2(R)

where the initialization stage is estimated using (21). One obtains after integration

‖Vε
h −Vε‖L2([0,T ]×R) ≤

√
T

(√
1 + 1/σ ×

√
C2
Ahε+ 2T + ε

2 + ε

4CM
+ σ

4

)√
h

ε
‖Vε(0)‖H1(R).

The constant in parentheses is
√
T
√

1 + 1/σ
√
C2
AhεCM + 2TCM + ε

2CM + ε
4 + σ

4CM/
√
CM ≤

↓C√
CM

with

↓C =
√
T
√

1 + 1/σ ×
√
C2
A + 2T + 1

2 + 1
4 + σ

4 .

The proof is ended.

2.5 Study of ‖P 0
h − P 0‖

We first recall a fundamental error estimate [14] for the diffusion limit scheme (18-19).

Lemma 2.7. There exists a constant C↓ > 0 independent of h, ε, CM, with a linear growth in
time, such that the following estimate holds

‖Wε
h −Wε‖L2([0;T ]×R) ≤

C↓√
CM

h‖p0‖H2(R). (40)
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Proof. We use a method that one can find in Eymard-Gallouet-Herbin [14]. It is based on a notion
of consistency for finite volumes schemes. We set

sj = ∂xxp(xj)−
∂xp(xj+ 1

2
)− ∂xp(xj− 1

2
)

∆xj
and rj+ 1

2
= ∂xp(xj+ 1

2
)− p(xj+1)− p(xj)

∆xj+ 1
2

,

so that one has the identity

d

dt
p(xj)−

1
σ∆xj

(
p(xj+1)− p(xj)

∆xj+ 1
2

− p(xj)− p(xj−1)
∆xj− 1

2

)
= sj

σ
+
rj+ 1

2
− rj− 1

2

σ∆xj
.

We next introduce the difference ej = p(xj)− pj which satisfies

d

dt
ej −

1
σ∆xj

(
ej+1 − ej
∆xj+ 1

2

− ej − ej−1

∆xj− 1
2

)
= sj

σ
+
rj+ 1

2
− rj− 1

2

σ∆xj

with ej(0) = 0 for all j. By multiplying this equation by ej and denoting by ‖eh‖2L2(R) =
∑
j ∆xje2

j ,
one finds that

1
2
d

dt
‖eh‖2L2(R) + 1

σ

∑
j

(ej+1 − ej)2

∆xj+ 1
2

= 1
σ

∑
j

∆xjsjej + 1
σ

∑
j

rj+ 1
2
(ej − ej+1).

The Cauchy-Schwarz inequality yields∑
j

rj+ 1
2
(ej − ej+1) ≤ 1

2
∑
j

(ej+1 − ej)2

∆xj+ 1
2

+ 1
2
∑
j

∆xj+ 1
2
r2
j+ 1

2
.

One finds out with natural notations

1
2
d

dt
‖eh‖2L2(R) + 1

2σ
∑
j

(ej+1 − ej)2

∆xj+ 1
2

≤ 1
σ
‖sh‖L2(R)‖eh‖L2(R) + 1

2σ ‖rh‖
2
L2(R). (41)

Using the definitions of the truncation error sh, one easily obtains by using classical arguments
‖sh‖L2([0,T ]×R) ≤

√
2h‖∂xxxp‖L2([0,T ]×R): since p satisfies the diffusion equation (12), one gets

‖∂xxxp‖L2([0,T ]×R) ≤
√
σ/2‖∂xxp0‖L2(R); one gets ‖sh‖L2([0,T ]×R) ≤

√
σh‖∂xxp0‖L2(R). The same

manipulations on the second truncation error rh yield

‖sh‖L2([0,T ]×R) + ‖rh‖L2([0,T ]×R) ≤
√
σh‖p0‖H2(R). (42)

One gets the bound from (41)

‖eh‖2L2(R)(t) ≤ eh‖2L2(R)(0) +
∫ t

0

1
σ
‖sh‖L2(R)‖eh‖L2(R) + 1

2σ ‖rh‖
2
L2([0,T ]×R).

The use of the lemma (B.2), which is a corrolary of the Bihari’s inequality, gives us:

‖eh‖2L2([0,T ]×Ω) ≤
1
2T
(

2
√
‖eh‖2L2(Ω)(0) + 1

σ
‖rh‖2L2([0,T ]×Ω) + 1

σ

√
T‖sh‖L2([0,T ]×Ω)

)2

. (43)

The initial value is bounded using (22) and taking into account (42) we obtain

‖eh‖L2([0,T ]×Ω) ≤
√
T

2

(
2

√
CA + 1√

σ
+
√
T

σ

)
h‖p0‖ = B h‖p0‖. (44)
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We also deduce from (41)∫ T

0

∑
j

(ej+1 − ej)2

∆xj+ 1
2

≤
(
‖sh‖L2([0,T ]×R) + ‖rh‖L2([0,T ]×R)

)2 + ‖eh‖2L2([0,T ]×R)

≤
(
σ +B2)h2‖p0‖2H2(R)

The other term that we must bound in (40) is fh = ε (v(xj)− vj) 1j(x) = −ε
(
∂xp(xj)

σ + vj

)
1j(x)

with vj defined in (20). It yields

‖fh‖L2([0;T ]×R) = ε

2σ

∫ T

0

∑
j

∆xj
∣∣∣∣pj+1 − pj

∆xj+ 1
2

− ∂xp(xj) + pj − pj−1

∆xj− 1
2

− ∂xp(xj)
∣∣∣∣2
 1

2

(45)

where the definition of ej yields pj+1−pj

∆x
j+ 1

2

−∂xp(xj) =
(
∂xp(xj+ 1

2
)− ∂xp(xj)

)
+
(
ej+1−ej

∆x
j+ 1

2

)
− rj+ 1

2
.

One gets from the triangular inequality∫ T

0

∑
j

∆xj+ 1
2

(
pj+1 − pj
∆xj+ 1

2

− ∂xp(xj)
)2
 1

2

≤

∫ T

0

∑
j

∆xj+ 1
2

(
∂xp(xj+ 1

2
)− ∂xp(xj)

)2
 1

2

+
[
σ +B2] 1

2 h‖p0‖H2(R) + ‖rh‖L2([0,T ]×R).

Since
(∫ T

0
∑
j ∆xj+ 1

2

(
∂xp(xj+ 1

2
)− ∂xp(xj)

)2) 1
2 ≤ h

√
σ
2 ‖p0‖H1(R) and the estimate (42) holds,

one gets∫ T

0

∑
j

∆xj+ 1
2

(
pj+1 − pj
∆xj+ 1

2

− ∂xp(xj)
)2
 1

2

≤
([
σ +B2] 1

2 +
√
σ

2 +
√
σ

)
h‖p0‖H2(R). (46)

Taking into account that the weight ∆xj (45) is different from the weight ∆xj+ 1
2
in (46), one gets

‖fh‖L2([0;T ]×R) ≤
ε√
CM

([
σ +B2] 1

2 +
√
σ

2 +
√
σ

)
h‖p0‖H2(R) ≤

1√
CM

([
σ +B2] 1

2 +
√
σ

2 +
√
σ

)
h‖p0‖H2(R),

(47)
since ε ≤ 1. Finally, the difference ‖Wε

h −Wε‖2L2([0;T ]×R) = ‖eh‖2L2([0;T ]×R) + ‖fh‖2L2([0;T ]×R) is
bounded using (44) and (47)

‖Wε
h −Wε‖L2([0;T ]×R) ≤

C↓√
CM

h‖p0‖H2(R)

and the constant C↓ with the definition of B by (44), has, at most, a linear growth in time. It
ends the proof.

2.6 Study of ‖P ε
h − P 0

h‖
In this section we prove an error estimate between the solution of the scheme (29) and the solution
of the diffusion scheme (18). It is necessary to use some comparison estimates between the initial
data of P εh and P 0

h .

Lemma 2.8. There exists a constant C→ > 0 independent of h, ε, CM and growth as T 3
2 for large

T such that the following estimate holds

‖Vε
h −Wε

h‖L2([0,T ]×R) ≤
C→

CM
ε‖p0‖H2(R). (48)
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Proof. For practical reasons we use the formulation (29) of the hyperbolic scheme which is equiv-
alent to (15-16) and we reformulate the diffusion scheme (18-20) as

∆xj
d

dt
pj +

uj+ 1
2
− uj− 1

2

ε
= 0,

∆xj
d

dt
uj −

uj+ 1
2

+ uj− 1
2

ε
+ 2
ε
uj = ∆xjRj ,

pj − pj+1 + uj + uj+1 = 2uj+ 1
2

+ σ∆xj+ 1
2

uj+ 1
2

ε
+ ∆xj+ 1

2
Sj+ 1

2
,

uj+ 1
2

= − ε
σ

pj+1 − pj
∆xj+ 1

2

,

uj =
uj+ 1

2
+ uj− 1

2

2 ,

(49)

where the error terms are Rj and Sj+ 1
2
. A simple computation using the last two identities in

(49) yields
Rj = d

dt
uj and Sj+ 1

2
= 1

∆xj+ 1
2

(
uj + uj+1 − 2uj+ 1

2

)
.

One has from the triangular inequality applied to uj =
u

j+ 1
2

+u
j− 1

2
2∥∥∥∥ ddtuh

∥∥∥∥
L2([0,T ]×R)

=

√√√√∫ T

0

∑
j∈Z

∆xj
∣∣∣∣ ddtuj

∣∣∣∣2

≤ 1√
CM

√√√√∫ T

0

∑
j∈Z

∆xj+ 1
2

∣∣∣∣ ddtuj+ 1
2

∣∣∣∣2 =
√

ε

CM

√√√√∫ T

0

∑
j∈Z

∆xj+ 1
2

∣∣∣∣ ddtvj+ 1
2

∣∣∣∣2.
Since the scheme is invariant with respect to the time variable, one can apply (31) to the derivative
with respect to time. It yields√√√√∫ T

0

∑
j∈Z

∆xj+ 1
2

∣∣∣∣ ddtvj+ 1
2

∣∣∣∣2 ≤√σ

2

∥∥∥∥ ddtph(0)
∥∥∥∥
L2(R)

≤ 1√
2σ
‖p0‖H2(R)

where the last inequality is from the well preparedness of the initial data, as detailed in proposition
2.9. So one has the bound

‖R‖L2([0,T ]×R) ≤
ε√

2σCM
‖p0‖H2(R). (50)

Using the definitions of uj (49), Sj+ 1
2
can be written in terms of d

dtpj and
d
dtpj+1

Sj+ 1
2

= ε

2

(
∆xj

∆xj+ 1
2

d

dt
pj −

∆xj+1

∆xj+ 1
2

d

dt
pj+1

)
.

Using the technical proposition 2.9, one finds out that S = (Sj+ 1
2
)j∈Z satisfies

‖S‖L2([0,T ]×R) ≤
ε

CM

∥∥∥∥ ddtp
∥∥∥∥
L2([0,T ]×R)

≤ ε
√
T

σCM
‖p0‖H2(R). (51)

We now introduce the differences

ej = pj − pεj , fj = uj − uεj and fj+ 1
2

= uj+ 1
2
− uεj+ 1

2
. (52)
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Let us look at the difference between the scheme (29) and (49). We get

∆xj ddtej +
f

j+ 1
2
−f

j− 1
2

ε = 0,

∆xj ddtfj −
f

j+ 1
2

+f
j− 1

2
ε + 2

εfj = ∆xjRj ,

ej − ej+1 + fj + fj+1 − 2fj+ 1
2
− σ∆xj+ 1

2

f
j+ 1

2
ε = ∆xj+ 1

2
Sj+ 1

2
.

We use the notation ‖Vε
h −Wε

h‖2L2(R) =
∑
j ∆xj(e2

j + f2
j ). Using the same kind of proof than for

the L2 stability of proposition 2.4, one gets that

1
2
d

dt
‖Vε

h −Wε
h‖2L2(R) ≤

∑
j

∆xjRjfj −
∑
j

∆xj+ 1
2

fj+ 1
2

ε
Sj+ 1

2
− σ

ε2

∑
j∈Z

∆xj+ 1
2
f2
j+ 1

2
.

Using a Young’s inequality on the second term of the right side of this inequality, one finds out
that

1
2
d

dt
‖Vε

h −Wε
h‖2L2(R) ≤

∑
j

∆xjRjfj + 1
4σ
∑
j

∆xj+ 1
2
S2
j+ 1

2
. (53)

Using the Cauchy-Schwarz inequality, we have

d

dt
‖Vε

h −Wε
h‖2L2(R) ≤ ‖R‖L2(R) ‖V

ε
h −Wε

h‖L2(R) + 1
2σ ‖S‖

2
L2(R).

Integrating in time on [0, t]

‖Vε
h(t)−Wε

h(t)‖2L2(R) ≤
(∫ t

0
‖Vε

h(t)−Wε
h(t)‖L2(R) ‖R‖L2(R) + 1

2σ ‖S‖
2
L2([0,T ]×R) + ‖Vε

h(0)−Wε
h(0)‖2L2(R)

)
.

Another use of the Bihari’s inequality, lemma (B.2), yields

‖Vε
h−Wε

h‖2L2([0,T ]×R) ≤
1
2T

2

√
‖Vε

h(0)−Wε
h(0)‖2L2(R) +

∫ T

0

1
2σ ‖S‖

2
L2([0,T ]×R) +

√
T‖R‖2L2([0,T ]×R)

2

Finally, using the previous estimates on R, S, the well-preparedness of the data (23) one gets

‖Vε
h −Wε

h‖2L2([0,T ]×R) ≤
1
2T
(

2

√
(CAhε)2 + ε2T 2

4σ3C2
M

+
√
T

ε2

2CM

)2

‖p0‖2H2(R)

The proof is ended.

Proposition 2.9 (Technical result). The bound
√∑

j ∆xj( ddtpj)2(t) ≤ σ−1‖p0‖H2(R) holds at
any time.

Proof. By linearity of the diffusion scheme, zh = d
dtph is solution of P 0

h :

∆xj
d

dt
zj −

1
σ

(
zj+1 − zj
∆xj+ 1

2

− zj − zj−1

∆xj− 1
2

)
= 0,

with initial condition

zj(0) = d

dt
p0(xj) = 1

∆xjσ

(
p0(xj+1)− p0(xj)

∆xj+ 1
2

− p0(xj)− p0(xj−1)
∆xj− 1

2

)
. (54)
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One gets from a Taylor expansion with integral residue that∣∣∣∣∣p0(xj+1)− p0(xj)
∆xj+ 1

2

− ∂xp0(xj)

∣∣∣∣∣ ≤
∫ xj+1

xj

|∂xxp0(y)| dy.

Similarly one has the bound
∣∣∣∣p0(xj)−p0(xj−1)

∆x
j+ 1

2

− ∂xp0(xj)
∣∣∣∣ ≤ ∫ xj

xj−1
|∂xxp0(y)| dy. Therefore |zj(0)| ≤

1
∆xjσ

∫ xj+1
xj−1

|∂xxp0(y)| dy from which the bound
√∑

j ∆xjz2
j (0) ≤ σ−1‖p0‖H2(R) is deduced. Since

the scheme P 0
h is stable in L2, this bound is true at any time. Considering (54) the discrete second

derivative attached to P 0
h is bounded at any time, which ends the proof of the claim.

2.7 End of the proof of uniform AP property
Theorem 2.10. Assuming a sufficiently smooth well prepared initial data, the scheme P εh con-
verges to P ε at order at least 1

3 in L2([0, T ]× R), uniformly with respect to ε

Proof. All the previous estimates show that (9-8) are true with a = 1, b = c = 1
2 and d = 1. More

specifically, estimates (32), (48), (40) and (24) shows that

‖Vε −Vε
h‖L2([0,T ]×R) ≤ C min

(√
h

ε
, h+ 2ε

)
‖p0‖H3(R)

where
C = max

[
↓C√
CM

,
C→

CM
,
C↓√
CM

, C←

]
and behaves less than T

3
2 for large T . Using the general method described at the beginning of

this work in proposition 1.3, one obtains the convergence estimate ‖Vε
h−Vε‖L2([0,T ]×R) ≤ C(T )hq

with the order of convergence q = ac
a+b = 1

3 .

3 The 2D case
In this section we prove the uniform convergence of the solution of the diffusion AP scheme
introduced in [7] to the solution of the hyperbolic heat equation. The structure of our proof is
globally the same as in the previous section. However two major difficulties will be treated: a)
the first one consists in the adaptation to our problem of a combination of specific finite volumes
techniques for hyperbolic and parabolic equations; b) the second one is to derive new bounds for
the scheme DAε

h.
The model problem is the hyperbolic heat equation in the domain Ω =]0, 1[2 with periodic

boundary conditions and well-prepared data

Pε :



∂tp
ε + 1

ε
div(uε) = 0,

∂tuε + 1
ε
∇pε = − σ

ε2 uε,

pε(t = 0) = p0, uε(t = 0) = uε0 = − ε
σ∇p0.

When ε tends to zero, this problem admits the following diffusion limit

P0 : ∂tp−
1
σ

div(∇p) = 0, p(t = 0) = p0.

The rescaled gradient is v = − 1
σ∇p. We will admit the following proposition, the proof of which

can be easily obtained by a method similar to the one of proposition 2.3.
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Proposition 3.1. The error between the two solutions can be upper bounded by

‖pε − p‖L∞([0,T ];Hn(Ω)) + ‖v‖L∞([0,T ];Hn(Ω)) ≤
T

σ2 ε‖p0‖H3+n(Ω), n ∈ N. (55)

Proof. The structure of the proof in the L∞([0, T ];L2(Ω)) norm is the same as the one of propo-
sition 2.3. Since the coefficients of the problem are constant, similar bounds are obtained at any
order of derivation which proves the estimate for any n > 0.

3.1 Definition of Pε
h

Let us consider an unstructured mesh in dimension 2. The mesh is defined by a finite number
of vertices xr and cells Ωj . We denote xj a point chosen arbitrarily inside Ωj . For simplicity we
will call this point the center of the cell. By convention the vertices are listed counter-clockwise
xr−1,xr,xr+1 with coordinates xr = (xr, yr). We note ljrnjr the vector as follows

ljr = 1
2dist (xr−1,xr+1) and njr = 1

2ljr
(xr+1 − xr−1)⊥ . (56)

This notion of a corner vector can be rigorously introduced also in any dimension using the
definition [13]. The scalar product of two vectors is denoted as (x,y).

x j

xr+1

xr−1

xr

Cell Ω j

Cell Ωk

l jrn jr

Figure 4: Notation for node formulation. The corner length ljr and the corner normal njr are
defined in equation (56). The point xj is an arbitrary point inside the cell, typically the centroid
of the cell or an averaged of the corners.

The numerical approximation of the problem Pε that we study is the JL-(b) scheme defined
in [7]

Pε
h :


| Ωj |

d

dt
pεj + 1

ε

∑
r

ljr(uεr,njr) = 0

| Ωj |
d

dt
uεj + 1

ε

∑
r

ljrnjrpεjr = − σ
ε2

∑
r

β̂jruεr,
(57)

with for simplicity point wise initial data pεj(0) = p0(xj) and uεj(0) = −εσ−1∇p0(xj). The fluxes
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are defined by the so-called corner problem{
pεjr − pεj = (njr,uεj − uεr)−

σ

ε
(xr − xj ,uεr),∑

j ljrp
ε
jrnjr = 0.

(58)

This corner problem has been introduced in [7] as a multidimensional version of the 1D Jin-
Levermore technique [23]. Its solution is provided by the solution of the linear system∑

j

α̂jr +
∑
j

σ

ε
β̂jr

uεr =
∑
j

ljrp
ε
jnjr +

∑
j

α̂jruεj , (59)

where the geometry of the mesh is used to define the matrices α̂jr and β̂jr

α̂jr = ljrnjr ⊗ njr, and β̂jr = ljrnjr ⊗ (xr − xj). (60)

We will use the notations Aj =
∑
r α̂jr, Ar =

∑
j α̂jr and Br =

∑
j β̂jr. By comparison with the

scheme P εh in dimension one, one sees that the multi-dimensional scheme (57-60) is more tricky
than the 1D scheme (15-16).

Starting from (57) and taking into account of the definitions of the fluxes (58) and also the
identity

∑
r ljrnjr = 0, the scheme Pε

h can also be rewritten as

Pε
h :


| Ωj |

d

dt
pεj + 1

ε

∑
r

ljr(uεr,njr) = 0

| Ωj |
d

dt
uεj + 1

ε

∑
r

ljr(njr,uεr − uεj)njr = 0
(61)

When ε→ 0 the scheme Pε
h, see (57) or (61), admits the limit diffusion scheme P0

h

P0
h :


|Ωj |

d

dt
pj +

∑
r

ljr

(
vr,njr

)
= 0,

vr = 1
σ
B−1
r

∑
j

ljrpjnjr,
(62)

with Br =
∑
j ljrnjr ⊗ (xr − xj). We define additionally vj by a kind of mean(∑

r

α̂jr

)
vj =

∑
r

α̂jrvr.

This is well defined since the matrix
∑
r α̂jr is symmetric positive by definition of the α̂jr.

3.2 Definition of DAε
h

We define now that is call thereafter the "diffusion approximation" scheme. We just neglect the
time derivative in the second equation, that we make ∂tuεj = 0 for (61). It leads to the scheme

DAε
h :



| Ωj |
d

dt
pεj + 1

ε

∑
r

(ljruεr,njr) = 0
1
ε

∑
r ljr(njr,uεr − uεj)njr = 0∑
j

α̂jr +
∑
j

σ

ε
β̂jr

uεr =
∑
j

ljrp
ε
jnjr +

∑
j

α̂jruεj

(63)

This scheme depends of two parameters, the size of the mesh h and the small parameter ε. We
notice that DAε

h 6= P0
h for ε > 0, and that limε→0+ DAε

h = P0
h. The point wise initial data for

(63) is pεj(0) = p0(xj). There is no need of initial data for (uεj(0)), which will be obtained as a
function of (pεj(0)) by solving a linear system.
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3.3 Mesh assumptions

x j

x 1
2

xr

x j− 1
2

Vr

Figure 5: Definition of the control volume Vr around vertex xr. The control volume around the
vertex xr is defined by the closed loop that joins the center of the cells (xj ’s) and the middle of
the edges (xj+ 1

2
’s).

The characteristic length of the mesh is h = maxj (diam(Ωj)), so that{
ljr ≤ h, ∀j, r,
|Ωj | ≤ h2, ∀j.

(64)

The control volume Vr around the vertex xr is defined by the closed loop . . . ,xj− 1
2
,xj ,xj+ 1

2
, . . . .

Here the xj ’s are the center of the cells, and the xj+ 1
2
’s are the middle of the edges around the

vertices xr. A typical example is depicted in figure 5.
Additional geometrical assumptions are always necessary in dimension greater than one to

guarantee some minimal regularity of the mesh. We make the usual assumptions listed below
from 1 to 3. The last items are more specific.

Hypothesis 3.2. Our geometrical assumptions will be the following

1. The numbers of cells which share a node r is bounded independently of h, which means there
exists P ∈ N independent of h such that∑

j

δjr ≤ P. (65)

For example, for a structured mesh of quadrangular cells P = 4.

2. For each cell of the mesh, the number of edges is bounded independently of h, or equivalently
the numbers of vertices for a cell is bounded independently of h.
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3. The mesh is regular in the sense that there exists a universal constant CM > 0 such that the
inverse inequalities hold:

CMh ≤ ljr, ∀j, r uniformly with respect to h (66)

where xr is a vertex of the cell Ωj, and

CMh
2 ≤ |Ωj | , ∀j uniformly with respect to h. (67)

and
CMh

2 ≤ |Vr| ≤ Ph2, ∀r uniformly with respect to h. (68)

We recall that Vr is the volume control (centered on xr) and Ωj is the cell j. The inequality
|Vr| ≤ Ph2 is immediate to check on the figure 5.

4. A consequence of the items 1-3 is that there exists a constant α > 0 such that

(Aju,u) ≥ αh(u,u), Aj =
∑
r

α̂jr. (69)

It can be proved with a geometrical identity that we borrow from [13] (proposition 8).

5. The matrix Br =
∑
j β̂jr is positive in the sense that

(Bru,u) = (Bsru,u) ≥ α|Vr|(u,u), (70)

where Bsr = 1
2 (Br +Btr) is the symmetric part of Br, and α is the same constant as in (69).

Square meshes satisfy (70). This assumption is however not trivial to check in the general
case. We point out [7] where sufficient conditions such that (70) is satisfied can be found; in
particular it is shown that triangular meshes with all angles greater than 12 degrees satisfy
it.

3.4 Norms and error measurements
The quadratic norms below are usual integral norms. It yields for any cell centered quantity
f = (fj)j∈Cells: ‖f‖L2(Ω) =

√∑
j |Ωj ||fj |2. For vertex based quantity g = (gr)r∈Vertices, we use

‖g‖L2(Ω) =
√∑

r |Vr||gr|2: it is more a convention. Useful quantities are

• Vε
h(t,x) =

(∑
j∈Cells p

ε
j(t)1Ωj

(x),
∑
j∈Cells uεj(t)1Ωj

(x)
)
which is the solution of Pε

h.

• Vε(t,x) = (pε,uε) (t,x) which is the solution of Pε,

• Wε
h(t,x) =

(∑
j∈Cells p

ε
j(t)1Ωj (x),

∑
j∈Cells uεj(t)1Ωj (x)

)
which is the solution of DAε

h. No-
tice that an abuse of notations is made with the solution of Pε

h.

• Wε(t,x) =
(
p,− ε

σ∇p
)

(t,x) which is the solution of P0.

As in dimension one, the differences between these quantities are characterized at the initial
time with a universal constant CA > 0 which indicates it can be related to the approxima-
tion/interpolation/projection of a smooth function on the mesh. We will use for example some
bounds that can be obtained as by-product or corollary of the first technical inequality below.{

‖Vε(0)−Vε
h(0)‖L2(Ω) ≤ CAh‖Vε(0)‖H2(Ω) ≤ CAh‖V1(0)‖H2(Ω),

‖Wε(0)−Wε
h(0)‖L2(Ω) ≤ CAh‖Wε(0)‖H2(Ω).

(71)

We will need additional technical estimates for the corner based Finite Volume scheme Pε
h.

These technical estimates can be formulated as follows. Let f be a regular function. We define
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δj,r(f) = 1
|Ωj |

∫
Ωj
fdx−f(xr) which is the interpolation error term that compares mean value in a

cell Ωj and point values at a vertex xr of the same cell. Let Γj,r = [xr,xr+1] be the edge oriented
toward the outside of the cell j, with length |Γj,r|. We define also δ̃j,r(h) = 1

|Γj,r|
∫

Γj,r
hds −

h(xr)+h(xr+1)
2 which is another interpolation error contribution that compares the mean value and

the mid sum, on the edge.

Proposition 3.3. One has the technical inequalities

|δjr(f)| ≤ CA‖f‖H2(Ωj) (72)

and
|δ̃jr(f)| ≤ CAh‖f‖H3(Ωj) (73)

Proof. These non optimal inequalities are consequences of classical approximations results. We
will not prove them. However one can notice that the scaling is correct. That if a function f has
its third derivatives bounded in L∞(Ωj), then ‖f‖H2(Ωj) = O(h) because the problem is 2D: this
is compatible with the fact that δjr is a first order difference. Similarly h‖f‖H3(Ωj) = O(h2) is
compatible with the fact that δ̃jr is a second order difference. An alternative proof is by assuming
that f is in Hp(Ω) for a sufficiently large p. Then by the Sobolev embeddings, all derivatives up
to fourth order are in L∞ which is enough to prove that (72) is a first order interpolation error
term, and that (73) is a second order interpolation error term. In this case it also explains very
simply why the constant CA is independent of the mesh size.

The first technical inequality is actually true for any points in the cell. So it allows to compare
the mean value and the point value in the cell. This is why it yields (71) after summation over all
cells and redefinition of CA.

As in dimension one, we will use constants ↓C, C→, C↓ and C← in the errors bounds for the
four branches of the new AP diagram. The important point is that these constants are independent
of h and ε. They have of course some dependence with respect to other parameters such as the
constant of the mesh CM for example, but we will not keep track of these dependence in order to
simplify the notations. Nevertheless the interested reader can compare with the same estimates in
dimension one where the dependence with respect to the mesh constant is indicated. A first result
is the inequality (55) which yields the basic estimate for the lower branch of the AP diagram. It
can be formalized as follows.

Lemma 3.4. One has the estimate

‖Wε −Vε‖L2([0,T ]×Ω) ≤ C←ε‖p0‖H4(Ω) (74)

where the constant C← is independent of h and ε, with a growth in time less than T 3
2 by comparison

with (55).

3.5 Study of ‖Pε
h −Pε‖naive

In this part, we exploit the hyperbolic nature of both Pε and Pε
h to obtain the main bound. As

one will see below, the convergence estimate (75) is not trivial. It indicates that, for a problem
with O(ε−2) terms, a scheme converges, with h, with at rate O(ε− 1

2 ) with respect to ε.

Lemma 3.5 (Naive estimate). There exists a constant ↓C independent of h and ε, with a linear
growth in time, such that the following estimate holds

‖Vε
h −Vε‖L∞([0,T ]:L2(Ω)) ≤ ↓C

√
h

ε
‖p0‖H4(Ω). (75)

The norm is slightly stronger than the L2([0, T ]× Ω) needed to complete the proof.
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3.5.1 Stability

We first prove the L2 stability of the scheme P εh defined in (57,58).

Proposition 3.6 (Stability). The semi-discrete general JL-(b) scheme defined by (57,58) is stable
in the L2 norm in the sense that d

dt ||V
ε
h(t)|| ≤ 0. Moreover we have the bounds

σ

ε2 ||u
ε
r||L2([0,T ]×Ω) ≤

1
α
||Vε

h(0)||L2(Ω), (76)

∫ T

0

∑
j

∑
r

ljr(njr, (uεj − uεr))2dt ≤ ε||Vε
h(0)||2L2(Ω). (77)

Proof. We define the functions pεh and uεh by pεh = pj and uεh = uj on Ωj . We set for convenience
E(t) = ||Vε

h(t)||2. One has

E
′
(t) = 1

2

∫
Ω

d

dt
(| pεh |2 +(uεh,uεh)) =

∫
Ω
pεh

d

dt
pεh + (uεh,

d

dt
uεh) =

∑
j

|Ωj | pεj
d

dt
pεj + (uεj ,

d

dt
uεj).

Using the definition of scheme

E
′
(t) = −1

ε

∑
j

∑
r

ljrp
ε
j(uεr,njr)−

1
ε

∑
j

∑
r

(ljrpεj,rnjr,uεj)−
σ

ε2

∑
j

∑
r

(β̂jruεr,uεj). (78)

Using (58) we expand the second term of the previous equation∑
j

∑
r

(ljrpεj,rnjr,uεj) =
∑
j

∑
r

ljrp
ε
j(uεj ,njr) +

∑
j

∑
r

(α̂jr(uεj − uεr),uεj)−
σ

ε

∑
j

∑
r

(β̂jruεr,uεj).

(79)
Since

∑
r ljrnjr = 0 the first term of (79) is zero. Summing on r the second equation of (58) and

permuting the sums, we show that 0 =
∑
j

∑
r

ljrpjr(ur,njr) which yields that

0 =
∑
j

∑
r

ljrp
ε
j(uεr,njr)−

∑
j

∑
r

((α̂jr + σ

ε
β̂jr)uεr,uεr) +

∑
j

∑
r

(α̂jruεj ,uεr). (80)

Plugging (79) and (80) in (78) and permuting the sums in E′(t) gives

E
′
(t) = −1

ε

∑
j

∑
r

(α̂jr(uεj − uεr),uεj − uεr)−
σ

ε2

∑
r

∑
j

(β̂jruεr,uεr)

which gives
E
′
(t) + 1

ε

∑
r

∑
j

ljr(njr, (uεj − uεr))2 + σ

ε2

∑
r

(Bruεr,uεr) = 0. (81)

By geometrical assumption (70) we have E′(t) ≤ 0, that is the L2 stability, and by integrating
this equality on [0, T ] we obtain

E(T ) +
∫ T

0

1
ε

∑
r

∑
j

ljr(njr, (uεj − uεr))2 +
∫ T

0

σ

ε2

∑
r

(Bruεr,uεr) = E(0)

Using again the geometrical assumption (70) for the terms (Bruεr,uεr) we have

E(T ) +
∫ T

0

1
ε

∑
r

∑
j

ljr(njr, (uεj − uεr))2 + α

∫ T

0

σ

ε2

∑
r

|Vr| |uεr|2 ≤ E(0)

which gives (76) and (77). The proof is ended.
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3.5.2 Main estimate

Our goal now is to prove the lemma 3.5 as the consequence of propositions 3.7 to A.3. This part
is the more technical one of the paper, but is essential to be able to use the general strategy of
proposition 1.3 with convenient exponents. Like in 1D, we use the method introduced by Mazeran
[29] and decompose the proof in several steps. We introduce E (t) = 1

2‖V
ε−Vε

h‖2L2(Ω). As for the
1D proof and for the sake of simplicity, for any quantity q, q′ stands indifferently for d

dtq or ∂tq.

Proposition 3.7. One has the formula

E ′(t) = −1
ε

∑
j,r

lj,r(nj,r,uεj − uεr)2 + E1 + E2 + E3 (82)

where

E1 =1
ε

∑
j

∑
r

(
lj,r(uεr − uεj),nj,r

)
δj,r(pε) + 1

ε

∑
j

∑
r

(
lj,rnj,r(pεjr − pεj) , δj,r(uε)

)
,

E2 =1
ε

∑
j

∑
r

|Γj,r|pεj(nj,r, δ̃j,r(uε)) + 1
ε

∑
j

∑
r

|Γj,r|
(

uεj ,nj,r δ̃j,r(pε)
)

E3 = σ

ε2

∑
r

∑
j

(
β̂j,ruεr ,

1
|Ωj |

∫
Ωj

uεdx
)

+ σ

ε2

∑
j

(
uεj ,
∫

Ωj

uεdx
)

− σ

ε2

∑
j

∫
Ωj

(uε,uε)dx− σ

ε2

∑
r

(Bruεr,uεr).

Proof. We first consider the time derivative

E ′(t) =
∫

Ω
(pεh(pεh)′ + (uεh, (uεh)′))dx︸ ︷︷ ︸

D1

+
∫

Ω
(pε(pε)′ + (uε, (uε)′))dx︸ ︷︷ ︸

D2

+
∫

Ω
(−(pεh)′pε − ((uεh)′,uε))dx︸ ︷︷ ︸

D3

+
∫

Ω
(−pεh(pε)′ − (uεh, (uε)′))dx︸ ︷︷ ︸

D4

.

One has thanks to (81)

D1 = −1
ε

∑
j,r

lj,r(nj,r,uεj − uεr)2 − σ

ε2

∑
r

(Bruεr,uεr).

One also directly has

D2 = − σ
ε2

∫
Ω

(uε,uε)dx = − σ
ε2

∑
j

∫
Ωj

(uε,uε)dx.

Then, using the definition (57,58) of the scheme we have

D3 = 1
ε

∑
j

∑
r

(
lj,ruεr,nj,r

)
1
|Ωj |

∫
Ωj

pεdx

+ 1
ε

∑
j

(∑
r

ljrnjrpεj,r + σ

ε

∑
r

β̂j,ruεr ,
1
|Ωj |

∫
Ωj

uεdx
)
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Since
∑
r ljrnjr = 0, we can write

D3 = 1
ε

∑
j

∑
r

(
lj,r(uεr − uεj),nj,r

)
1
|Ωj |

∫
Ωj

pεdx

+ 1
ε

∑
j

(∑
r

ljrnjr(pεj,r − pεj) ,
1
|Ωj |

∫
Ωj

uεdx
)

+ σ

ε2

(∑
r

∑
j

β̂j,ruεr ,
1
|Ωj |

∫
Ωj

uεdx
)
.

One gets

D3 = 1
ε

∑
j

∑
r

(
lj,r(uεr − uεj),nj,r

)
δj,r(pε) + 1

ε

∑
j

∑
r

(
ljrnjr(pεj,r − pεj) , δj,r(uε)

)

+ 1
ε

∑
j

∑
r

(
lj,r(uεr − uεj),nj,r

)
pε(xr) + 1

ε

∑
j

∑
r

(
ljrnjr(pεj,r − pεj) , uε(xr)

)

+ σ

ε2

(∑
r

∑
j

β̂j,ruεr ,
1
|Ωj |

∫
Ωj

uεdx
)
.

We have the identities
∑
j,r ljrnjr = 0 and

∑
j ljrnjrpεj,r = 0 by definition (58). Therefore one

can simplify the third and fourth term in the previous expression and get

D3 = 1
ε

∑
j

∑
r

(
lj,r(uεr − uεj),nj,r

)
δj,r(pε) + 1

ε

∑
j

∑
r

(
ljrnjr(pεj,r − pεj) , δj,r(uε)

)

− 1
ε

∑
j

∑
r

(
lj,ruεj ,nj,r

)
pε(xr)−

1
ε

∑
j

∑
r

(
lj,rp

ε
jnj,r , uε(xr)

)

+ σ

ε2

(∑
r

∑
j

β̂j,ruεr ,
1
|Ωj |

∫
Ωj

uεdx
)
.

We now look at D4. By definition, one has

D4 = 1
ε

∑
j

pεj
∑
r

∫
Γj,r

(uε, ñj,r)dσ + 1
ε

∑
j

(
uεj ,
(∑

r

∫
Γj,r

pεñj,rdσ + σ

ε

∫
Ωj

uεdx
))

where ñj,r is the normal to the edge Γj,r = [xr,xr+1] oriented toward the outside of the cell j.
This expression needs an important manipulation which is to approximate the integral on edges
by corner values. This necessary manipulation is one of the ideas that was introduced in [29] in
order to proceed to the numerical analysis of such corner based finite volume schemes. This is
why interpolation terms δ̃j,r(h) = 1

|Γjr|
∫

Γj,r
h − h(xr)+h(xr+1)

2 are introduced. One gets after an
algebraic manipulation

D4 = 1
ε

∑
j

∑
r

|Γj,r|pεj
(

ñj,r, δ̃j,r(uε)
)

+ 1
ε

∑
j

∑
r

|Γj,r|
(
uεj , ñj,r δ̃j,r(pε)

)
+ σ

ε2

∑
j

(
uεj ,
∫

Ωj

uε
)

+ 1
ε

∑
j

∑
r

|Γj,r|pεj
(

ñj,r,
uε(xr) + uε(xr+1)

2

)
+ 1
ε

∑
j

∑
r

|Γj,r|
(
uεj , ñj,r

pε(xr) + pε(xr+1)
2

)

By definition (56), njrljr = ñj,r|Γj,r|+ñj,r−1|Γj,r−1|
2 , so one can see that

∑
j

∑
r

|Γj,r|pεj
(

ñj,r,
uε(xr) + uε(xr+1)

2

)
=
∑
j

∑
r

ljrp
ε
j

(
njr,uε(xr)

)
.
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It yields a slightly simpler expression

D4 = 1
ε

∑
j

∑
r

|Γj,r|pεj
(

ñj,r, δ̃j,r(uε)
)

+ 1
ε

∑
j

∑
r

|Γj,r|
(
uεj , ñj,r δ̃j,r(pε)

)
+ σ

ε2

∑
j

(
uεj ,
∫

Ωj

uε
)

+ 1
ε

∑
j

∑
r

ljrp
ε
j

(
njr,uε(xr)

)
+ 1
ε

∑
j

∑
r

ljrp
ε(xr)

(
njr,uεj

)
One can now compute the sum D3 +D4

D3 +D4 = 1
ε

∑
j

∑
r

(
lj,r(uεr − uεj),nj,r

)
δj,r(pε) + 1

ε

∑
j

∑
r

(
lj,rnj,r(pεj,r − pεj) , δj,r(uε)

)

+ 1
ε

∑
j

∑
r

|Γjr|pεj
(
nj,r, δ̃j,r(uε)

)
+ 1
ε

∑
j

∑
r

|Γjr|
(
uεj ,nj,r δ̃j,r(pε)

)

+ σ

ε2

(∑
r

∑
j

β̂j,ruεr ,
1
|Ωj |

∫
Ωj

uεdx
)

+ σ

ε2

∑
j

(
uεj ,
∫

Ωj

uεdx
)
.

One finally gets after rearrangement the final result (82) for E ′(t) = D1 +D2 +D3 +D4.

The proof of the dissipative identity relies on a careful and technical evaluation of E1, E2 and
E3. Using the damping of the first term in (82), it is sufficient to obtained the desired result. We
refer the reader to the appendix for all details.

3.6 Study of ‖DAε
h −P0‖

This main result in this section is the following.

Lemma 3.8. There exists a constant C↓ independent of h and ε, with a growth in time less than
T

3
2 such that one has the estimate

‖Wε
h −Wε‖L2([0,T ]×Ω)) ≤ C↓(h+ ε)‖p0‖H4(Ω). (83)

This result, which is merely a consequence of (96) and (97) in proposition 3.12, will be ob-
tained after studying in details the well-posedness, stability and consistency of the new diffusion
asymptotic scheme rewritten after a convenient rescaling. The proof is provided just after the
proof of the proposition. Additional technical results will be derived at the end of the section.

3.6.1 Rescaling of the equations

We rescale the semi-discrete diffuse asymptotic scheme DAε
h (63) wherein for convenience we made

the following change of unknowns

uεr = uεr
ε

and uεj =
uεj
ε
. (84)

In order to keep a simple notation we dropped the superscript ε and the bars. Thus the scheme
(63) is now written as:

| Ωj |
d

dt
pj +

∑
r

(ljrur,njr) = 0∑
r ljr(njr,ur − uj)njr = 0(
ε
∑
j α̂jr + σBr

)
ur =

∑
j ljrpjnjr + ε

∑
j α̂jruj

(85)

Remark 3.9. If wet set ε = 0 we naturally recover the limit diffusion scheme (62).

This way of writing the system is much better to help the intuition, since it is can be naturally
interpreted as the discretization of a diffusion equation.
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3.6.2 Well-posedness

What we mean about well-posedness is the following: if we are able to write the last two relations
of (85) as a non singular linear system with the ur’s and uj ’s as unknowns, then we have a unique
solution in terms of the pj ’s. This notion is the relevant one for numerical discretization.

Let us denote Y = ({uj}, {ur}) the vector of unknowns. We can write the last two relations
of (85) as MY = b where M is a (J +R)2 square matrix, J is the number of cells and R. One can
observe that unless ε = 0, M is not a blockwise triangular matrix. One has

(MY,Y ) =
∑
r

(σBrur,ur) + ε
∑
j

∑
r

ljr (ur − uj ,njr)2

Assume (MY,Y ) = 0: in this case the geometrical assumption (70) implies that all the ur are
null and therefore it remains to study

∑
j

∑
r ljr (uj ,njr)2 = 0 that is

∑
j (uj , Cjuj) = 0 where

Cj =
∑
r ljrnjr ⊗ njr. Since the Cj are all invertible unless the mesh is degenerate, all the uj

are null: we have proved the invertibility of the matrix M and thus the scheme (85) exists and is
uniquely defined.

3.6.3 Stability

We note E(t) = 1
2
∑
j

|Ωj |p2
j . The initial data is ph(0) = (pj(0))j∈Cells.

Proposition 3.10. Under the geometrical assumption (70), the diffusion approximation scheme
(85) is stable in the L2 norm, in the sense that E′(t) ≤ 0. One has

||ur||L2([0,T ]×Ω) ≤
1
α
‖ph(0)‖L2(Ω) (86)

and
ε

∫
[0,T ]

∑
j

∑
r

ljr(njr, (uj − ur))2 ≤ ‖ph(0)‖L2(Ω) . (87)

Proof. One has

E
′
(t) =

∑
j

|Ωj |pj
d

dt
pj = −

∑
j

pj
∑
r

(ljrur,njr) =
∑
r

ur,
∑
j

ljrnjrpj

 .

With the last equation of (85), one finds E′(t) = −
∑
r

(
ur,
(
ε
∑
j α̂jr + σBr

)
ur − ε

∑
j α̂jruj

)
.

We expand the right hand side E′(t) = −
∑
r (σBrur,ur)− ε

∑
r

(
ur,
∑
j α̂jr(ur − uj

)
. Permut-

ing the sums in the second term of the right hand side , we show that

E
′
(t) = −

∑
r

(σBrur,ur)− ε
∑
j

∑
r

(ur, α̂jr(ur − uj)) . (88)

Using the definition of the uj , second line of (85), one has

∑
j

(
uj ,
∑
r

α̂jr(ur − uj)
)

= 0. (89)

Combining (89)×ε with (88) and using the definition of the matrices α̂jr one has finally

E
′
(t) = −

∑
r

(σBrur,ur)− ε
∑
j

∑
r

ljr (ur − uj ,njr)2
.
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By the geometrical assumption (70) we have E′(t) ≤ 0, that is the L2 stability. By integrating
this equality on [0, T ] we obtain

E(T ) +
∫ T

0

∑
r

(σBrur,ur) +
∫ T

0
ε
∑
j

∑
r

ljr (ur − uj ,njr)2 = E(0)

Using again the geometrical assumption (70) for the terms (Brur,ur) we have

E(T ) + α

∫ T

0

∑
r

|Vr| ‖ur‖2 +
∫ T

0
ε
∑
j

∑
r

ljr (ur − uj ,njr)2 ≤ E(0)

which gives (86) and (87).

3.6.4 Consistency

For convenience we set

pj = p(xj , t) uj = − 1
σ
∇p(xj , t) ur = − 1

σ
∇p(xr, t) (90)

where p(x, t) is the solution of the diffusion equation. We define three consistency errors by
inserting these quantities into the three equations of (85) which are also rescaled by a factor 1

|Ωj | ,
1
h and 1

|Vr| . It yields

aj = d

dt
pj + 1

| Ωj |
∑
r

(ljrur,njr),

bj = 1
h

∑
r

ljr(njr,ur − uj)njr,

cr = 1
|Vr|

σBrur −∑
j

ljrpjnjr + ε
∑
j

α̂jr(ur − uj)

 .

Proposition 3.11. There exists a constant Cc > 0 independent on h and ε such that the following
estimates hold

‖ah‖L∞([0,T ]:L2(Ω)) ≤ Cch‖p0‖H4(Ω), (91)

‖bh‖L∞([0,T ]:L2(Ω)) ≤ Cch‖p0‖H3(Ω), (92)

and
‖ch‖L∞([0,T ]:L2(Ω)) ≤ Cc(h+ ε)‖p0‖H3(Ω). (93)

Proof. The proof uses the inequalities of proposition 3.3. For example one has

aj = 1
σ

∆p(xj , t)−

∫
Ωj

∆p(x, t)dx
|Ωj |︸ ︷︷ ︸

=d1
j

+ 1
σ|Ωj |


∫
∂Ωj

∂npdτ −
∑
r

ljr (njr,∇p(xr, t))︸ ︷︷ ︸
=d2

j

 .

The first term is |d1
j | ≤ C ‖p‖H4(Ωj) by virtue of the first inequality of the proposition (3.3) with

xr changed into xj . The second term d2
j can be rearranged. Indeed by definition of ljrnjr one has

∑
r

ljr (njr,∇p(xr, t)) =
∑
k

∫
∂Ωjk

∇p
(
x+
jk

)
+∇p

(
x−jk

)
2 ,nj

 dτ
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where nj = ñj,r defined in the previous part and the nodes x+
jk and x−jk are the end of the edge

∂Ωjk = Ωj
⋂

Ωk, with the relation ∂Ωj =
⋃
∂Ωjk. Therefore

d2
j =

∑
k

∫
∂Ωjk

∇p− ∇p
(
x+
jk

)
+∇p

(
x−jk

)
2 ,nj

 dτ.

The second inequality of the proposition 3.3 yields |d2
j | ≤ CAh2‖p‖H4(Ωj) Therefore one can write

aj ≤ C̃‖p0‖H4(Ωj) where the constant is uniform with respect to j. It yields

‖ah‖L2(Ω) =
√∑

j

|Ωj |a2
j ≤

√∑
j

|Ωj |C2‖p‖2H4(Ωj) ≤ Ch‖p‖H4(Ω) ≤ Ch‖p0‖H4(Ω). (94)

Since it is true at any time t, it yields the first bound (91). The second inequality can be obtained
with the same argument. Consider the decomposition

∇p(xr)−∇p(xj) =
(
∇p(xr)−−

∫
Ωj
∇p(x)dv
|Ωj |

)
−

(
∇p(xj)−−

∫
Ωj
∇p(x)dv
|Ωj |

)
.

Each parenthesis can be estimated with the first inequality of proposition 3.3. The rest of the
proof of the second bound (92) is immediate since ljr is neutralized by the 1

h . The third bound is
analyzed as follows. We write cr = car + cbr with

car = 1
|Vr|

σ∑
j

ljrnjr ⊗ (xr − xj)

(− ∇p(xr, t)
σ

)
−
∑
j

ljrnjrp(xj , t)


= 1
|Vr|

∑
j

((
xj − xr,∇p(xr, t)

)
− p(xj , t)

)
ljrnjr

= 1
|Vr|

∑
j

((
xj − xr,∇p(xr, t)

)
− p(xj , t) + p(xr, t)

)
ljrnjr

and cbr = ε
σ|Vr|

(∑
j ljrnjr ⊗ njr (∇p(xj , t)−∇p(xr, t))

)
. The first interpolation of proposition

3.3 can be used to evaluate the difference of point values in cbr. It yields |cbr| ≤ C ε
h‖p‖H3(Ωj).

Concerning car we notice that

(
xj − xr,∇p(xr, t)

)
− p(xj , t) + p(xr, t) =

(
1

|xr − xj |

∫ xr

xj

∇p(x)dτ −∇p(xr),xr − xj

)
where the integral in along the chord between xj and xj . The first term in the scalar product is
the comparison between a mean value and a point value. So it can be estimated as in proposition
3.3. It yields similarly∣∣∣∣∣

(
1

|xr − xj |

∫ xr

xj

∇p(x)dτ −∇p(xr),xr − xj

)∣∣∣∣∣ ≤ Ch‖p‖H3(Ωj). (95)

Thus |car | ≤ Ch‖p‖H3(Ωj). After summation of the cars and cbrs, one gets the last inequality of
the claim. The constant Cc is the maximum of the three constants that show up in the three
inequalities.

3.6.5 Convergence

We study the numerical error between the solution of the diffusion asymptotic scheme written as
(85) and the point values of the exact solution (90). Let us define three error variables

ej = pj − pj , fr = ur − ur and gj = uj − uj
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Proposition 3.12. There exists constants C1 > 0, C2 > 0,C3 > 0 and C4 > 0 independent of h
and ε, bounded for any time T and growing at most as T 3

2 , such that

‖eh‖L∞([0,T ]:L2(Ω)) ≤ C1(h+ ε)‖p0‖H4(Ω), (96)

‖fh‖L2([0,T ]×Ω) ≤ C2(h+ ε)‖p0‖H4(Ω), (97)

and

‖gh‖L2([0,T ]×Ω) ≤ C3(h+ ε)
√

(1 + h

ε
)‖p0‖H4(Ω). (98)

Moreover √√√√ε

∫ T

0

∑
j

∑
r

ljr (fr − fj ,njr)2 ≤ C4(h+ ε)‖p0‖H4(Ω). (99)

Proof. By construction

| Ωj | e′j +
∑
r

(ljrfr,njr) = − | Ωj | aj∑
r

ljr(njr, fr − fj)njr = −hbj ,ε∑
j

α̂jr + σBr

 fr −
∑
j

ljrejnjr − ε
∑
j

α̂jrfj = − | Vr | cr.

The errors are measured with E(t) = 1
2‖eh‖

2
L2(Ω), F (t) = ‖fh‖2L2([0,t]×Ω) =

∫ t
0
∑
r |Vr| |fr|2 and

‖gh‖2L2([0,t]×Ω) =
∫ t

0
∑
j |Ωj | |fj |

2. By proceeding as for the results of stability one has the identity

E′(t) =
∑
j

|Ωj |eje′j =
∑
j

ej

(
−

(∑
r

ljr (njr, fr)
)
− |Ωj | aj

)
= −

∑
r

∑
j

(ljrnjrej , fr)−
∑
j

|Ωj | ejaj

= −
∑
r

fr,

ε∑
j

α̂jr + σBr

 fr − ε
∑
j

α̂jrfj

−∑
j

|Ωj | ejaj −
∑
r

|Vr| (cr, fr)

= −
∑
r

(σBrfr, fr)− ε
∑
r

fr,
∑
j

α̂jr(fr − fj)

−∑
j

|Ωj | ejaj −
∑
r

|Vr| (cr, fr)

= −
∑
r

(σBrfr, fr)− ε
∑
j

∑
r

ljr (fr − fj ,njr)2 −
∑
j

|Ωj | ejaj −
∑
r

|Vr| (cr, fr) + ε
∑
j

h(bj , fj).

Using Young’s inequality and assumptions (67) and (70), one gets

E′(t) ≤− ασ‖fh‖2L2(Ω) − ε
∑
j

∑
r

ljr (fr − fj ,njr)2 +
√

2E(t)||ah||L2(Ω)

+
(
µ

2 ||fh||
2
L2(Ω) + 1

2µ ||ch||
2
L2(Ω)

)
+ ε

2hCM

(
η||gh||2L2(Ω) + 1

η
||bh||2L2(Ω)

) (100)

where µ, η > 0 are two arbitrary coefficients that will be specified later. Now using (69) and (64),
we have

|Ωj | |fj |2 ≤
h

α

∑
r

ljr(njr, fj)2. (101)
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Therefore

|Ωj | |fj |2 ≤
h

α

(
2
∑
r

ljr(njr, fj − fr)2 + 2
∑
r

ljr|fr|2
)
,

which yields, using (68) and (65)

||gh||2L2(Ω) ≤
2h
α

∑
jr

ljr(njr, fj − fr)2 + 2P
αCM

||fh||2L2(Ω). (102)

So from (100) we obtain

E′(t) ≤
√

2E(t)||ah||L2(Ω) + 1
2µ ||ch||

2
L2(Ω) +

(
µ

2 + εPη

hC2
Mα
− σα

)
‖fh‖2L2(Ω)

+
(

η

CMα
− 1
)
ε
∑
j

∑
r

ljr (fr − fj ,njr)2 + ε

2hCMη
||bh||2, ∀µ, η > 0.

Let us choose the free coefficients µ and η so that
µ

2 + εPη

hC2
Mα
− σα ≤ −σα4 and η

CMα
− 1 ≤ −1

2 .

Let us choose first µ = ασ
2 . The two inequalities reduce to

εPη

hC2
Mα

≤ σα

2 adn η

CMα
≤ 1

2 .

A natural solution is η = CMα
2 min

(
1, ασhCMεP

)
. So

E′(t) ≤
√

2E(t)||ah||L2(Ω) −
ασ

4 F ′(t)− ε

2
∑
j

∑
r

ljr (fr − fj ,njr)2

+ 1
ασ
||ch||2L2(Ω) + ε

2hCMη
||bh||2L2(Ω).

By the consistency estimates (91-92-93), one has
1
2 ||ah||

2
L2(Ω) + 1

ασ
||ch||2L2(Ω) + ε

2hCMη
||bh||2L2(Ω)

≤ C2
c

(
1
2h

2 + 1
ασ

(h+ ε)2 + ε

2hCMη
h2
)
‖p‖2L∞([0,T ]:H4(Ω))

≤ C2
c

(
1
2h

2 + 1
ασ

(h+ ε)2 + ε

2hCMη
h2
)
‖p0‖2H4(Ω).

The last term in the parenthesis is
ε

2hCMη
h2 = 1

C2
Mα

εhmax (1, εP/(ασhCM))

≤ 1
C2
Mα

εh (1 + εP/(ασhCM)) = 1
C2
Mα

εh+ P

C3
Mα

2σ
ε2.

So there exists a constant Ce independent of h and ε such that

E′(t) ≤
√

2E(t)− ασ

4 F ′(t)− ε

2
∑
j

∑
r

ljr (fr − fj ,njr)2 + Ce(h+ ε)2‖p0‖2H4(Ω). (103)

Integrating (103), we find that for any for t ≤ T

E(t) + ασ

4 F (t) + ε

2

∫ t

0

∑
j

∑
r

ljr (fr − fj ,njr)2 ≤ E(0) +
∫ t

0

√
2E(s)||ah||L2(Ω)ds+ tCe(h+ ε)2‖p0‖2H4(Ω).

(104)
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that is

E(t) + ασ

4 F (t) + ε

2

∫ t

0

∑
j

∑
r

ljr (fr − fj ,njr)2

≤ E(0) +
∫ t

0

√
2E(s)

√
Ce(h+ ε)ds+ TCe(h+ ε)2‖p0‖2H4(Ω).

(105)

With another use of the Bihari’s inequality, lemma (B.2), we obtain

∫ T

0
E(t) ≤ 1

2T
(

2
√
E(0) + TCe(h+ ε)2‖p0‖2H4(Ω) + T

√
2Ce(h+ ε)‖p0‖H4(Ω)

)2
(106)

By construction E(0) ≤ C2
Ah

2‖p0‖2H2(Ω), which comes from inequality (71) which compares
mean value and point value. E(t) ≤ C2

1 (t)(h + ε)2‖p0‖2H4(Ω), where the constant C1 is bounded
for any T and growing as T 3

2 . It gives (96), and one easily obtains (97) and (99) from (105) and
the constants C2 and C3 are bounded for any time T and behave as a linear polynomial in T .
Integrating (102) and using the estimates (97) and (99), one gets∫ T

0
||g||2L2(Ω) ≤

2
α
h

∫ T

0

∑
jr

ljr(njr, fj − fr)2 + 2P
αCM

||f ||2L2([0,T ]×Ω) ≤ C
2
4 (h+ ε)2(1 + h

ε
)‖p0‖H4(Ω),

where the constant C4 is uniform in h and ε and is bounded for any T with, at most, and behave
as a linear polynomial in T . The proof is finished.

Proof of lemma 3.8. The norm of the estimate in the lemma 3.8 can be bounded from the sum
of (96) and (98). However one must rescale back (98) since it corresponds to the scaled variable
(84). This is why (98) must be multiplied by ε. It eliminates the ε− 1

2 divergence in (98). The
constant C↓max(C1, C2) is bounded for any time T and behaves as T 3

2 for large T since it is the
case for C1. and ends the proof.

3.6.6 Technical estimates

These technical estimates are needed in the next section. These results compare two different
velocities at the initialization stage: on the one hand the velocity computed as the solution of
the linear system made of the two last equations of (85), on the other hand the exact point wise
velocity.

Proposition 3.13. There exists a constant C independent of h and ε such that∥∥∥∥(ur + 1
σ
∇p(xr)

)
(t = 0)

∥∥∥∥
L2(Ω)

≤ C
√
hmax(h, ε)‖p0‖H3(Ω) (107)

and ∥∥∥∥(uj + 1
σ
∇p(xj)

)
(t = 0)

∥∥∥∥
L2(Ω)

≤ C
√
h

ε
max(h, ε)‖p0‖H3(Ω). (108)

Proof. Let us write qr = ur + 1
σ∇p(xr) and sj = uj + 1

σ∇p(xj). These quantities are solution of
the system{ (

ε
∑
j ljrnjr ⊗ njr + σBr

)
qr −ε

∑
j ljrnjr ⊗ njrsj = d1

r + d2
r, ∀r,

−ε
∑
r ljr(njr,qr)njr +ε

∑
r ljr(njr, sj)njr = dj , ∀j,

where the right hand sides are

d1
r =

∑
j

ljrp(xj)njr +
∑
j

ljr(xr − xj ,∇p(xr))njr,

32



d2
r = ε

∑
j

ljr (njr,∇p(xr)−∇p(xj)) njr

and
dj = −ε

∑
r

ljr (njr,∇p(xr)−∇p(xj)) .

The right hand side d1
r can be interpreted as a consistency error. Indeed it can be rewritten as

d1
r =

∑
j

[p(xj)− p(xr) + (xr − xj ,∇p(xr)]) ljrnjr,

one obtains from (95) the bound |d1
r| ≤

∑
j neighboring r

[
C̃h‖p‖H3(Ωj)

]
h. It yields after summation

‖d1‖L2(Ω) ≤ Ch3‖p‖H3(Ω), C = C̃P. (109)

Taking the scalar product of the first line by qr and of the second line by sj , one gets the identity

σ
∑
r

(Brqr,qr) + ε
∑
jr

ljr (njr,qr − sj)2

=
∑
r

(
d1
r,qr

)
+ ε

∑
jr

ljr (njr,qr − sj) (njr,∇p(xr)−∇p(xj))

where d1 shows up explicitly. A Young’s inequality yields

σ
∑
r

(Brqr,qr) + ε

2
∑
jr

ljr (njr,qr − sj)2 ≤
∑
r

(
d1
r,qr

)
+ ε

2
∑
jr

ljr (njr,∇p(xr)−∇p(xj))2
.

(110)
The first term in the right hand side is∑

r

(
d1
r,qr

)
=
∑
r

h2
(

1
h2 d1

r,qr
)
≤ C 1

h2 ‖d
1‖L2(Ω)‖q‖L2(Ω) ≤ Ch‖p‖H3(Ω)‖q‖L2(Ω).

A similar reasoning as for (109), which one more time can be viewed as a consequence of the first
technical inequality of proposition (3.3), is∑

jr

ljr (njr,∇p(xr)−∇p(xj))2 ≤ Ch‖p‖2H3(Ω).

So (110) implies (after redefinition of the constants)

‖q‖2L2(Ω) ≤ C
(
‖q‖L2(Ω)‖p‖H3(Ω) + ε‖p‖2H3(Ω)

)
h.

It means that z = ‖q‖L2(Ω)
‖p‖H3(Ω)

is below the maximal root of the polynomial p(z) = z2 − Chz − Cεh,

that is for some constant K > 0 z ≤ x+ = Ch+
√
C2h2+4Cεh

2 ≤ K
√

max(h2, hε). Noticing that
‖p‖H3(Ω) ≤ ‖p0‖H3(Ω), It finishes the proof of the first inequality (107). Concerning the second
inequality, we start from (101) to show that

‖s‖2L2(Ω) =
∑
j

|Ωj ||sj |2 ≤
h

α

∑
j

∑
r

ljr (njr, sj)2

≤ 2h
α

∑
j

∑
r

ljr (njr,qr)2 + 2h
α

∑
j

∑
r

ljr (njr,qr − sj)2

≤ 2 1
CMα

∑
r

|Vr| |qr|2 + 2h
α

∑
j

∑
r

ljr (njr,qr − sj)2

≤ 2 1
CMα

‖q‖2L2(Ω) + 2h
α

∑
jr

ljr (njr,qr − sj)2
.
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The first term is natural bounded bounded using (110). The crux of the estimate is the second
term which is naturally bounded by (107)∑
jr

ljr (njr,qr − sj)2 ≤ 2
ε

(
K
√

max(h2, hε)h+ Cεh
)
‖p0‖2H3(Ω) ≤ D(h+ ε)h

ε
‖p0‖2H3(Ω), D > 0.

We obtain therefore

‖s‖2L2(Ω) ≤ C
(

max(h2, hε) + h(h+ ε)h
ε

)
‖p0‖2H3(Ω), C > 0.

The numbers h and ε can be considered less than 1. There are two cases: Either h < ε so
‖s‖2L2(Ω) ≤ C̃hε‖p0‖2H3(Ω) for another constant C̃; or ε ≤ h, so ‖s‖2L2(Ω) ≤ C̃ h3

ε ‖p0‖2H3(Ω) for

another constant C̃. So we can writes ‖s‖L2(Ω) ≤ C
√

h
ε max(h, ε) for a certain constant C > 0

independent of h and ε. The proof of (108) is ended.

Proposition 3.14. There exists a constant C independent of h and ε such that∥∥∥∥( d

dt
ur
)∥∥∥∥

L2([0,T ]×Ω)
≤ C max

(
1,
√
ε

h

)
‖p0‖H3(Ω). (111)

Proof. The proof is essentially a consequence of the previous proposition. Let us denote the time
derivative of any f as f̃ = ∂tf . By linearity of the system (85), one has

| Ωj |
d

dt
p̃j +

∑
r

(ljrũr,njr) = 0∑
r ljr(njr, ũr − ũj)njr = 0(
ε
∑
j α̂jr + σBr

)
ũr =

∑
j ljrp̃jnjr + ε

∑
j α̂jrũj

The L2 stability property yields

‖p̃h‖2L∞([0,T ];L2(Ω)) +
∫ T

0

∑
r

(Brũr, ũr)dt ≤ ‖p̃h(0)‖2L2(Ω) (112)

where this last quantity can be estimated with the first equation of (85): the square of the norm
in (111) is also bounded by the same quantity. It remains to bound ‖p̃(0)‖L2(Ω)). Using again the
notation qr = ur + 1

σ∇p(xr), we consider at time t = 0 the relation

p̃j = d

dt
pj = − 1

|Ωj |
∑
r

ljr(ur,njr) = 1
σ

1
|Ωj |

∑
r

ljr(∇p(xr),njr)︸ ︷︷ ︸
=v1

j

− 1
|Ωj |

∑
r

ljr(qr,njr)︸ ︷︷ ︸
=v2

j

.

One has v1
j = 1

|Ωj |
∑
r ljr(∇p(xr) − ∇p(xj),njr). Using techniques which have been used many

times in this paper, one has |v1
j | ≤ C 1

h‖p‖H3(Ωj), which turns into

‖v1‖L2(Ω) =
√∑

j

|Ωj |(v1
j )2 ≤ C‖p‖H3(Ω) ≤ C‖p0‖H3(Ω), C > 0.

The other term is naturally bounded by the norm of q, that is ‖v2‖L2(Ω) ≤ P
CMh‖q‖L2(Ω), P the

maximal number of vertices per cell. Going back to (107), one obtains

‖v2‖L2(Ω) ≤ C
1
h

√
hmax(h, ε)‖p0‖H3(Ω) ≤ C

√
max(1, ε/h)‖p0‖H3(Ω). (113)

The sum ‖v1‖L2(Ω) + ‖v2‖L2(Ω) yields the bound for p̃h(0) that was looked for. The estimate is
dominated by the worst term which is the right hand side of (113). Plugging in (112), the proof
is finished.
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3.7 Study of ‖Pε
h −DAε

h‖
In this section we estimate the difference between the hyperbolic scheme Pε

h and the diffusion
asymptotic scheme DAε

h. Since the discrete of the discrete equations are very similar, this proof is
simple. This is where we get the clear benefit of the introduction of the new diffusion asymptotic
scheme.

Lemma 3.15. There exists a constant C→ independant of h and ε, with a linear growth in time,
such that the following estimate holds

‖Vε
h −Wε

h‖L2([0,T ]×Ω)) ≤ C→
(
h2 + εmax

(
1,
√
ε

h

))
‖p0‖H3(Ω). (114)

Proof. We introduce Rj = d
dtuj such that the solution Vh of the diffusion scheme (63) satisfies

| Ωj |
d

dt
pj + 1

ε

∑
r

(ljrnjr,ur) = 0,

| Ωj |
d

dt
uj + 1

ε

∑
r

(ljrpjnjr + α̂jr(uj − ur)) = |Ωj |Rj ,(
Ar + σ

ε
Br

)
ur −

∑
j

ljrpjnjr −
∑
j

α̂jruj = 0.

(115)

By definition ‖R‖L2(Ω) = ‖ ddtuj‖L2(Ω). Using the second line of (63), one has uj = A−1
j

∑
r α̂jrur

and thus ‖ ddtuj‖L2(Ω) ≤ C‖ ddtur‖L2(Ω). Using (111) (and taking care that rescaling (84) by a
factor ε was systematically used in the previous section), one gets for a smooth initial data

‖R‖L2([0,T ]×Ω) ≤ Cεmax
(

1,
√
ε

h

)
‖p0‖H3(Ω).

We denote by ej = pj − pεj , fj = uj − uεj and fr = ur − uεr. One finds, making the difference
between the schemes (115) and (57):

| Ωj |
d

dt
ej + 1

ε

∑
r

(ljrnjr, fr) = 0,

| Ωj |
d

dt
fj + 1

ε

∑
r

(ljrejnjr + α̂jr(fj − fr)) = |Ωj |Rj ,(
Ar + σ

ε
Br

)
fr −

∑
j

ljrejnjr −
∑
j

α̂jrfj = 0.

We are going to write an inequality satisfied by E(t) = ‖e(t)‖2L2(Ω) + ‖f(t)‖2L2(Ω), knowing that
e(0) = 0. Using the same kind of proof than for the L2 stability of the JL-(b) scheme (proposition
3.6), one can show that

1
2
d

dt
E(t) ≤

∑
j

|Ωj |(Rj , fj) ≤ ‖f‖L2(Ω)‖R‖L2(Ω) ≤
√
E(t)‖R‖L2(Ω).

By integration, one has for t ≤ T√
E(t) ≤

√
E(0) +

√
T‖R‖L2([0,T ]×Ω) = ‖f(0)‖L2(Ω) +

√
T‖R‖L2([0,T ]×Ω).

One has ‖f(0)‖L2(Ω) ≤ C
√
hεmax(h, ε)‖p0‖H3(Ω) by virtue of (108) (taking care that there is a

rescaling (84) by ε). We simplify a little ‖f(0)‖L2(Ω) ≤ C
(
h2 + ε2) ‖p0‖H3(Ω), so

√
E(t) ≤ C

(
h2 + εmax

(
1,
√
ε

h

)√
T

)
‖p0‖H3(Ω), C > 0.
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Since ‖Vε
h −Wε

h‖L2([0,T ]×Ω)) =
√∫ T

0 E(t)dt, the proof is ended with

C→ = CT

(
h2 + εmax

(
1,
√
ε

h

))
‖p0‖H3(Ω)

.

3.8 Space estimate for uniform AP property in 2D
We have the following result of uniform convergence for a mesh satisfying the geometrical assump-
tions (3.2).

Theorem 3.16 (Space estimate). There exists a constant C>0 independent of h and ε, increasing
at most as T 3

2 , such that the following estimate holds

‖Vε −Vε
h‖L2([0,T ]×Ω) ≤ Ch

1
4 ‖p0‖H4(Ω).

Proof. The proof is a slight adaptation of our initial proposition 1.3, where we use the norm
‖ · ‖ = ‖ · ‖L2([0,T ]×Ω)). From the triangular inequality applied to the AP diagram, one has

‖Vε
h −Vε‖ ≤ min (‖Vε

h −Vε‖naive, ‖Vε
h −Wε

h‖+ ‖Wε
h −Wε‖+ ‖Wε −Vε‖) .

All these norms are estimated with (75), (114), (83) and (74). Therefore one can write

‖Vε
h −Vε‖ ≤ C min

(√
h

ε
,

(
h2 + εmax

(
1,
√
ε

h

))
+ (h+ ε) + ε

)
‖p0‖H4(Ω), C > 0,

where
C = max

[
↓C√
CM

,
C→

CM
,
C↓√
CM

, C←

]
and behaves as T 3

2 for large T .
The parenthesis is

Z = min
(√

h

ε
,

(
h2 + εmax

(
1,
√
ε

h

))
+ (h+ ε) + ε

)

≤ min
(√

h

ε
, εmax

(
1,
√
ε

h

)
+ 2h+ 2ε

)
≤ min

(√
h

ε
, 3εmax

(
1,
√
ε

h

)
+ 2h

)
.

As in proposition 1.3, a threshold value is obtained by equating the more singular terms, that is√
h

εthresh
= εthresh

√
εthresh
h , with solution εthresh =

√
h. Two case occur. The first case is ε ≥ εthresh.

Then the first term in Z shows that Z ≤
√

h
εthresh

= h
1
4 . The second case is ε ≤ εthresh. Then the

second term in Z shows that Z ≤ 3εthresh
√

εthresh
h +2h = 3h 1

4 +2h ≤ 5h 1
4 . In both case Z ≤ Ch 1

4 .
The proof is ended.

4 Implicit discretization and proof of theorem 1.1
We explain hereafter how to compare the implicit scheme and the semi-discrete scheme, in a
way that produces immediately abstract error bounds. This technique comes from [12] where
applications to the numerical analysis of explicit schemes was the main goal. In what follows
we concentrate on implicit Euler discretization for two reasons. First reason is that the theory
is a little simpler to explain than for the explicit scheme, for which the interested reader may
nevertheless refer to the cited work. The very simple proof that is provided is new. Second
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reason is that implicit discretization is somehow necessary to take into the account the intrinsic
stiffness of the problem. In particular the numerical tests have been performed with the implicit
method. With the explicit method the CFL condition is so restrictive that it makes impossible the
convergence study. The proof is a consequence of the abstract estimate (120) with the technical
estimate (126) for the initial data.

4.1 An abstract estimate
The idea is to compare the solution Uh(t) of a semi-discrete scheme

Uh(t) = AhUh(t), Uh(0) = U ini
h (116)

with the solution of the corresponding implicit Euler scheme with time step ∆t

Un+1
h − Unh

∆t = AhU
n+1
h , U0

h = U ini
h (117)

The operator depends on an abstract parameter h: with symbolic notation, this abstract param-
eter is h← (h, ε) in the case of our problem Pε

h. The question is to bound the difference of these
two uniformly with respect to ∆t and uniformly with respect to the abstract parameter h.

We assume a natural L2 norm denoted as ‖ · ‖ with the associated scalar product. For simplicity
we also assume that Ah is dissipative in the sense that

(Uh, AhUh) ≤ 0 for all Uh in the appropriate discrete space.

Taking the scalar product of (117) with Un+1
h , one deduces that ‖Un+1

h ‖ ≤ ‖Unh ‖ for all Unh .
Assuming the discrete space in finite (this is always true for discrete methods in a compact domain),
one gets the unconditional stability estimate

‖(Ih −∆tAh)−1‖ ≤ 1 ∀∆t > 0 (118)

where Ih is the discrete identity operator and the norm is the induced one for operators. Note that
(118) ultimately shows that the matrix Ih −∆tAh is non singular. So the matrix of the problem
can be assemble and invert on a computer.

Let us define for convenience V nh = Uh(n∆t) so that the semi-discrete scheme can be rewritten as

V n+1
h − V nh

∆t −AhV n+1
h = 1

∆t

∫ (n+1)∆t

n∆t
U ′h(s)ds−AhUh((n+ 1)∆t)

= 1
∆t

∫ (n+1)∆t

n∆t
AhUh(s)ds−AhUh((n+ 1)∆t) = ∆tAhsn+1

h

where the residual is sn+1
h = 1

∆t
∫ (n+1)∆t
n∆t

Uh(s)−Uh((n+1)∆t)
∆t ds. We notice that

‖snh‖ ≤ sup
0≤s≤T

‖U ′h(s)‖ ≤ ‖AhU ini
h ‖, n∆t ≤ T. (119)

Therefore this special residual is uniformly bounded provided ‖AhU ini
h ‖ is uniformly bounded.

This is actually true: it comes from the fact that Wh(t) = U ′h(t) is solution of W ′h(t) = AhWh(t)
and Wh(0) = AhU

ini
h . So the strong L2 stability of the semi-discrete scheme due to (121) yields

the bound (119).

Proposition 4.1 (Time estimate). Let T > 0 be a final time. Then there exists a constant C
independent of h, ε and ∆t, proportional to

√
T , such that

‖Unh − Uh(n∆t)‖ ≤ C
√

∆t‖AhU ini
h ‖, n∆t ≤ T. (120)
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Proof. The initial data is the same V 0
h = U ini

h . Let us define the error Enh = V nh − Unh which is
solution of

En+1
h − Enh

∆t = AhE
n+1
h + ∆tAhsn+1

h , E0
h = 0. (121)

It yields (Ih − ∆tAh)En+1
h = Enh + ∆t2Ahsn+1

h , that is En+1
h = (Ih − ∆tAh)−1Enh + ∆t(Ih −

∆tAh)−1∆tAhsn+1
h . We obtain the representation formula (discrete Duhamel’s formula)

Enh = ∆t
n−1∑
p=0

[
(Ih −∆tAh)−1]n−1−p (Ih −∆tAh)−1∆tAhsp+1

h . (122)

Let us define the operator Th = (Ih −∆tAh)−1 which is bounded ‖Th‖ ≤ 1. One has the formula
Th−Ih = (Ih−∆tAh)−1∆tAh and the formula

(
Ih − ∆t

2 Ah
)−1 Ih+Th

2 = (Ih −∆tAh)−1. Plugging
in the discrete Duhamel’s formula, one obtains another representation

Enh = ∆t
n−1∑
p=0

[
(Ih −

∆t
2 Ah)−(n−1−p)

] [(
Ih + Th

2

)n−1−p
(Th − Ih)

]
sp+1
h . (123)

The first operator in brackets is bounded by 1 due to the stability (118). On the other hand it is
an easy exercise in number theory to show that for q ≥ 0(

Ih + Th
2

)q
(Th − Ih) = 1

2q
∑
r

((
q

r − 1

)
−
(
q
r

))
T rh

where the binomial coefficients are
(
q
r

)
= q!

r!(q−r)! for 0 ≤ r ≤ q, otherwise zero. Therefore

∥∥∥∥(Ih + Th
2

)q
(Th − Ih)

∥∥∥∥ ≤ 1
2q
∑
r

∣∣∣∣( q
r − 1

)
−
(
q
r

)∣∣∣∣ ≤ 1
2q 2

(
q
r∗

)
where the last inequality is from a telescoping reasoning and r∗ is one of the closest entire number to

q/2, that is | q2−r∗| ≤ 1. But there exists a universal constant, denotedK, such that 1
2q−1

(
q
r∗

)
≤

K√
q+1 . Therefore

∥∥∥( Ih+Th

2
)q (Th − Ih)

∥∥∥ ≤ K/
√
q + 1. Using this universal estimate in (123) and

the estimate on snh, we obtain ‖Enh‖ ≤ ∆t
∑n−1
p=0

K√
n−1−p+1‖AhU

ini
h ‖ = ∆t

∑n
p=1

K√
p‖AhU

ini
h ‖. A

basic bound shows that
∑n
p=1

1√
p ≤ K̃

√
n. Therefore

‖Enh‖ ≤ ∆tKK̃
√
n‖AhU ini

h ‖ ≤ (KK̃
√
T )
√

∆t‖AhU ini
h ‖, n∆t ≤ T.

The proof is ended.

To finish the proof of the theorem 1.1, it is now necessary and sufficient to show that ‖ ddtUh(0)‖ =
‖AhU ini

h ‖ is bounded independently of h for the initial data of Pε
h. This is the purpose of the next

section.

4.2 Technical estimates
To prove the uniform on the initial data, we will use in a slightly different manner the estimates for
the initial data that have been obtained for the diffusion approximation scheme DAε

h. However
we will need an additional assumption of the mesh

(Aru,u) ≥ αh(u,u), Ar =
∑
j

α̂jr. (124)
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This assumption is not restrictive so we do not comment on it. The following technical estimates
show two things. First in explains in what sense the corner velocity is a good approximation of the
gradient at the corner at initial stage. Second it provides in (126) a control of the time derivative
at time t = 0 uniformly with respect to h and ε, it immediately shows the boundedness of the
abstract quantity AhU ini

h in (119). So it is possible to apply the above proposition and the main
theorem is proved. We now turn to the proof the technical estimates.

Proposition 4.2. There exists a constant C independent of h and ε such that the initial data of
Pε
h satisfies ∥∥∥uεr(0) + ε

σ
∇p0(xr)

∥∥∥
L2(Ω)

≤ Chε‖p0‖H3(Ω). (125)

Proof. The corner problem (59) that defines ur = uεr(0) at initial time is rewritten as(
Ar + σ

ε
Br

)
ur =

∑
j

ljrp0(xj)njr −
ε

σ

∑
j

α̂jr∇p0(xj).

Let us defined d1
r =

∑
j ljr (p0(xj)− p0(xr)− (xj − xr,∇p0(xr))) njr, already defined and bounded

in (109). So elimination of p(xj) and simplification with
∑
j ljrnjrp(xr) = 0 yield(

Ar + σ

ε
Br

)
ur =

∑
j

ljr (xr − xj ,∇p0(xr)) njr + d1
r

− ε
σ

∑
j

α̂jr∇p0(xr) + ε

σ

∑
j

α̂jr (∇p0(xr)−∇p0(xj)) .

that is with the definition of the matrices(
Ar + σ

ε
Br

)(
ur + ε

σ
∇p0(xr)

)
= d1

r + ε

σ

∑
j

α̂jr (∇p0(xr)−∇p0(xj)) .

The coercivity (124) of the matrices Ar and Br yields

α

(
h+ σh2

ε

) ∣∣∣ur + ε

σ
∇p0(xr)

∣∣∣ ≤ |d1
r|+

ε

σ

∑
j

α̂jr |∇p0(xr)−∇p0(xj)| .

With estimate of d1
r (109), estimate of the difference ∇p0(xr)−∇p0(xj), it yields

α

(
h+ σh2

ε

) ∣∣∣ur + ε

σ
∇p0(xr)

∣∣∣ ≤ C(h2 + ε

σ
h)‖p‖Ωj

,

with a constant uniform with respect to h, ε and the index of the cell j. That is∣∣∣ur + ε

σ
∇p0(xr)

∣∣∣ ≤ C

α
ε‖p‖Ωj

.

After squaring and summation with respect to j, it yields the result.

Proposition 4.3. There exists a constant C > 0 which do not depend on h and ε such that the
initial data of Pε

h satisfies ∥∥∥∥ ddtVε
h

∥∥∥∥
L2(Ω))

≤ C‖p0‖H3(Ω). (126)

Proof. The Pε
h scheme (57) or (61) can be rewritten

Pε
h :


d

dt
pεj = − 1

ε|Ωj |
∑
r

ljr(uεr − uεj ,njr)

d

dt
uεj = − 1

ε|Ωj |
∑
r ljr(njr,uεr − uεj)njr.

(127)
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At time t = 0 one has uεr − uεj =
(
uεr + ε

σ∇p0(xr)
)

+ ε
σ (∇p0(xj)−∇p0(xr)): the first term can

be estimated by (125) and the second one as usual. Therefore there exists constants such that∥∥∥∥∥ 1
ε|Ωj |

∑
r

ljr(uεr + ε

σ
∇p0(xr),njr)

∥∥∥∥∥
L2(Ω)

≤ C h

CMh2Phε‖p0‖H3(Ω) ≤ Ĉ‖p0‖H3(Ω).

In a similar way

1
σ|Ωj |

∣∣∣∣∣∑
r

ljr(∇p0(xr)−∇p0(xj),njr)

∣∣∣∣∣ ≤ h

σCMh2 C̃‖p0‖H3(Ωj) ≤
C

h
‖p0‖H3(Ωj).

Therefore ∥∥∥∥∥ 1
σ|Ωj |

∑
r

ljr(∇p0(xr)−∇p0(xj),njr)

∥∥∥∥∥
L2(Ω)

≤ C‖p0‖H3(Ω).

It shows that
∥∥ d
dtp

ε(0)
∥∥
L2(Ω) ≤ C‖p0‖H3(Ωj). Considering (127) , a similar result for d

dtu
ε(0). It

shows
∥∥ d
dtV

ε
h(0)

∥∥
L2(Ω)) ≤ C‖p0‖H3(Ω). The proof is ended.

5 Numerical illustration
To illustrate the theory and have a more quantitative version of the error estimates studied in
this work, we consider the academic square Ω = [0, 1]2 and discretize the hyperbolic heat equation
of a mesh made with random quads. A random quad mesh is made of quads where the vertices
are moved randomly around their initial position, by a factor between 10% and 30%. We use the
fully implicit time discretization version of the 2D scheme detailed in this work. The solution
of the linear systems is computed via an iterative GMRES algorithm, which converges smoothly
in our numerical experiments. The reference analytical solution used in our tests is designed by
separation of variables. A solution of (1) is

p = f + ε2

σ
∂tf and u = − ε

σ
∇f,

with f solution of

∂tf + ε2

σ
∂2
t f −

1
σ

∆f = 0. (128)

We propose to construct a solution for a subset of small ε to validate the uniform convergence.
Firstly we consider that the solution is a periodic solution on the square [0, 2] ×

[
0, 2

L

]
. For this

we use the separation of the variables. We consider the following function

f(t, x, y) = α(t) cos(Lπx)) cos(Lπy).

and we propose to find the function α(t) such that f(t, x, y) = α(t) cos(Lπx) cos(Lπy) is a periodic
solution of (128). The function α is determined as the solution of

α′(t) + ε2

σ
α′′(t) + 2L2π2

σ
α(t) = 0

with α′(0) = 0 and α(0) = 1. For small ε, which is the case we are interested in, the solution is
computed as follows. First determine

λ1 = −
σ

(√
1− ε2

σ2 8L2π2 + 1
)

2ε2 and λ2 =
σ

(√
1− ε2

σ2 8L2π2 − 1
)

2ε2 .

Then
α(t) = λ2

λ2 − λ1
eλ1t − λ1

λ2 − λ1
eλ2t

40



 1e-05

 0.0001

 0.001

 0.01

 0.1

 10  100  1000

L
2

 E
rr

o
r

N

2:

1:

0.5:

0.25:

0:

order one

Figure 6: The error is plotted in log scale versus the number of cells per direction for the test
problem described in section 5. Each curve corresponds to a value of τ ∈ {0, 1

4 ,
1
2 , 1, 2}, plus a

reference line for order one. One sees that the order of convergence is an increasing function of τ .

from which p(t) and u(t) are easily recovered.
We decide that an exact relation is enforced between ε and h = 1

N , so that the error can
be expressed as a function of h solely. The relation between ε and h writes ε = 0.01(40h)τ for
τ ∈ {0, 1

4 ,
1
2 , 1, 2}. The error between the exact solution and the numerical solution is computed

numerically in function of h = 1
N , for different values of τ , and the results of some of these

numerical experiments is displayed in figure 6. The results correspond to the time T = 0.02 using
the time step ∆t = 0.2h2.

As predicted by the theory, the scheme is uniformly AP and the error behavior is a continuous
function of γ between the hyperbolic and parabolic limits. However the results are much better,
in the sense the order is greater than the theoretical prediction since the order is approximatively
1 for γ = 0 (hyperbolic limit) and 2 for γ = 2 (parabolic regime). We can find a closed result on
the second order convergence for the parabolic regime in the paper [1] (1D linear problem). The
reason is probably that the theory is based on worst case estimates, as it is often the case for the
numerical analysis of finite volume schemes [14].

6 Conclusion
The proof that was given of the uniform AP property is quite technical. It relies on specific
hyperbolic and parabolic estimates for linear nodal finite volume schemes on general meshes.
We observe that the multidimensional case yields an additional contribution in the error that
ultimately slightly degrades the convergence rate. It is an open problem to determine if these
inequalities are optimal. The numerical results indicate that it is probably not the case.
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A Detailed proof of the naive estimate (75)
Our aim is to now examine each term in the right hand side of the dissipative identity (82). Its
first term is already non positive.

Proposition A.1. Let γ > 0 be a number which precise value will be determined further. There
exists a constant C1(γ) which depends on γ such that one has the bound for the second term of
the dissipative identity (82)∫ T

0
E1(t)dt ≤ γ

ε

∫ T

0

∑
j,r

lj,r(nj,r,uεj − uεr)2 + C1(γ) h

ε
√
CM
‖Vε(0)‖2H1(Ω). (129)

Proof. We use a Young’s inequality ab ≤ γ
2a

2 + 1
2γ b

2,with some positive constantγ which will be
defined later, for the second term and the definition of the fluxes (58) for the third term: we get

E1 ≤
γ

2ε
∑
j,r

lj,r(nj,r,uεj − uεr)2 + h

2γε
∑
j

∑
r

δj,r(pε)2

+
∑
j

∑
r

ljr(njr,uεj − uεr)(njr, δj,r(uε))−
1
ε

∑
j

∑
r

(
σ

ε
β̂j,ruεr , δj,r(uε)

)
Another use of Young’s inequality with the same coefficient γ for the third term yields

E1 ≤
γ

ε

∑
j,r

lj,r(nj,r,uεj − uεr)2 + h

2γε
∑
j

∑
r

δj,r(pε)2

+ 1
2γε

∑
j

∑
r

ljr|δj,r(uε)|2 −
1
ε

∑
j

∑
r

(
σ

ε
β̂j,ruεr , δj,r(uε)

)
≤ γ

ε

∑
j,r

lj,r(nj,r,uεj − uεr)2 + h

2γε
∑
j

∑
r

δj,r(pε)2

+ h

2γε
∑
j

∑
r

|δj,r(uε)|2 −
1
ε

∑
j

∑
r

(
σ

ε
β̂j,ruεr , δj,r(uε)

)
.

We now look at the last term of this inequalityW = − 1
ε

∑
j

∑
r

(
σ
ε β̂j,ru

ε
r , δj,r(uε)

)
. By definition

(60) of β̂j,r, one has
∣∣∣β̂j,r∣∣∣ ≤ h2. Therefore

|W | ≤ σh2

ε2

(∑
j

∑
r

∣∣∣∣uεr∣∣∣∣2) 1
2
(∑

j

∑
r

|δj,r(uε)|2
) 1

2

≤ σh2

ε2

√
P

(∑
r

∣∣∣∣uεr∣∣∣∣2) 1
2
(∑

j

∑
r

|δj,r(uε)|2
) 1

2

≤ σh

ε2

√
P

CM

(∑
r

|Vr|
∣∣∣∣uεr∣∣∣∣2) 1

2
(∑

j

∑
r

|δj,r(uε)|2
) 1

2

≤ σh

2ε2

√
P

CM

(∑
r

|Vr|
(
uεr,uεr

)
+
∑
j

∑
r

|δj,r(uε)|2
)
.

It yields

E1 ≤
γ

ε

∑
j,r

lj,r(nj,r,uεj − uεr)2 + h

2γε
∑
j

∑
r

δj,r(pε)2

+
(

h

2γε + σh

2ε2

√
P

CM

)∑
j

∑
r

|δj,r(uε)|2 + σh

2ε2

√
P

CM

∑
r

|Vr|
(
uεr,uεr

)
.

(130)
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Using the first interpolation result of proposition 3.3 and the assumption (65), one has∑
j

∑
r

δj,r(pε)2 ≤ PC2
A||pε||2H2(Ω) and

∑
j

∑
r

|δj,ruε|2 ≤ PC2
A||uε||2H2(Ω).

So we obtain∫ T

0
E1dt ≤

γ

ε

∫ T

0

∑
j,r

lj,r(nj,r,uεj − uεr)2dt+ PC2
Ah

2γε ||p
ε||2L2([0,T ];H2(Ω))

+ PC2
A

(
h

2γε + σh

2ε2

√
P

CM

)
||uε||2L2([0,T ];H2(Ω)) + σh

2ε2

√
P

CM
‖uεr‖2L2([0,T ]×Ω).

Using energy estimate (2) for the the second term of the rhs of the above inequality, (3) for the
third term and (76) for the last term, one gets finally∫ T

0
E1(t)dt ≤ γ

ε

∫ T

0

∑
j,r

lj,r(nj,r,uεj − uεr)2 (131)

+
(
T
PC2
Ah

2γε + PC2
A

(
h

2γε + σh

2ε2

√
P

CM

)
ε2

σ
+ σh

2ε2

√
P

CM

ε2

σα

)
‖Vε(0)‖2H2(Ω).

After a convenient definition os the constant C1(γ), it ends the proof.

Proposition A.2. There exists a constant C2 such that the third term in the dissipative identity
(82) can be bounded as ∫ T

0
E2(t)dt ≤ C2

h

εCM
‖Vε(0)‖2H3(Ω). (132)

Proof. We decompose E2 in (82) in two terms. Making use of the second set of inequalities of the
proposition 3.3 and the assumptions (64) and (65), the first one can be bounded as

|A| =

∣∣∣∣∣∣1ε
∑
j

∑
r

|Γj,r|pεj(nj,r, δ̃j,r(uε))

∣∣∣∣∣∣ ≤ CAP

ε
h2
∑
j

|pεj |‖Vε(t)‖H3(Ωj).

Using the inequality ab ≤ 1
2 (a2 + b2), it yields |A| ≤ CAP

2ε h3∑
j |pεj |2 + CAP

2ε h
∑
j ‖Vε(t)‖2H3(Ωj).

The assumption (67) yields

|A| ≤ CAP

2ε
h

CM
‖Vε

h(t)‖2L2(Ω) + CAP

2ε h‖Vε(t)‖2H3(Ω).

The L2 stability (76) of the scheme Pε
h shows that

‖Vε
h(t)‖L2(Ω) ≤ ‖Vε

h(0)‖L2(Ω) ≤ ‖Vε(0)‖L2(Ω) + ‖Vε
h(0)−Vε(0)‖L2(Ω) ≤ (1 +CAh)‖Vε(0)‖H2(Ω)

where the last inequality comes from the initialization stage (71). With the basic energy estimate
(2), and since h is bounded, we obtain∫ T

0
|A|dt ≤ T

(
CAP

2ε
h

CM
(1 + CAh) + CAP

2ε h

)
‖Vε(0)‖2H3(Ω).

The second contribution in E2 is B = 1
ε

∑
j

∑
r |Γj,r|

(
uεj ,nj,r δ̃j,r(pε)

)
. Almost the same calcula-

tions show the bound∫ T

0
|B|dt ≤ T

(
CAP

2ε
h

CM
(1 + CAh) + CAP

2ε h

)
‖Vε(0)‖2H3(Ω).

Summing the two contributions, it concludes the proof after a convenient definition of C2.
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Proposition A.3. Let γ̂ > 0 be a number which precise value will be determined further. There
exists a constant C3(γ̂) which depends on γ̂ such that one has the bound for the last term of the
dissipative identity (82)∫ T

0
E3(t)dt ≤ γ̂σ

2ε

∫ T

0

∑
r

∑
j

ljr

(
njr , uεr − uεj

)2
dt+ C3(γ̂) h

εCM
‖Vε(0)‖2H1(Ω). (133)

Proof. The definition of E3 in (82) is

E3 = σ

ε2

∑
r

∑
j

(
β̂j,ruεr ,

1
|Ωj |

∫
Ωj

uεdx
)

+ σ

ε2

∑
j

(
uεj ,
∫

Ωj

uε
)

− σ

ε2

∑
j

∫
Ωj

(uε,uε)dx− σ

ε2

∑
j

∑
r

(β̂juεr,uεr).

Using the Cauchy-Schwarz inequality on the third term
∫

(uε,uε), one gets

E3 ≤
σ

ε2

∑
r

∑
j

(
β̂j,ruεr ,

1
|Ωj |

∫
Ωj

uεdx
)

+ σ

ε2

∑
j

(
uεj ,
∫

Ωj

uε
)

− σ

ε2

∑
j

1
|Ωj |

(∫
Ωj

uεdx
)2
− σ

ε2

∑
j

∑
r

(β̂juεr,uεr),

which can be written

E3 ≤ −
σ

ε2

∑
r

∑
j

(
β̂j,ruεr , uεr −

1
|Ωj |

∫
Ωj

uεdx
)
− σ

ε2

∑
j

(∫
Ωj

uεdx, 1
|Ωj |

∫
Ωj

uεdx− uεj
)

that is
E3 ≤−

σ

ε2

∑
r

∑
j

(
β̂j,r

(
uεr −

1
|Ωj |

∫
Ωj

uεdx
)
, uεr −

1
|Ωj |

∫
Ωj

uεdx
)

− σ

ε2

∑
r

∑
j

(
β̂j,r

1
|Ωj |

∫
Ωj

uεdx , uεr −
1
|Ωj |

∫
Ωj

uεdx
)

− σ

ε2

∑
j

(∫
Ωj

uεdx, 1
|Ωj |

∫
Ωj

uεdx− uεj
)
.

One has, using the geometric identity
∑
r β̂jr = |Ωj |Id which can be found in [7, 13],∑

r

∑
j

(
β̂j,r

1
|Ωj |

∫
Ωj

uεdx , uεr −
1
|Ωj |

∫
Ωj

uεdx
)

+
∑
j

(∫
Ωj

uεdx , 1
|Ωj |

∫
Ωj

uεdx− uεj
)

=
∑
r

∑
j

(
β̂j,r

1
|Ωj |

∫
Ωj

uεdx , uεr − uεj
)
.

We thus get after simplification

E3 ≤−
σ

ε2

∑
r

∑
j

(
β̂j,r

(
uεr −

1
|Ωj |

∫
Ωj

uεdx
)
, uεr −

1
|Ωj |

∫
Ωj

uεdx
)

− σ

ε2

∑
r

∑
j

(
β̂j,r

1
|Ωj |

∫
Ωj

uεdx , uεr − uεj
)

∣∣∣∣∣∣∣∣∣∣
:= S1

:= S2

(134)

We add and subtract at each average on the cell the nodal value. We recall the notation δj,r(uε) =
1
|Ωj |

∫
Ωj

uεdx− uε(xr). We get for the term under the first sum in (134)(
β̂j,r

(
uεr −

1
|Ωj |

∫
Ωj

uεdx
)
, uεr −

1
|Ωj |

∫
Ωj

uεdx
)
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=
(
β̂j,r

(
uεr − uε(xr)

)
, uεr − uε(xr)

)
−
(
β̂j,r

(
uεr − uε(xr)

)
, δj,r(uε)

)
−
(
β̂j,rδj,r(uε) , uεr − uε(xr)

)
+
(
β̂j,rδj,r(uε) , δj,r(uε)

)
. (135)

The first of these quantities is purely nodal: one has after summation∑
j

∑
r

(
β̂j,r

(
uεr − uε(xr)

)
, uεr − uε(xr)

)

=
∑
r

(
Br

(
uεr − uε(xr)

)
, uεr − uε(xr)

)
≥ α

∑
r

|Vr||uεr − uε(xr)|2 (136)

with the help of (70). The second and third term in the identity (135) can be bounded by a
Young’s inequality with a convenient constant C = CMα

2P so that all terms containing uεr − uε(xr)
are controlled by (136). So we obtain concerning S1 defined in (134)

S1 ≤
(

1 + 2P
CMα

)
h2σ

ε2

∑
r

∑
j

|δj,r(uε)|2 .

Using the first interpolation result stressed in proposition 3.3, one has in dimension two |δj,r(uε)| ≤
CA‖uε(t)‖H2(Ωj). So, taking into account energy estimate (3) we have for the first term∫ T

0
S1dt ≤ C2

AP

(
1 + 2P

CMα

)
h2‖Vε(0)‖2H2(Ω).

We now consider the second term called S2 in (134)

S2 = − σ
ε2

∑
r

∑
j

(
β̂j,r

1
|Ωj |

∫
Ωj

uεdx , uεr − uεj
)
.

Using (~a⊗~b ~c, ~d) = (~b,~c)(~a, ~d), one has

S2 = − σ
ε2

∑
r

∑
j

ljr

(
(xr − xj),

1
|Ωj |

∫
Ωj

uεdx
)(

njr , uεr − uεj
)

Using the Young’s inequality ab ≤ γ̂ε
2 a

2 + 1
2γ̂ε

b2, we get

∫ T

0
S2dt ≤

γ̂σ

2ε

∫ T

0

∑
r

∑
j

ljr

(
njr,uεr−uεj

)2
dt+

∫ T

0

σ

2γ̂ε3

∑
r

∑
j

ljr

(
(xr−xj),

1
|Ωj |

∫
Ωj

uεdx
)2
dt

Using one more time the energy estimate (3) the second term in the right hand side of the above
inequality is bounded by Ph

2CMγ̂ε
‖Vε(0)‖2L2(Ω). Thus∫ T

0
E3(t)dt ≤ γ̂σ

2ε

∫ T

0

∑
r

∑
j

ljr

(
njr,uεr−uεj

)2
dt+P

{
C2
A

(
1+ 2P

CMα

)
h2+ h

2CMγ̂ε

}
‖Vε(0)‖2H2(Ω),

which is the expected result after convenient redefinition of the constant in front of the last
term.

End of the proof of the naive estimate of proposition (3.5). One gets

E (T ) ≤ E (0)− 1
ε

∫ T

0

∑
j,r

lj,r(nj,r,uεj − uεr)2 +
∫ T

0
E1(t)dt+

∫ T

0
E2(t)dt+

∫ T

0
E3(t)dt
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where integrals are estimated in (129), (132) and (133). Using equation (71), one finds

E (T ) ≤ C2
0h

2‖Vε(0)‖2H2(Ω)

− 1
ε

∫ T

0

∑
j,r

lj,r(nj,r,uεj − uεr)2

+ γ

ε

∫ T

0

∑
j,r

lj,r(nj,r,uεj − uεr)2 + C1(γ) h

ε
√
CM
‖Vε(0)‖2H1(Ω)

+ C2
h

εCM
‖Vε(0)‖2H3(Ω)

+ γ̂σ

2ε

∫ T

0

∑
r

∑
j

ljr

(
njr , uεr − uεj

)2
dt+ C3(γ̂) h

εCM
‖Vε(0)‖2H2(Ω).

.

This estimate is fundamental, since it shows the competition between different kind of error
terms and the dissipation of the fluxes. Choosing by example γ̂ < 1

σ and γ < 1
2 , all terms like∫ T

0
∑
j,r lj,r(nj,r,uεj − uεr)2 vanish. All other terms can put together as E (T ) ≤ ↓C

2
h
ε ‖p0‖2H4(Ω),

where the constant ↓C has , as in 1D, has at most a linear growth in time. It ends the proof of
the naive estimate.

B Bihari’s inequality and application
We recall a nonlinear generalization of the Gronwall-Bellman inequality known as Bihari’s inequal-
ity

Lemma B.1. If

y(t) ≤ a+
∫ t

0
b(s)g(y(s))ds, (137)

with a non negative constante, b(t) a positive function and g a positive non decreasing function
then, noting by G(x) an antiderivative of 1/g(x), one has

y(t) ≤ G−1
(
G(a) +

∫ t

0
b(s)ds

)
. (138)

The proof is trivial by setting Z = a+
∫ t

0 b(s)g(y(s))ds and and verifying that Z ′ ≤ bg(Z), see
[5]. In our work g(x) =

√
x. Moreover a, b(s)2 and y are square of L2(Ω) norms. More precisely

in our convergence’s proofs one ends to inequality of the type

‖Y ‖2L2(Ω)(t) ≤ ‖Y ‖2L2(Ω)(0) +
∫ t

0
‖A‖2L2(Ω) +

∫ t

0
‖B‖L2(Ω)‖Y ‖L2(Ω)ds. (139)

for Y , A and B functions of L2(Ω. Thus for all t ≤ T

‖Y ‖2L2(Ω)(t) ≤ ‖Y ‖2L2(Ω)(0) +
∫ T

0
‖A‖2L2(Ω) +

∫ t

0
‖B‖L2(Ω)‖Y ‖L2(Ω)ds, (140)

Using the Bihari’s inequality (138) and the Cauchy-Schwarz inequality one obtain for all t ≤ T ,

‖Y ‖2L2(Ω)(t) ≤
1
2

2
√
‖Y ‖2L2(Ω)(0) + ‖A‖2L2([0,T ]×Ω) +

√
t

√∫ t

0
‖B‖2L2([0,T ]×Ω)ds

2

, (141)

and majorizing t by T in the right-hand side

‖Y ‖2L2(Ω)(t) ≤
1
2

(
2
√
‖Y ‖2L2(Ω)(0) + ‖A‖2L2([0,T ]×Ω) +

√
T‖B‖L2([0,T ]×Ω)

)2
. (142)
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Integrating in time that gives

‖Y ‖2L2([0,T ]×Ω) ≤
1
2T
(

2
√
‖Y ‖2L2(Ω)(0) + ‖A‖2L2([0,T ]×Ω) +

√
T‖B‖L2([0,T ]×Ω)

)2
(143)

We can summarize these calculations by the lemma

Lemma B.2. If Y , A and B are functions of L2(Ω) satisfying (139) then

‖Y ‖L2([0,T ]×Ω) ≤
√
T

2

(
2
√
‖Y ‖2L2(Ω)(0) + ‖A‖2L2([0,T ]×Ω) +

√
T‖B‖L2([0,T ]×Ω)

)
(144)

If ‖A‖L2(Ω) ≤ C et ‖B‖2L2(Ω) ≤ C, with C constant then the right-hande side behaves as T 3
2

for large time. If ‖A‖L2(Ω) ≤ C or
∫ T

0 ‖A‖L2(Ω) ≤ C and
∫ T

0 ‖B‖
2
L2(Ω) ≤ C, then the right-hand

side behaves now as T for large time.
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