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A Geometrical Setting for the Newtonian Mechanics of Robots

A geometrical setting for the Newtonian mechanics of mechanical manipulators is presented. The configuration space of the mechanical system is modelled by a differentiable manifold. The kinematics of the system is formulated on the tangent and double tangent bundles of the corifiguration space, and forces are defined as elements of the cotangent bundle. The dynamical properties of the system are introduced by specifying a Riemannian metric on the configuration space. The metric is used in order to generate the generalized momenta and the kinetic energy from the generalized velocities, and the connection it induces makes it possible to formulate a generalization of Newton's second law relating generalized forces and generalized accelerations.

I. Introduction

,

Local properties of mechanical systems such as the equations of motion can be described by the classical treatment of mechanics. However, these formulations cannot provide a framework for the discussion of global questions such as the existence and uniqueness of the solutions of the equations of motion. While the classical control theory deals with differential equations in Rn, the motion of a mechanical system takes place (in the holonomic case) on differentiable manifolds.

Comprehensive formulations of Lagrangian and Hamiltonian mechanics on differentiable manifolds have been available for several years, see, for example [START_REF] Abraham | Foundation of Mechanics[END_REF][START_REF] Arnold | Mathematic al Methods of Classical Mechanics[END_REF]. These general formulations, which are based on the notion of a symplectic manifold, cannot be utilized directly in engineering applications because, as their names indicate, they assume that the motion is given in terms of a Lagrangian function or a Hamiltonian function, and the Newtonian notion of a force is missing.

In this paper, we present a global geometrical formulation of the dynamics of multi-degrees of freedom mechanical systems which incorporates the notion of a force. Such a formulation is suitable for the analysis of the dynamics of robots where (generalized) forces serve as control parameters. In the suggested formulation the equations of motion are written directly on the basis of a generalized invariant version of Newton's second law. For the sake of completeness and easy reference, t Fellow of the B. De Rothchild Foundation for the Advancement of Science in Israel.

~ we present in an informal manner all the necessary mathematical terms and we define all the mathematical notions in the context of mechanics.

Section II introduces the notion of a differentiable manifold as the configuration space of a mechanical system and Section III introduces the tangent bundle and the double tangent bundle through the notions of motion and generalized velocity. Section IV introduces the cotangent bundle of the configuration space and presents the statics of a mechanical system as an example. In Section V we introduce the Riemannian metric (kinetic energy), and the structure it induces on the configuration space. In Section VI we use the structure provided by the kinetic energy in order to relate the forces and accelerations by the equation of motion. Geometrical results concerning the case of a free motion of the system are stated in Section VII. It turns out that these results allow us to write the equations of motion in an uncoupled linearized form if the gravity forces are neglected.

II. The Configuration Space

The basic notion of any analytical study of a mechanical system is the configuration space. The configuration space of a mechanical system is the collection of all possible configurations or states of the system. Clearly, the configuration space describes the kinematical properties of the mechanical system completely. The configuration spaces of mechanical systems which are composed of material particles and rigid bodies can be associated with geometric objects. For example, the configuration space of the double planar pendulum can be identified with the surface of a torus. Given a mechanical system, we denote its configuration space byQ.

In order to a~ply mathematical analysis to the configuration space, generalized coordinates are introduced. The number of generalized coordinates needed to specify any configuration is the number of degrees of freedom of the system. The following assumptions allow us to assign coordinates to the various configurations in a meaningful way (i) We assume that for every configuration q 0 in Q there exists a collection of neighboring configurations U and a function cp that assigns to any configuration q in U an ntuple of real numbers cp(q) = (ql(q), q2(q), ... , qn(q)), such that the image of cp is an open subset of Rn, and if q and q' are two distinct configurations in U, then cp(q) =1= cp(q').

The subset U is called a coordinate neighborhood and we say that cp is a chart on U and that qi(q), i = I, ... , n, are the coordinates of q under cp.

(ii) It might happen that two coordinate neighborhoods U and U' with charts cp and cp' intersect and we can have the transformation of coordinates cp' ocp-I on cp(U n U'), which gives the coordinates qi'in the chart cp' in terms of the coordinates qi in the chart cp in the form of n functions qi' = {(qi). We assume that both cp' 0 cp -I and its inverse transformation can be continuously differentiated as many times as we wish and it follows that the matrix oqi'joqi is nowhere singular.

The collection of coordinate neighborhoods and the charts defined on them are called an atlas on Q. Together with such an atlas Q has the geomctric sti-ucture of an n-dimension al differentiabl e manifold. It can be shown that the coordinate neighborho ods form a basis for a topology on Q. It can also be shown that if Q is compact in that topology it cannot be covered by a single coordinate neighborho od and it follows that the torus and the sphere, for example, cannot be covered by a single coordinate neighborho od. Let h: Q -+ Q' be a continuous mapping from a manifold Q into a manifold Q'. Then, by the definition of the topology on a manifold, for every coordinate neighborho od Von Q', there exists a coordinate neighborho od U on Q such that h( U) c V. However, denoting the charts on the two coordinate neighborho ods by <p and t/J, the unique relation between points on manifolds and their coordinates implies that the mapping t/Joho<p-1 associates the coordinates si of h(q) with the coordinates qi of any point q in U, in the form sf = sf(qi). The mapping t/Joho<p-I is called a local representati ve of h. We say that a mapping h: Q -+ Q' is differentiab le if every local representati ve of h is differentiab le. Seemingly, this definition depends on the charts used to construct the local representati ves. However, the differentiability of the coordinate transformat ions guarantees that if a local representative of a mapping with respect to some charts on Q and Q' is differentiab le, then, any other local representati ve of h with the same domain on Q will be differentiab le so that the notion of differentiab ility is well defined.

III. The Tangent Bundle

By a motion of the mechanical system having a configuratio n space Q, we mean a differentiab le mapping m: R -+ Q, where R is the time axis. Mathematic ally., such a motion is called a curve iJil Q. Let q be a configuratio n of the mechanical system and let m and m' be two curves such that m(O) = m'(O) = q. If <p is a chart in some neighborho od of q then the two motions induce the motions <pom = (ql(t), . .. , qn(t)) and <pom' = (ql'(t), . .. , if'(t)) in a neighborho od of <p(q) in Rn. We say that m and m' are tangent at q if d/dt (<pom) 11= 0 = d/dt (<pom') 11= 0, i.e. their representati ves are tangent in Rn at the coordinates of q. Again, it can be shown that if two motions are tangent when we use the chart <p they are tangent with respect to any other chart.

Let v denote a class of all motions that are tangent to a certain motion m at q. We call v a tangent vector at q or a generalized velocity at q and we say that m or any other motion in v represents v. The tangent space to Q at q is the set of all velocities at q and it is denoted by TqQ.

We show now that TqQ has the structure of a vector space. Let v and u be two velocities at Q, let <p be a chart in a neighborho od of q and let m and m' be motions representing v and u. Then, for a and b in R, we define av + bu to be the tangent vector whose representing motion is <p-I(<p(q)+ t(av+bu)), where

V= d/dt(<p0m)lt =o, u = d/dt (<pom') It=o, i.e. Vi = d/dt(qi(t))lt= o, d = d/dt ({(t)) It=o.
One can easily verify that this definition satisfies all the axioms of a vector space and that it is independen t of the chart <po

The tangent bundle to the configuratio n space is defined as TQ = UqeQTqQ. The tangent bundle projection 't"Q: TQ -+ Q is the mapping which assigns to every tangent -= vector v the configuration q where it is tangent. the tangent -bundle TQ can be given the structure of a differentiable manifold in the following way. Given any tangent vector v, let cp be a chart in a neighborhood U Qf q = LQ(V). We can define the chart <1>: LQ I (U) -+ Rn x Rn by

<I>(v) = (cp(q),d/dt(cpom)/t=o) = (ql, ..

. ,qn,d/dt(ql(t)), ... ,d/dt(qnct)))/t=o,

where m is any motion representing v and qi(t) are the components of cpom. This chart on TQ induced by the chart cp on Q is called the natural chart and it clearly satisfies the first axiom of manifolds. In addition, by the definition of the linear structure on TqQ, <l>q: TqQ -+ Rn is an isomorphism of vector spaces. Assuming that cp' is another chart in a neighborhood of q and that <1>' is the chart it induces on the tangent bundle, we relate the coordinates (l, vi) of v with respect to <I> with the coordinates (l', 1/) of v with respect to <1>' . Let qi(t) be the components of cpom, then, by definition, qi = qi(O), vi = d/dt (qi(t)) / t= o. The components of cp' am will be {(t) = qi'(qi(t)), and using the chain rule and the summation convention, the coordinates of v will be Hence, denoting the partial differentiation O{/oqi by q:;, we have vi' = q:;v i and we note that q:; is a vector space isomorphism.

Given a differentiable mapping h: Q -+ Q' there is an induced mapping Th: TQ -+ TQ' which is defined as follows. Let v be any tangent vector, let LQ(V) = q and let m be a motion representing v. Then, we define Th(v) to be the tangent vector to h(q) which is represented by the motion hom in Q'. If c((q) are the coordinates in a neighborhood of q and siCs) are the coordinates in some chart in the neighborhood of h(q), the coordinates (sr, Uk) of Th(v) in the natural chart are given by

s = s(c(), if = d/dt (s"(qi(t))) / t= 0 = s",jd,
where (q", d) are the coordinates of v in the natural chart on TQ. Thus, for a fixed q, the restriction T;: TqQ -+ Tf(q)Q' of Th to the tangent space at q is a linear mapping and given charts in neighborhoods of q and h(q), it is locally represented by the derivative of the local representative of h. The mapping Th is called the tangent mapping or the derivative of h.

The process of generating the tangent bundle can be repeated and we can construct the tangent bundle to the tangent bundle T(TQ), or T2Q. Clearly, elements of T2Q have coordinates in R 4 n, and if the local representative of a curve in TQ is of the form (qi(t), viet)), the coordinates in the natural chart of the element of T2Q that the curve represents are (qi, vi, d/dt (qk), d/dt (V S

)) / t= o. The tangent bundle projection for this second tangent bundle is LTQ: T2Q -+ TQ, and locally, it is given by (qi, vi, uk, w) -+ (qi,V i ). Given a motion m: R -+ Q there is an induced curve dm in TQ which assigns to any time to the tangent vector (velocity) The curve dm is called the lifting of m and d 2 m is called the second lifting of m. Just as dm(t) represents the velocity at time t, d 2 m(t) represents the (generalized ) acceleration of the system undergoing the motion m at the time t.

As a special case of the derivative of a mapping between two manifolds we have I the mapping TrQ: T2Q ~ TQ, which is the tangent mapping of the tangent bundle projection. Since the local representati ves of rQ are of the form (qi, vi) ~ (qi), the local representati ves of TrQ are of the form (qi, vi, uk, W S ) ~ (qi, u'). We note that if w is in the image of d 2 m for some motion m, then TrQ(w) = rTQ(w),

A vector field on Q is a mapping X: Q ~ TQ such that rQoX(q) = q. We note that the derivative of a vector field is a mapping TX: TQ ~ T2Q. If the vector field is given locally in the form (qi, Xi(qi», then the local representati ve of TXis of the form (qi, Vl) ~ (q, Xk(qi), vi, XS,,(qi)V'). A vector field on Q induces a first-order differential equation on Q in the following way. Let qo be a configuratio n. We say that the motion m on Q, with m(O) = qo, is the solution of the differential equation induced by X if its lifting dm is the restriction of X to the image of m. It follows that if (qi, Xi(qi» are the coordinates of X, the coordinates of the solution curve qi(t) satisfy the equation d/dt (ql)(t) = Xi(qi(t», which justifies the term. Similarly, a first-order equation on TQ is induced by a vector field Y: TQ ~ T2Q on TQ. A vector field Y on TQ is a second-orde r differential equation if r TQ ° Y = Tr QO Y, or equivalently , if the coordinates of Yare of the form (q, vi, vk, YS(qi». If (q(t),vi(t» are the coordinates of the solution curve on TQ to a second-orde r differential equation, they satisfy the relation d/dt (qi) = vi, d/dt (vi)(t) = yi(qi(t», so that the use of the term is justified.

IV. The Cotangent Bundle and Forces in Statics

Let qeQ and let T*Qq denote the dual vector space to TqQ. We call T*Qq the cotangent space to Q at q and we call T*Q = UqeQT*Qq the cotangent bundle of Q. An element of T*Q will be referred to as a covector, and nQ: T*Q ~ Q will denote the mapping that assigns to any covector f, the configuratio n q such that / e T*Qq. We endow T*Q with the structure of a differentiab le manifold as follows. Let q> be a chart in a neighborho od U of q, then the chart <1>*: nQ I(U) ~ Rn x Rn is defined by <1>*(/) = (qi, jj) = (qi, fee)~, where ei is the tangent vector whose natural coordinates are (0, ... , 1, ... ,0), with 1 in the jth place. In other words, if (qi, jj) are the coordinates off, thenf (v) = !jv i , where vi are the natural coordinates of v. One can easily show that if a coordinate transformat ion qi' = qi' (qi) is given in a neighborho od of q, then, j;, = j;q:j' , i.e. the coordinates of f are related by the transpose of the matrix of the partial derivatives.

Let h: Q ~ Q' be a differentiab le mapping. Note that for q e Q we have a mapping T*hh(q):T*Q~(q) ~ T*Qq which is the adjoint of Tqh and th~~efore its local representative is the transpose of the matrix of T ;.

Convectors represent mathematically the generalized/orees and the meaning of the real number obtained by the action of a force on a generalized velocity is simply the virtual work that the force performs on the virtual displacement or the power supplied by the force. Indeed, in order that the virtual work will be independent of the coordinates by which we choose to represent the velocities, the transformation of coordinates for forces should be the one we obtained for covectors. For example, let B be a rigid body and let Q be its configuration space.

Choosing a Cartesian coordinate system which is fixed to the body and a coordinate system which is fixed in space, we can find for each configuration qo a neighborhood of qo in which the rectangular components of the origin of the body frame and the rotations of the body axes about the space axes can serve as coordinates. In this coordinate system the components of the generalized velocity will be composed of the three components of the linear velocity of the origin of the body frame and the three components of the angular velocity of the body frame. The coordinates of a generalized force will be composed of the three components of the force acting on the body and the three components of the torque (by torque we mean the components of the generalized force that correspond to the rotations). Let A be a point in B. Using the space frame, the configuration space of A can be identified with the Euclidean space R 3 and the coordinates of a generalized force are simply the components of the force acting on A. We can write the mapping h: Q ~ R3 which assigns to any configuration q of the body the corresponding position of the point A in space. Then, for any configuration q, the linear mapping T*h: T*Rl(q) ~ T*Qq will assign a force acting on the body to any force acting on A. It turns out that the torque 6n B due to a force f acting on A is given by the vector product r x f where r is the position vector of point A in the body frame.

V. The Riemannian Metric and the Kinetic Energy

Let g: TQ ~ T*Q be a differentiable mapping such that for each qE Q the restriction of g to q is an isomorphism TqQ ~ T*Qq. The mapping g induces a nonsingular bilinear form K on TQ by K(v,u) = }g(v) (u). If the induced bilinear form is symmetric and positive definite g is called a Riemannian metric on Q. The dynamical properties of a mechanical system are represented by a Riemannian metric g in the following way. For every velocity v, the kinetic energy of the system at that velocity is K(v, v) = }g(v)(v) and the generalized momentum is the element

g(v) of T*Q.
Since the restriction of g to TqQ for any q E Q is a symmetric linear transformation, it is represented locally by a symmetric tensor gks called the metric tensor such that if / = g(v), the coordinates jj of / are given by gJsif, where if are the coordinates of v. The local expression for K is given by the same tensor in the form K(v, u) = }gijViu J • Since K is a symmetric bilinear form it can be given the interpretation of a scalar product so that 2K(u, v) is the scalar product between u and v, and (2K(u, u» 1/2 is the length of the vector u. One can easily verify that if qi' = l'(q) is a coordinate transformat ion, then the coordinatet r;~sfor7ria tion for the metric tensor is gi'j' = 9 ij if)' q:i"

As we saw earlier, the derivative of a vector field is a mapping from TQ into T2Q. Similarly, the acceleration is an element of T2Q. We will see in the following that one can use the metric in order that the acceleration , and any other member of T2Q, can be identified with an element of TQ. In such a case, the derivative of a vector field will be a linear mapping from TQ into TQ and the same will hold for a second-ord er differential equation.

We recall that although all the tangent spaces are isomorphic to Rn, these isomorphis ms are induced by the charts and therefore they are not unique. If however, we were given isomorphism s of the tangent spaces in a certain neighborhood of a configuratio n q to a given vector space, we could associate with any vector v in TqQ a unique vector v' E Tq,Q. Given such isomorphis ms this operation is called a parallel translation.

Let m be a motion on TQ and let w denote the element of T2Q that this motion represents. Using the parallel translation we can associate with w the element c(w) of Tqq, q = 'rQ(m(O)), which is given by c(w) = dldt (m'(t))lt=o, where m'(t) is the result of the parallel translation of m(t) to TqQ. (We note that the differentiati on makes sense because we calculate the derivative ofa curve in the vector space TqQ.) Such a mapping c: T2Q ~ TQ is called the connection mapping of the parallel translation. Given a motion m on TQ, we can use the parallel translation to define the curve Vm: R ~ TQ by Vm(t o ) = dldt (u')(t o ) = c(dm(to)), where u' is the parallel translation of m(t) from Tq,Q, q' = 'rQ(m(t)), to TqQ, q = 'rQ(m(to)).

Given a vector field X whose coordinates are (qi, Xi) and parallel translations in neighborho ods of all points in Q, we can define the covariant derivative V X: TQ ~ TQ as follows. The restriction of V X to q is a linear mapping TqQ ~ TqQ whose representing , matrix is Xij = oloqj(X'i), where Xli are the coordinates of the parallel translation of X(q') to TqQ. Given a vector field Y whose coordinates are (qi, yj) we denote the evaluation of the covariant derivative of X on Y by V yX. The coordinates of the vector field VyX are Xijyi.

Assuming that a Riemannian metric is given on Q it can be shown that there is a unique parallel translation on Q that satisfies the following properties:

(i) parallel translation preserves the kinetic energy, i.e. Kq,(u,v) = Kq(u',v'), where u' and v' are the parallel translations of u and v from Tq,Q to TqQ; (ii) if e i is the vector field in the neighborho od of q whose coordinates satisfy (Xl) = (0, ... ,1, ... ,0), where the 1 is in the ith place, then o~ej = Veiei.

Let (qi, vi, uk, w') be the coordinates in the natural chart of the element w of T2Q. It can be shown that with the unique parallel translation that has the two aforementio ned properties, the coordinates of c(w) are (qi, w' + rjkviuk), where rjk = r~j = ifl(gsk,j+gis ,k-gjk,s) (ffi denote the component s of the inverse matrix of gjk)' The coefficients rjk are called the Christoffel symbols.

Let (qi(t), viet)) be the local expression for the curve m in TQ, so that the coordinate representat ion of dm in the standard chart in T2Q is given by (qi(t), viet), dldt (t)(t), dldt (VS)(t)). It follows that the coordinate representat ion of Vm is (qi(t), dldt (VS)(t) + nkvk dldt (ql)(t)). In the particular case where m = dmo, where 0= mo is a curve on Q whose coordinates are (q), the local represent~tive ofVm = V dmo is (ql(t), d2/dt2(qS)(t)+n~i d/dt(q") d/dt(qi)(t)). Similarly, any second-order ,differential equation w: TQ ~ T2Q whose local representative is (qi, vi, v\ W(qi, vi)), induces a mapping cow: TQ ~ TQ, which is given locally by (qi, W+rjkvivk). Ifmo is the solution of the second-order differential equation w, it satisfies the equation V dmo = cod2mo = cowomo, so that second-order differential equations can be written on TQ. In addition, it can be shown that with this parallel translation we have X lj = X: j + rjkX". In conclusion, we note that for a given q E Q the mapping c: T 2 Qlq ~ TqQ x TqQ x TqQ, given by w ~ (LTQ(W), TLQ(W), c(w)) is one to one and onto and it can be used to identify any element of T2Q with a triplet of elements ofTQ.

VI. The Equations of Motion

Consider the tangent bundle to the cotangent bundle T(T*Q), equipped with the projections LT*Q: T(T*Q) ~ T*Q and TnQ: T(T*Q) ~ TQ which are given locally in the form (qi,jj,V\gs) ~ (qi,jj) and (qi,jj,V\gs) ~ (qi, v k ), respectively. Letp be a member of (T*Q)q for some configuration q and consider curves m in T*Q with the property met) = q for each t. Since these curves do not leave (T*Q)q they are of the formp+f(t) where f(t)E(T*Q)q for all t, and each such curve is tangent to the line p + if (0). It follows that the collection of tangents to these curves form the vector space Tp(T*Q) and that the elements of Tp(T*Q) have natural coordinates of the form (qi,pj' 0, fk) where (qi, fk) are the coordinates of f (0). Hence, given two elements p and f of (T*Q)q, an element of Tp(T*Q) is induced by the line p + if. Given pin T*Q, we denote by Ip the mapping (T*Q)q ~ Tp(T*Q), q = nQ(p), given, by f ~ d/dt (p = lif).This map is clearly an isomorphism and it follows that any force f can be identified with ~/f), where Oq is the zero element of (T*Q)q, and conversely, any element of ToiT*Q) (the coordinates of such an element are in the form (qi. 0, O,jj)),induces a unique force whose natural coordinates are (qi, jj).

In general, there is no natural mapping which acts as I;; I to associate two members of T*Q with an element of T(T*Q). However, given a Riemannian metric, the connection mapping c induces a connection mapping c*: T(T*Q) ~ T*Q given by c* = gocoTg-1 so that the following diagram is commutative.

2 Tg T Q ------+) T(T*Q) e1
Ie.

TQ _-.:::..g ~l T*Q Let (qi,pj' v k , Ps) be the coordinates of an element p of T(T*Q), then the coordinates of Tg-l(p) are given by (qi,gi'pj,v\g~;vlp,+gS'p,) so that the coordinates of C(Tg-l(p)) are (qi, r~kgj'pjVk+g~;vlp,+gS'p,). Thus, the coordinates of c*(p) are (qi, g/sr:kgi'pjVk + g/sg~;vlp, + g/sgS' p,) = (qi, g/sCkgi'PjV k -if' g/S,IV1p, + pD.

Here again c* induces an identification C*:

T(T*Q) ~ T*Q x TQ x T*Q which is given by p ~ (LT*Q(P), Tn(p), c*(p)).
Let v E TqQ and let p = g(v) be the momentum associated' ;ith th;' generalized velocity v. Then, given a force / E (T*Q)g, the effective force acting on the system due to / at the velocity v is C*l(p, v,/) E T(T*Q),q' Assuming that (qi, vj) and

(ql,i1J are the coordinates of v and f, respectively , the coordinates of the effective force due to / at the velocity v are (qi, girvr, vk, i1-glsCtVrVt + gls,tVV). Using the symmetry of the product vtv s and the relation between r: t and gj" the last expression reduces to (qi, gjrVr, v\ h+ glsr:tvrvl A/orcefiel dfis a mapping TQ -+ T*Q such that 'lrQ(f(v» = LQ(V). Given a force field f and a Riemannian metric g on the configuratio n space Q, a second-orde r differential equation p: TQ -+ T2Q is induced on Q by

p(v) = Tg-1oC*-I( g(V), v, f(v».
Assuming that the local representati ves off are given in the form (qi, jj(qk, VS», one can calculate the components of Tg-1oC*-I( g(V), v, f(v» to obtain (qi, vj, vk,gsrj,_ CtvrV t ) so that p is indeed a second-ord er differential equation. We say that p is the acceleration field induced by the force fieldf, and we note that if the motion m is a solution of this second-orde r differential equation, its local representati ves From this last expression it follows that if m is a solution of the acceleration field induced by f, then m satisfies g(Vdm(t» = f(m(t» which is the required generalizati on of Newton's second low.

VII. Free Motion and Norl{1la/ Coordinates

By a free motion or a geodesic we mean a motion of the mechanical system under the zero force field. It follows that a free notion satisfies the equation Vdm = 0, and in coordinates

d2/dt2(qi)(t )+r~s d/dt(qr)d/d t(if)(t) = O.
The following properties of free motion can be proved [see [START_REF] Arnold | Mathematic al Methods of Classical Mechanics[END_REF][START_REF] Sternberg | Lectures on Differential Geometry[END_REF]] for the case of a compact configuratio n space. a. For every configuratio n q and every velocity VE TqQ there exists a unique free motion met) such that m(O) = q and dm(O) = v.

b. Let a: R -+ R be a change of scale of the time domain in the form aCt) = at+j3.Then , if m:R -+ Q is a free motion, i.e. a solution of Vdm = 0, satisfying the initial condition m(O) = v, the motion moa is also a free motion satisfying the same initial condition. In addition, the free motion m' satisfying the initial condition yv can be obtained by a reparametri zation of m and it satisfies m'(t) = m(yt), dm'(t) = ydm(yt). c. The kinetic energy is conserved along a free motion, i.e.

d/dt (K(dm(t), dm(t») = O.
d. Consider the mapping <1>: R x TQ -+ TQ, defined by <1>(t, v) = dm(t), where m is the unique free motion whose initial condition is ~. This ni1.pping, called the geodesic flow, can be shown to be differentiable.

The differentiable mapping exp: TQ ~ Q defined by exp (v) = m(1) = LQ(<I>(1,V)) is called the exponential mapping. The restriction eXPq: TqQ ~ Q of the exponential mapping to TqQ induces a one to one and onto differentiable mapping from a neighborhood V of the zero vector in TqQ onto a neighborhood U of q in Q. Thus, choosing a basis in TqQ we can construct a chart on U in the following way. For every point q' in U let its coordinates Vi be the components of the vector v in V such that q' = exp (v) = m(l) (m is the free motion with initial condition v). This chart in the neighborhood U of q is called the normal chart. In particular, we can choose an orthonormal basis in TqQ so that gij = bij (the Kronecker b) in the normal chart. It can be shown that in the normal chart we have rjk = o. Thus, using the compactness assumption, it follows that Q can be covered by a finite number of normal charts in which the equations of motion are of the form d 2 q i dt 2 = j;. e. The configuration space Q is geodesic ally complete, i.e. for any two configurations q and q' there exists a free motion which starts at q and ends at q'. f. Given the configurations q and q', the functional L(m) = .r' (K(dm(t), dm(t)) 1/2 dt which can be interpreted as the length of the curve joining the two configurations, and the functional E(m) = r (K(dm(t), dm(t))dt are at a local minimum if m is a free motion between q and q'.

VIII. Conclusions

In the preceding sections, we presented the Newtonian mechanics of mechanical manipulators from a geometric point of view. Generalized forces that serve as the control parameters in the control of robots were introduced as elements of the cotangent bundle of the configuration space. The kinetic energy was modelled by a Riemannian metric and the isomorphism it induces between the tangent and the cotangent spaces was used in order to obtain the generalized momentum corresponding to a given generalized velocity. The generalized accelerations, which are elements of the second tangent bundle, were related to the forces by using the connection induced by the Riemannian metric (kinetic energy). To the best of our knowledge this is the first geometric invariant formulation of the equations of motion for a multi-degrees of freedom mechanical system in the form of Newton's second law. In addition, the standard form of the equation~ ;;[ motion found in the literature, i.e. M(q)q+B(q ,q)q = f which is written in a coordinate non-invaria nt form, can be interpreted now as follows: M is the matrix of the metric tensor (kinetic energy) and B is composed of the covariant Christoffel symbols r ijk = girrSk of the connection induced by the metric.

The introductio n of the normal coordinates provides us with a procedure for the linearizatio n and decoupling of the equations of motion in the case where we do not consider generalized forces due to gravity [ef [START_REF] Koditschek | Robot kinematics and coordinate transformati ons[END_REF][START_REF] Hunt | Design for multi-input nonlinear systems[END_REF]]. We note that the configuratio n spaces of most mechanical manipulato rs are compact differentiab le manifolds. For example, the configuratio n spaces of mechanical systems composed of rigid bodies that are joined together so that one of the bodies rotates about a fixed point and the rest of the degrees of freedom of the system are rotations, are compact manifolds. It follows that the results of the previous section regarding compact manifolds are all applicable.

  to m at time to. If (qi(t» are local representati ves of this motion, the local representati ves of dm are (qi(t), d/dt (qi(t»). Similarly, m induces a curve d 2 m on T2Q which assigns to any time to the acceleration at that time, i.e. if (qi(t» are the local representati ves of m, the local representati ves of d 2 m are (qi(t), d/dt (qi(t», d/dt (qi(t», d 2/dt(qi(t»).